МАТЕРІАЛИ ДЛЯ СЕНСОРІВ

SENSOR MATERIAL

УДК 538.971 DOI http://dx.doi.org/10.18524/1815-7459.2017.3.105564

ТЕХНОЛОГІЧНІ АСПЕКТИ ОТРИМАННЯ ТЕРМОЕЛЕКТРИЧНОГО РЬТе

I. В. Горічок¹, І. М. Ліщинський¹, С. І. Мудрий², О. С. Оберемок³, Т. О. Семко¹, І. М. Хацевич³, О. М. Матківський¹, Г. Д. Матеїк⁴, Р. О. Дзумедзей¹

¹ДВНЗ «Прикарпатський національний університет імені Василя Стефаника», вул. Шевченка, 57, Івано-Франківськ, 76018, Україна; e-mail: HorichokIhor@gmail.com; ²Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, Львів, 79005, Україна; ³Інститут фізики напівпровідників імені В.Є. Лашкарьова НАНУ, Проспект науки, 41, Київ, 03028, Україна; ⁴Івано-Франківський національний технічний університет нафти і газу, вул. Карпатська, 15, Івано-Франківськ, 76018, Україна

ТЕХНОЛОГІЧНІ АСПЕКТИ ОТРИМАННЯ ТЕРМОЕЛЕКТРИЧНОГО РЬТе

I. В. Горічок, І. М. Ліщинський, С. І. Мудрий, О. С. Оберемок, Т. О. Семко, І. М. Хацевич, О. М. Матківський, Г. Д. Матеїк, Р. О. Дзумедзей

Анотація. Представлено результати дослідження фазового складу і структурного стану синтезованих за різних технологічних факторів полікристалічних зливків бездомішкового телуриду свинцю та виготовлених на їх основі методом пресування порошку зразків. Проведено вимірювання температурних залежностей питомої електропровідності, коефіцієнта термо-ЕРС та коефіцієнта теплопровідності. Встановлено вплив температури відпалу зразків на їх термоелектричні властивості.

Ключові слова: телурид свинцю, синтез, пресування, термоелектричні властивості

© І. В. Горічок, І. М. Ліщинський, С. І. Мудрий, О. С. Оберемок, Т. О. Семко, І. М. Хацевич... 2017

TECHNOLOGICAL ASPECTS OBTAINING OF THE THERMOELECTRIC PbTe

I. V. Horichok, I. M. Lischynskyy, S. I. Mudryy, A. S. Oberemok, T. O. Semko, I. M. Hatsevych, O. M. Matkivskyy, G. D. Mateyik, R. O. Dzumedzey

Abstract. The results of the research of phase composition and structural state of synthesized by various technological factors polycrystalline ingots of undoped lead telluride and made based on them samples by pressing the powder. Measurement of the temperature dependences of conductivity, Seebeck coefficient and thermal conductivity are made. The influences of annealing temperature of samples at their thermoelectric properties are researched.

Keywords: lead telluride, synthesis, pressing, thermoelectric properties

ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ ПОЛУЧЕНИЯ ТЕРМОЭЛЕКТРИЧЕСКОГО РЬТе

И. В. Горичок, И. М. Лищинськый, С. И. Мудрый, А. С. Оберемок, Т. А. Семко, И. М. Хацевыч, А. Н. Маткивськый, Д. Матеик, Р. А. Дзумедзей

Аннотация. Представлены результаты исследования фазового состава и структурного состояния синтезированных при различных технологических факторах поликристаллических слитков беспримесного теллурида свинца и изготовленных на их основе методом прессования порошка образцов. Проведено измерение температурных зависимостей удельной электропроводности, коэффициента термо-ЭДС и коэффициента теплопроводности. Установлено влияние температуры отжига образцов на их термоэлектрические свойства.

