SOME IDENTITIES FOR BOUBAKER POLYNOMIALS

T. GOY

The Boubaker polynomials, denote by B, (x), are defined as follows:
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where n > 1 and |s] is the floor of s.
Boubaker polynomials can be represented also by recurrence relation

Bpii1(z) = 2By (z) — By_1(z), n>2,

with initial conditions By(x) = 1, Bi(z) = x, and By(z) = 2 + 2.
The next a few members of this polynomial sequence are

Bs(z) = 2%+, Bylx)=2'—2, Bs(z)=2"—2%— 3x,
Bg(z) = 25 — 22 — 322 + 2, Bq(x) = 27 — 32° — 223 + bz,
Bg(z) = 28 — 425 + 822 — 2, Bg(x) = 2° — 5z" + 32° + 102 — Tx.

Boubaker polynomials have many applications in different scientific
fields, such as thermodynamics, cryptography, biology, nonlinear dy-
namics and others sciences; see the recent papers [1, 2, 7, 8| and the
references given there. Solutions to several applied physics problems
are based on the so-called Boubaker Polynomials Expansion Scheme
(BPES), using the subsequence By, of these polynomials.

Using Trudi’s formula for Toeplitz-Hessenberg determinants of a spe-
cial kind, we establish the following identities for Boubaker polynomials
with successive, even and odd subscripts.

Our approach is similar in spirit to |3, 4, 5, 6].

Proposition. Let n > 2, except when noted otherwise. Then
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where p,(t) = i Us the multinomial coefficient, T), = t,+- - -+t,,

Tn

= t1 + 2ty + - -+ + nt,, and the summation is over integers t; > 0

satisfying T, = n.
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