ON RECURRENT FORMULAS
 FOR THIRD-ORDER HORADAM NUMBERS

T.P. Goy
Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
E-mail: tarasgoy@yahoo.com

The generalized Fibonacci sequence $h_{n}=h_{n}(a, b ; p, q)$ is defined as follows

$$
\begin{equation*}
h_{0}=a, \quad h_{1}=b, \quad h_{n}=p h_{n-1}+q h_{n-2}, \quad n \geqslant 2, \tag{1}
\end{equation*}
$$

where a, b, p and q are arbitrary complex numbers with $q \neq 0$. Since the numbers h_{n} were first studied by Alwyn Horadam (see [4, 5]), they are called Horadam numbers.

In [6] the Horadam recurrence relation (1) is extended to higher order recurrence relations. In fact, third-order Horadam numbers $H_{n}=H_{n}(a, b, c ; p, q, r)$ are defined by

$$
\begin{equation*}
H_{n}=p H_{n-1}+q H_{n-2}+r H_{n-3}, \quad n \geqslant 3 \tag{2}
\end{equation*}
$$

with initial values $H_{0}=a, H_{1}=b$ and $H_{2}=c$.
In equation (2), for special choices of a, b, c, p, q and r, the following recurrence relations can be obtained:

- for $a=b=c=p=q=r=1$, it is obtained tribonacci numbers (sequence A000073 from [7]);
- for $a=3, b=1, c=3, p=q=r=1$, it is obtained tribonacci-Lucas numbers (sequence A001644);
- for $a=1, b=c=0, p=0, q=r=1$, it is obtained Padovan numbers (sequence A000931);
- for $a=3, b=0, c=2, p=0, q=r=1$, it is obtained Perrin numbers (sequence A001608);
- for $a=0, b=1, c=1, p=1, q=0, r=1$, it is obtained Fibonacci-Narayana numbers (sequence A000930).
Applying the apparatus of triangular matrices (see, for example, [8] and the bibliography given there), we proved new recurrent formulas expressing third-order Horadam numbers H_{n} with even and odd subscripts via recurrent determinants of four-diagonal matrix of order n.

Our approach is similar to spirit in [1, 2, 3].
Let P_{n} and Q_{n} denote the $n \times n$ four-diagonal matrices

$$
P_{n}=\left(\begin{array}{cccccccc}
H_{1} & H_{1} & 0 & & & & 0 & \\
0 & H_{3} & H_{3} & & & & & \\
0 & 0 & H_{5} & H_{5} & & & & \\
0 & p H_{6} & -r H_{4} & q H_{5} & H_{7} & & & \\
& & \ddots & \ddots & \ddots & \ddots & & \\
& & & p H_{2 n-6} & -r H_{2 n-8} & q H_{2 n-7} & H_{2 n-5} & 0 \\
& 0 & & & p H_{2 n-4} & -r H_{2 n-6} & q H_{2 n-5} & H_{2 n-3} \\
& & & & 0 & p H_{2 n-2} & -r H_{2 n-4} & q H_{2 n-3}
\end{array}\right),
$$

and

$$
Q_{n}=\left(\begin{array}{cccccccc}
H_{0} & H_{0} & 0 & & & & & \\
0 & H_{2} & H_{2} & & & & 0 & \\
0 & 0 & H_{4} & H_{4} & & & & \\
0 & p H_{5} & -r H_{3} & q H_{4} & H_{6} & & & \\
& & \ddots & \ddots & \ddots & \ddots & & \\
& & & p H_{2 n-7} & -r H_{2 n-9} & q H_{2 n-8} & H_{2 n-6} & 0 \\
& 0 & & & p H_{2 n-5} & -r H_{2 n-7} & q H_{2 n-6} & H_{2 n-4} \\
& & & & 0 & p H_{2 n-3} & -r H_{2 n-5} & q H_{2 n-4}
\end{array}\right) .
$$

Theorem. For all $n \geqslant 1$, the following formulas hold:

$$
H_{2 n-1}=\frac{\operatorname{det} P_{n}}{\prod_{i=1}^{n-1} H_{2 i-1}}, \quad H_{2 n-2}=\frac{\operatorname{det} Q_{n}}{\prod_{i=1}^{n-1} H_{2 i-2}}
$$

By choosing other suitable values on a, b, c, p, q and r, we can also obtain the tribonacci, tribonacci-Lucas, Padovan, Perrin and Fibonacci-Narayana numbers in term of recurrent determinants of four-diagonal matrix.

Reference

[1] T. Goy, Fibonacci and Lucas numbers via the determinants of tridiagonal matrix. Notes on Number Theory and Discrete Mathematics, 24 (2018), no. 1, 27-43.
[2] T. Goy, Horadam sequence through recurrent determinants of tridiagonal matrix. Kragujevac Journal of Mathematic, 42 (2018), no. 4, 527-532.
[3] T. Goy, On identities with multinomial coefficients for Fibonacci-Narayana sequence. Annales Mathematicae et Informaticae, 49 (2018), 75-84.
[4] A.F. Horadam, Basic properties of a certain generalized sequence of numbers. Fibonacci Quarterly, 3 (1965), no. 3, 161-176.
[5] A.F. Horadam, Special properties of the sequence $W_{n}(a, b ; p, q)$. Fibonacci Quarterly, 5 (1967), no. 5, 424-434.
[6] A.G. Shannon and A.F. Horadam, Some properties of third-order recurrence relations. Fibonacci Quarterly, 10 (1972), no. 2, 135-146.
[7] N.J.A. Sloane (ed.), The On-Line Encyclopedia of Integer Sequences. Available at http://oeis.org.
[8] R. Zatorsky and T. Goy, Parapermanents of triangular matrices and some general theorems on number sequences. Journal of Integer Sequences, 19 (2016), no. 2, Article 16.2.2.