Ключевые слова: теллурид свинца, синтез, прессование, термоэлектрические свойства

1. ВСТУП

Телурид свинцю – напівпровідниковий матеріал, який використовується для створення на його основі термоелектричних перетворювачів середнього діапазону температур (200-500)°С. В останні роки, з екологічних міркувань, спостерігається тенденція до вивчення безсвинцевих термоелектричних матеріалів [1-3]. Проте, їх властивості, трудомісткість методів отримання і, що не менш важливо з практичної точки зору, собівартість, дають підстави вважати, що у короткостроковій перспективі широкого практичного використання таких сполук не очікується. З огляду на це актуальними залишаються дослідження телуриду свинцю, з метою оптимізації технології його отримання та покращення основних експлуатаційних характеристик.

Незважаючи на значну кількість публікацій в сучасній науковій періодиці присвячену термоелектриці, відносно небагато уваги в сучасних роботах приділяється технологічним аспектам отримання термоелектричних зразків, особливо отриманих методом пресування порошків [4-7]. Варто зазначити, що з практичної точки зору, використання методу пресування порошків є більш ефективним у порівнянні з іншими способами, оскільки можна отримувати зразки потрібної форми з високими механічними властивостями. Термоелектричні параметри при цьому не суттєво відрізняються від властивостей монокристалічних зразків [8]. В даній роботі зроблено акцент на дослідженні впливу технологічних факторів синтезу полікристалічних зливків на їх фазовий склад, структурний стан, а також на термоелектричні властивості зразків отриманих методом холодного пресування.

2. МЕТОДИКА ЕКСПЕРИМЕНТУ

Синтез матеріалів проводили у вакуумованих до залишкового тиску 10-4 Па кварцових ампулах. При цьому використовували свинець з вмістом основного компоненту 99,99% та телур - 99,999%. Ампули розташовувались у печі горизонтально. Для уникнення різкого збільшення тиску пари телуру у ампулі та створення умов для якнайкращого перемішування розплавлених компонентів, синтез здійснювався у кілька етапів: нагрівання до 500 °С (17 °С/хв), витримка 1 год; нагрівання до 700 °С (7 °С/ хв), витримка 3 год; нагрівання до 1020 °С (11 °С/хв), витримка 1 год; охолодження до 900 °С (4 °С/хв); гартування на повітрі. Отримані зливки, довжиною < 10 см, та поперечним розміром < 1.5 см, подрібнювали у агатовій ступці та, виділивши фракції розміру (0,05 - 0,5) мм, пресували під тиском 2,0 ГПа. Отримані циліндричної форми зразки з d = (5-8) мм та $h \approx (5-8)$ мм піддавали відпалу у вакуумі чи на повітрі.

Фазовий склад і структуру синтезованих зливків та зразків досліджували Х-дифракційними методами на автоматичному дифрактометрі STOE STADI Р (виробник фірма "STOE & Cie GmbH", Німеччина). Обробку експериментальних дифракційних масивів проводили за допомогою пакету програм STOE WinXPOW (версія 3.03) та PowderCell (версія 2.4).

Елементний склад та розподіл домішок по глибині зразків досліджували методом вторинної іонної мас-спектрометрії (ВІМС). Для вимірів було використано іонно мікрозондовий мас-спектрометр IMS 4F (виробник фірма "Cameca", Франція). Розпилення поверхні зразків первинним іонним пучком проводилося в режимі прямокутного растра 200 мкм × 200 мкм під кутом падіння - 45°. Енергія та струм пучка первинних іонів

 O_2^+ складали 12.5 кеВ та 0.4 мкА, відповідно. Детектування вторинних іонів відбувалося з площі діаметром 60 мкм в центрі растра, що дозволяло позбутися ефекту кратера.

Дослідження морфології поверхні та вимірювання мікротвердості зразків проводили з використанням твердоміра NEXUS 412A. Додатково мікроструктура зразків вивчалась з використанням скануючого електронного мікроскопа в поєднанні з енергодисперсійним рентгенівським аналізом (приставка ESEM FEI Quanta 200 FEGi, прискорююча напруга 15 кВ).

Вимірювання сталої Холла проводили у постійних магнітних та електричних полях чотиризондовим методом. Струм через зразки складав ≈ 100-500 мА. Магнітне поле було напрямлене перпендикулярно до повздовжньої осі циліндричного зразка за індукції 1,5 Тл.

Величину термо-ЕРС α i питому електропровідність σ визначали за стандартною методикою на установці схема якої наведена на рис.1. Зразок затискали між двома мідними стержнями поміщеними у піч U₁, що нагріває його до заданої температури вимірювання. На один з мідних стержнів намотано піч U, для створення градієнту температури (≈5°С) на зразку. Вимірювання температури проводили двома ХА-термопарами поміщеними в отвори, висвердлені у зразку. Електропровідність визначали вимірюючи спад змінної напруги, яка генерувалась джерелом U, на досліджуваному зразку. При цьому, одна з віток кожної термопари використовувалась як струмопідвід. Коефіцієнт термо-ЕРС та питома електропровідність визначались згідно формул:

$$\alpha = \frac{U_{epc}}{(T_2 - T_1)}, \ \sigma = \frac{U_{eT} \cdot l}{U_{3p} \cdot R_{eT} \cdot S}$$

Тут $U_{_{3p}}$ – спад напруги на зразку при проходженні змінного струму, $R_{_{er}}$ – опір еталонного резистора, $U_{_{er}}$ – спад напруги на еталонному резисторі, S – площа поперечного перерізу зразка, l – відстань між термопарами, $U_{_{epc}}$ – величина термо-ЕРС, T_1 , T_2 – температури холодного та гарячого кінців зразка.

Теплопровідність зразків визначали методом радіального теплового потоку (рис. 2).

Для реалізації даного методу уздовж осі циліндричного зразка поміщається нагрівач, що створює градієнт температури в радіальному напрямку. Останній вимірюється двома термопарами, розташованими вздовж радіуса. Коефіцієнт теплопровідності к обчислюється за формулою:

$$k = q \ln\left(\frac{r_1}{r_2}\right) \frac{1}{2\pi(T_1 - T_2)}$$

де q – електрична потужність на одиницю довжини нагрівача, T_1 і T_2 – температури зразка на відстані r_1 та r_2 від осі.

2, 3 – мідні стержні; 4 – кварцова трубка.

3. РЕЗУЛЬТАТИ ЕКСПЕРИМЕНТУ ТА ЇХ АНАЛІЗ

Синтезовані за описаною вище методикою зливки характеризувались однорідною поверхнею без видимих макродефектів. Для встановлення впливу технологічних факторів на структурний стан і фазовий склад досліджуваних матеріалів рентгенівські дифрактометричні дослідження проводили окремо для синтезованих зливків (подрібнених безпосередньо перед проведенням вимірювань), порошку розмеленого за 10 днів до проведення аналізу та пресованих зразків, які, як і зливки, подрібнювали безпосередньо перед вимірюваннями. Отримані дифрактограми представлено на рис. З.а.

Усі досліджувані матеріали однофазні, структурного типу NaCl. При співставленні отриманих дифрактограм з теоретичною спостерігається відносне посилення інтенсивностей лінії дифракційного відбивання у напрямку (100), що свідчить про наявність текстури зразків. Її поява зумовлена напрямленим ростом кристалітів (рис. 4) за вибраних технологічних умов синтезу.

Параметри елементарних комірок для зливків, тобто свіжо розмеленого матеріалу, і витриманого порошку в межах похибки однакові (а_{зд.}= 6,4577±0,0010 Å, а_{пор.} = 6,4580±0,0010 Å). Для пресованого і відпаленого зразка спостерігається зменшення параметра елементарної комірки (a₂=6,4564±0,0010 Å) та деяка зміна структури рефлексів (рис. 3.б), у порівнянні з порошком. Деякий зсув вбік більших кутів може бути зумовлений наведенням при пресуванні напруг, що, з огляду на великі тиски, є закономірним. Розширення піків може бути зумовлене як наявністю мікронапруг так і зміною, а саме зменшенням, розмірів областей когерентного розсіювання. Оцінка за формулою Дебая-Шерера даних розмірів визначена на основі рефлексу (200) становить 158 нм (К = 0,9) для зразка Va та 128 нм (К = 0,9) для зразка Vc. Можна припустити, що в процесі пресування частково руйнується орієнтаційна напрямленість зерен шляхом зколювання, що зокрема, призводить і до зменшення ОКР. Дане припущення частково підтверджується і зміною у співвідношеннях інтенсивностей дифракційних піків I(200)/I(220). Так для зразка Va ця величина становить $\approx 2,5$, зразка $Vc - \approx 2,1$, а для теоретичної дифрактограми «ідеального кристалу» – ≈1,5. Тобто пресування призводить до зменшення текстури.

Варто зазначити, що практична рівність параметрів елементарних комірок свіжорозмеленого зливку та витриманого порошку що свідчить про те, що напруги, наведені при розмелюванні, в процесі витримки не знімаються.

Характерною ознакою досліджуваних зразків є їх висока густина та, відповідно, низька поруватість (рис.5). Для зразків пресованих під тиском 2 ГПа та відпалених при 230 °С, в залежності від інших технологічних умов, величина р, визначена методом гідростатичного зважування (методом Архімеда), становить $\rho_{\rm A} = (8,15-8,20)$ г/см³. При параметрі елементарної комірки а = 6,456 А рентгенівська густина становитиме $\rho_{\rm P} = 8,268$ г/см³. Таким чином, відносна густина пресованих зразків становить не менше 98,57 %.

Рис. 3. Дифрактограми зразків Pb_{0.5}Te_{0.5} (Va – зливок, Vb – порошок, Vc – пресований зразок) (а) та співставлення структури рефлексів (220) для них (б) (тиск пресування 2 ГПа).

a)

Рис. 4. Мікроструктура сколу синтезованого зливку (перпендикулярно до повздовжньої осі) (а) та частина зливку телуриду свинцю (б).

Варто зазначити, що відносно високі тиски пресування забезпечують також отримання однорідного по висоті зразка навіть при відносно несприятливих відношеннях висоти зразка до його радіусу. Згідно [9], при відносно невисоких тисках (десятки МПа) та відношенні $h/r \approx 1$, нерівномірність розподілу тисків може досягати до 50 %, що призведе і до аналогічних неоднорідностей як густини зразка, так і його властивостей. Так при тиску пресування 0,6 ГПа мікротвердість невідпаленого зразка Pb_{1-x}Sb_xTe_{0.5} (фракції (0-0,5) мм) з боку пуансона на 20 відсотків вища ніж з протилежного. При

тиску 1,5 ГПа відповідні значення становлять 505.6 МПа та 514.4 МПа, що не перевищує похибки вимірювання.

б)

B)

Рис. 5. Структура поверхні зразків (збільшення 400х) отриманих при тиску пресування 2,0 ГПа: не відпалених (а) і відпалених при температурі 230 °C (б) та 500 °C (в).

Відпалені при 230 °С зразки бездомішкового PbTe характеризуються нижчою твердістю ($H_v \approx 350 \text{ M}\Pi a$) у порівнянні з невідпаленими ($H_v \approx 510 \text{ M}\Pi a$). Подальше збільшення температури відпалу до 500 °С не змінює величини мікротвердості.

Висока щільність та відсутність значної поруватості пресованих зразків найімовірніше є причиною того, що відпал на повітрі не призводить до значного окиснення всього об'єму зразка, при якому спостерігалась би деградація термоелектричних властивостей. Натомість, досліджувані зразки без застосування додаткового захисту характеризувались часовою стабільністю термоелектричних властивостей на повітрі на протязі не менше трьох тижнів (в умовах проведення експерименту, тобто періодичних нагрівань-охолоджень), що дозволяло проводити практично весь комплекс досліджень. Концентрація кисню, згідно результатів дослідження методом ВІМС, суттєвою є лише на поверхні (рис. 6). Тобто, можна стверджувати, що основні процеси на які впливає відпал і які стабілізують властивості зразка, протікають в його об'ємі. Даний висновок підтверджується дослідженням термоелектричних властивостей зразків, відпалених у вакуумі за аналогічної температури, і властивості яких в межах похибки вимірювань не відрізнялись від властивостей відпалених на повітрі зразків.

Рис. 6. Залежності інтенсивностей ліній карбону, оксисену, телуру та плюмбуму у спектрах ВІМС від часу травлення для зразків РbТе відпалених при температурі 230 °С на повітрі.

На основі дослідження ефекту Холла при кімнатних температурах, встановлено, що у досліджуваних зразках холлівська концентрація носіїв становить (0,8-1,2) 10¹⁸ см⁻³, а рухливість (110-130) см²/ (В с). Відносно невисокі значення концентрації носіїв свідчать про несуттєве порушення стехіометрії зразків в процесі проведення технологічних операцій їх отримання.

Типові температурні залежності термоелектричних параметрів нелегованого телуриду свинцю представлено на рис. 7. Властивості невідпалених зразків та відпалених при T = 230 °C практично не відрізняються. При температурах нижче 200 °С зразки виявляють дірковий тип провідності. Коефіцієнт термо-ЕРС при 100 °С становить \approx 400 мкВ/К. 3 ростом температури в околі 200 °С тип провідності змінюється на електронний і при 300 °C $\alpha \approx 250$ мкВ/К. Температурна залежність електропровідності для всіх зразків є немонотонною з мінімумом при температурі, що відповідає p-n-переходу. Коефіцієнт теплопровідності у досліджуваному діапазоні температур практично не змінюється зі зміною температури і становить ≈(0,004-0,006) Вт/(см К).

Відпал при 500 °С призводить до значного підвищення електропровідності матеріалу, який в досліджуваному діапазоні температур проявляє лише р-тип провідності. Теплопровідність матеріалу при цьому суттєво не змінюється.

Причиною якісних змін електропровідності матеріалу може бути як реструктуризація міжзеренних меж, зафіксована при дослідженні структури поверхні зразків, так і модифікація його дефектної підсистеми. Проте, згідно [10-11], дефектна підсистема РbTе практично повністю гартується при значно вищих за 500 °C температурах. Таким чином саме зменшення опору між зернами, з яких пресований зразок, є основною причиною росту величини о.

Подовження часових режимів синтезу не призводить до покращення однорідності зливків. Для підтвердження чи спростування цього висновку проведено синтез зливків з максимально можливими витримками на різних режимах синтезу зливків, що, як очікувалось, повинно б призвести до отримання зразків з високим ступенем стехіометричності.

Рис. 7. Температурні залежності питомої електропровідності σ (а), коефіцієнта термо-ЕРС α (б) та коефіцієнта теплопровідності к (в) зразків РbTe (XV) отриманих методом пресування порошку (0,05-0,5) мм під тиском 2 ГПа. Зразки 1Sa, 1Sb – відпалені при 230 °C, 2, 3 – не відпалені, 2", 3" – відпалені при 500 °C.

Синтез проходив у кілька етапів. Спочатку в печах встановлювалась температура 500 °C, за якої всі компоненти переходили у рідку фазу. Для підвищення гомогенності сполуки при цій температурі виконувалось перемішування розплаву, шляхом погойдування печі на кути ± 30°. Після цього електропіч витримувалась впродовж 50 год при сталій температурі для дифузії речовин. Потім в печі встановлювалась температура 970 °С і знову виконувалось перемішування розплаву. Після цього піч встановлювалась горизонтально і в такому стані процес синтезу тривав 70 год. Охолодження електропечі проводилось до температури 450 °С з швидкістю 5 °С К/год, а надалі – з двічі більшою швидкістю до кімнатної температури.

За вибраних умов синтезу, згідно з результатами рентгенівського дифрактометричного аналізу, зливок виявився двофазним. Основна фаза – PbTe, а в області кутів $2\theta \approx 31^{\circ}$ зафіксовано пік, що відповідає фазі чистого свинцю Pb (рис.8).

При дослідженні поверхні зливку скануючим електронним мікроскопом підтверджено наявність включень додаткових фаз (рис. 9). Зважаючи на особливості Т-Х діаграми в області гомогенності PbTe, кристалізація на початкових стадіях може відбуватися з отримання матеріалу з надстехіометричним халькогеном, що в результаті, і є найімовірнішою причиною наявності включень металу. При швидкому охолодженні (зливок V) даний ефект відсутній через малий час, протягом якого може відбуватися дифузія компонентів для їх кластеризації. При температурах ≤ 500 °С область гомогенності РbТе не є такою асиметричною, як в околі температури плавлення, а тому ніяких кластероутворюючих процесів не відбувається.

На основі структурних та фазових дослідження пресованих і відпалених зразків виготовлених з цього ж зливку встановлено наявність у них окрім фази свинцю також включення фази чистого телуру (рис. 8). Найімовірніше, надстехіометричний розчинений за високої температури в матриці телур при відпалі зразків за температури, при якій його розчинність значно нижча, випадає в окрему фазу. Важливо зазначити, що на дифрактограмах пресованого і відпаленого зразка закономірно з'являються також піки від фази оксиду свинцю. Проте рефлекс даної фази в області $2\theta = 28,5^{\circ}$ практично співпадає з рефлексом фази телуру структурного типу As (в області $2\theta = 38^{\circ}$ фіксується фаза телуру структурного типу Se), що ускладнює їх ідентифікацію та розділення.

Рис. 8. Фрагмент дифрактограми зливка 14-36 та виготовленого з нього зразка (14-36 SG)з відзначеними рефлексами від додаткових фаз (а); структура рефлексів (200) для зливків V і 14-36 (б).

Рис. 9. SEM - зображення поверхні зливка PbTe 14-36 (а) та пресованого зразка (б) на яких фіксується наявність включень додаткових фаз.

З порівняння структури рефлексів зливків 14-36 та Va (рис. 3.9 б), видно що для першого з них лінії є ширшими, що вказує на менші області когерентного розсіювання або наявність значних мікронапруг. Ця закономірність проявляється як при співставленні дифрактограм зливків, так і пресованих зразків. Якщо припустити, що розширення зумовлене лише зміною розмірів областей когерентного розсіювання, то для зливка 14-36 величина D, визначена за найінтенсивнішим рефлексом (200) становить 102 нм (K = 0,9), що значно менше ніж для зразків V. У випадку якщо у розширення значним є внесок мікронапруг, то відкритим залишається запитання, чому за більш рівноважних умов величина є є більшою ніж для гартованих зливків?

4. ВИСНОВКИ

Для отримання однофазних структурно однорідних полікристалічних зливків гартування на повітрі є більш прийнятним ніж повільне охолодження.

Відпал холодно пресованих зразків призводить до їх ущільнення, а при T_{відпалу} = 500°С відбувається реструктуризація міжкристалічних меж, що забезпечує значне підвищення питомої електропровідності.

Отриманням термоелементів методом пресування порошку під тиском 2 ГПа забезпечується отримання зразків з високою однорідністю вздовж осі пресування та низькою пористістю що є причиною непроникності кисню вглиб зразка та створює умови для термічної обробки на повітрі без деградації його властивостей.

Автори вдячні Сільвії Костман і Петрі Шеппан з Інституту хімічної фізики твердих матеріалів Макса Планка в м. Дрезден за проведення металографічних і СЕМ досліджень.

Список використаної літератури

[1]. L.-D. Zhao, V. P. Dravid, and M. G. Kanatzidis. The panoscopic approach to high performance thermoelectrics // Energy Environ. Sci., 7, pp. 251–268 (2014).

[2]. J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis. New and Old Concepts in Thermoelectric Materials // Angew. Chem. Int. Ed., 48, pp. 8616 – 8639 (2009).

[3]. A. V. Shevelkov. Chemical aspects of the

design of thermoelectric materials // Russian Chemical Reviews 77 (1) 1-19 (2008).

[4]. E. P. Sabo. Tehnologija hal'kogenidnyh termojelementov. Fizicheskie osnovy. // Termoele-ktrichestvo., 3, pp. 30-46 (2000). (takozh div. vsi nastupni nomery do 2006) *(in Russian)*.

[5]. D. M. Freik. Vplyv tekhnolohiyi vyhotovlennya na termoelektrychni vlastyvosti nestekhiometrychnoho i lehovanoho plyumbum telurydu ta tverdykh rozchyniv na yoho osnovi // Termoelektryka., 2, pp. 43-50 (2011) (*in Ukrainian*).

[6]. D. Freik, R. Ahiska, I. Gorichok, L. Nykyruy, N. Dykun, K. Aktas, S. Acar and G. Ahiska. Synthesis and Analyses of Thermoelectric Lead Telluride // Journal of Materials Science and Engineering., 3(1), pp. 32-39 (2013).

[7]. I. Horichok, R. Ahiska, D. Freik, L. Nykyruy, S. Mudry, O. Matkivskiy, T. Semko. Phase Content and Thermoelectric Properties of the Optimized Thermoelectric Structures Based on Ag-Pb-Sb-Te System // Journal of Electronic Materials., 45(3), pp. 1576-1583 (2016).

[8]. Y. Ma, R. Heijl, A. Palmqvist. Composite thermoelectric materials with embedded nanoparticles // J.Mater.Sci., 48, pp. 2762-2778 (2013).

[9]. R. Ja. Popil'skij, Ju. E. Pivinskij. Pressovanie poroshkovyh keramicheskih mas. Metallurgija, M. 176 s. (1983) *(in Russian)*.

[10]. D. M. Freik, I. V. Horichok, Yu. V. Lysyuk, L. Y. Mezhylovs>ka. Formuvannya defektnoyi pidsystemy telurydu svyntsyu pry hartuvanni //Sensor Electronics and Microsystem Technologies., 2(8), pp. 37-45 (2011) (*in Ukrainian*).

[11]. D. M. Freik, I. V. Horichok, M. V. Shevchuk, L. V. Turovs'ka. Vlasni tochkovi defekty u plyumbum telurydi na mezhi oblasti homohennosti // FKhTT., 12(2), pp. 378-388 (2011) (*in Ukrainian*).

Стаття надійшла до редакції 29.06.2017 р.

UDC 538.971 DOI http://dx.doi.org/10.18524/1815-7459.2017.3.105564

TECHNOLOGICAL ASPECTS OBTAINING OF THE THERMOELECTRIC PbTe

I. V. Horichok¹, I. M. Lischynskyy¹, S. I. Mudryy², A. S. Oberemok³, T. O. Semko¹, I. M. Hatsevych³, O. M. Matkivskyy¹, G. D. Mateyik⁴, R. O. Dzumedzey¹

¹Vasyl Stefanyk Precarpathian National University, 57, Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine, e-mail: HorichokIhor@gmail.com;

²Ivan Franko National University of Lviv, Kyryla and Mefodiya Str., 8, Lviv, 79005 Ukraine; ³V.E. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, 41 pr. Nauki, 03028, Kyiv,

Ukraine;

⁴Ivano-Frankivsk National Technical University of Oil and Gas, 15, Carpathian Str., Ivano-Frankivsk, 76001, Ukraine.

Summary

Lead telluride is a semiconductor material used to create thermoelectric converters of medium temperature range (200-500) °C. The paper presents the results of the study of the influence of technological factors on the synthesis of polycrystalline ingots of PbTe on their phase composition and the structure and thermoelectric properties of the samples obtained by the method of cold pressing of the powder.

Synthesis of materials was carried out in vacuumed quartz ampoules. The resulting ingots were crushed and pressed at a pressure of 2.0 GPa. The phase composition and structure of synthesized ingots and samples were investigated by X-diffraction methods on an automatic diffractometer STOE STADI P. Elements composition and distribution of impurities on the depth of samples were investigated by the method of secondary ion mass spectrometry. Surface morphology was studied using a scanning electron microscope. Holl measurements were carried out in constant magnetic and electric fields using a four-zone method. The magnitude of the Seebeck coefficient α was calculated by measuring the voltage at the ends of the samples at a temperature gradient ≈ 5 °C. The specific electrical conductivity σ was determined by measuring the voltage drop on the sample at the passage of alternating current. The coefficient of thermal conductivity k was determined by the method of radial heat flux.

As a result of the studies, it was found that in order to produce single-phase, structurally homogeneous polycrystalline ingots, the quenching in the air is a more acceptable process of synthesis completion than slow cooling. Annealing of cold pressed samples at T <500 °C leads to their seal, without significant effect on the values of α , σ , k. At T_{annealing} = 500 °C, the intercrystalline boundaries are restructured, which provides a significant increase in the specific electrical conductivity.

The obtaining of thermoelements by pressing the powder under pressure of 2 GPa ensures the obtaining of samples with high homogeneity along the compression axis and low porosity, which causes the impenetrability for oxygen deep into the samples and creates conditions for thermal processing on the air without degradation of its properties.

Keywords: lead telluride, synthesis, pressing, thermoelectric properties

УДК 538.971 DOI http://dx.doi.org/10.18524/1815-7459.2017.3.105564

ТЕХНОЛОГІЧНІ АСПЕКТИ ОТРИМАННЯ ТЕРМОЕЛЕКТРИЧНОГО РЬТе

I. В. Горічок¹, І. М. Ліщинський¹, С. І. Мудрий², О. С. Оберемок³, Т. О. Семко¹, I. М. Хацевич³, О. М. Матківський¹, Г. Д. Матеїк⁴, Р. О. Дзумедзей¹

¹ДВНЗ «Прикарпатський національний університет імені Василя Стефаника», вул. Шевченка, 57, Івано-Франківськ, 76018, Україна; e-mail: HorichokIhor@gmail.com; ²Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, Львів, 79005, Україна; ³Інститут фізики напівпровідників імені В.Є. Лашкарьова НАНУ, Проспект науки, 41, Київ, 03028, Україна; ⁴Івано-Франківський національний технічний університет нафти і газу, вул. Карпатська, 15, Івано-Франківськ, 76018, Україна.

Реферат

Телурид свинцю – напівпровідниковий матеріал, який використовується для створення на його основі термоелектричних перетворювачів середнього діапазону температур (200-500) °С. В роботі представлено результати дослідження впливу технологічних факторів синтезу полікристалічних зливків РbTe на їх фазовий склад та структуру і термоелектричні властивості зразків отриманих методом холодного пресування порошку.

Синтез матеріалів проводили у вакуумованих кварцових ампулах. Отримані зливки подрібнювали та пресували під тиском 2,0 ГПа. Фазовий склад і структуру синтезованих зливків та зразків досліджували Х-дифракційними методами на автоматичному дифрактометрі STOE STADI Р. Елементний склад та розподіл домішок по глибині зразків досліджували методом вторинної іонної мас-спектрометрії. Морфологія поверхні вивчалась з використанням скануючого електронного мікроскопа. Дослідження ефекту Холла проводили у постійних магнітних та електричних полях чотиризондовим методом. Величину коефіцієнта термо-ЕРС вираховували вимірюючи напругу на кінцях зразка при створеному градієнті температур $\approx 5^{\circ}$ С. Питому електропровідність о визначали вимірюючи спад напруги на зразку при пропусканні змінного струму. Коефіцієнт теплопровідності к визначали методом радіального теплового потоку.

В результаті проведених досліджень, встановлено, що для отримання однофазних структурно однорідних полікристалічних зливків гартування на повітрі є більш прийнятним технологічним процесом завершення синтезу ніж повільне охолодження. Відпал холодно пресованих зразків при T < 500 °C. призводить до їх ущільнення, без суттєвого впливу на величини α , σ , k. При $T_{\text{відпалу}} = 500$ °C відбувається реструктуризація міжкристалічних меж, що забезпечує значне підвищення питомої електропровідності.

Формування термоелементів методом пресування порошку під тиском 2 ГПа забезпечує отримання зразків з високою однорідністю вздовж осі пресування та низькою поруватістю, що є причиною непроникності кисню вглиб зразка та створює умови для термічної обробки на повітрі без деградації його властивостей.

Ключові слова: телурид свинцю, синтез, пресування, термоелектричні властивості