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Abstract

In this paper, we consider determinants for some families of
Hessenberg matrices having various translates of the Fibonacci
numbers for the nonzero entries. These determinant formulas
may also be rewritten as identities involving sums of products of
Fibonacci numbers and multinomial coefficients.
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1 Introduction

Formulas relating determinants to Fibonacci numbers have been an
object of interest for a long time, especially from the viewpoint of
applications. In some cases, this sequence arises as determinants for
certain families of matrices having integer entries, while in other cases
this sequence is the actual entries of the matrix whose determinant is
being evaluated (see, e.g., [1–6, 8] for the complete bibliography).

Consider the n× n Hessenberg matrix having the form

Hn(a1, a2, . . . , an) =















k1a1 1
k2a2 a1 1 0
...

...
. . .

. . .

kn−1an−1 an−2 an−3 · · · a1 1
knan an−1 an−2 · · · a2 a1















,

where ai 6= 0 for at least one i > 0.
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In [9], Zatorsky and Stefluk proved that

det(Hn) =
∑

σ
n
=n

(−1)n−|s
n
|

|sn|

(

n
∑

i=1

siki

)

mn(s)a
s1

1
· · · asnn , (1)

where σn = s1+2s2+ · · ·+nsn, |sn| = s1+ · · ·+sn, mn(s) =
(s1+···+s

n
)!

s1!···sn!

is the multinomial coefficient, and the summation is over all n-tuples
(s1, . . . , sn) of integers si ≥ 0 satisfying the Diophantine equation
σn = n.

In the case k1 = . . . = kn = 1 we have well-known Brioschi’s

formula [6, pp. 208–209].
Note that s1+2s2+ · · ·+nsn = n is partition of the positive integer

n, where each positive integer i appears si times.
In the next section, we will investigate a particular case of deter-

minants det(Hn), in which ki = i. For the sake of brevity, we will use
throughout the notation

det(a1, a2, . . . , an) = det
(

Hn(a1, a2, . . . , an)
)

.

2 Fibonacci–Lucas multinomial identities

Let Fn denote the n-th Fibonacci number and Ln the n-th Lucas num-
ber, both satisfying the recurrence

wn = wn−1 + wn−2,

but with the respective initial conditions F0 = 0, F1 = 1 and L0 = 2,
L1 = 1 (see [6] and the references given there).

Theorem 1. For n ≥ 1, the following formulas hold :

det(F0, F1, . . . , Fn−1) = (−1)n−1(Ln − 1),

det(−F0,−F1, . . . ,−Fn−1) = 2n + (−1)n − Ln,

det(F1, F2, . . . , Fn) = (−1)n−1 (Ln − 1− (−1)n) ,

det(F2, F3, . . . , Fn+1) = (−1)n−1
Ln,

det(F3, F4, . . . , Fn+2) = (−1)n−1
Ln + 1.
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Theorem 1 may be proved in the same way as Theorems 1 and 2 in
[2].

Next, we focus on multinomial extensions of Theorem 1. Formula
(1), coupled with Theorem 1 above, yields the following combinatorial
identities expressing the Lucas numbers in terms of Fibonacci numbers.

Theorem 2. For n ≥ 1, the following formulas hold :

Ln = 1− n

∑

σ
n
=n

(−1)|sn|

|sn|
mn(s)F

s1

0
F

s2

1
· · ·F s

n

n−1
,

Ln = 2n + (−1)n − n

∑

σ
n
=n

1

|sn|
mn(s)F

s1

0
F

s2

1
· · ·F s

n

n−1
,

Ln = 1 + (−1)n − n

∑

σ
n
=n

(−1)|sn|

|sn|
mn(s)F

s1

1
F

s2

2
· · ·F s

n

n
,

Ln = −n

∑

σ
n
=n

(−1)|sn|

|sn|
mn(s)F

s1

2
F

s2

3
· · ·F s

n

n+1
,

Ln = (−1)n − n

∑

σ
n
=n

(−1)|sn|

|sn|
mn(s)F

s1

3
F

s2

4
· · ·F s

n

n+2
,

where σn = s1+2s2+· · ·+nsn, |sn| = s1+· · ·+sn, mn(s) =
(s1+···+s

n
)!

s1!···sn!
,

and the summation is over nonnegative integers si satisfying equation

σn = n.

3 Conclusion

In this paper, we evaluate several families of some Hessenberg matri-
ces whose entries are Fibonacci numbers with sequential subscripts.
In particular, we establish a connection between the Lucas and the
Fibonacci sequences via Hessenberg determinants. Using generalized
Brioschi’s formula, we rewrite the obtained formulas as identities in-
volving Lucas numbers, sums of products of Fibonacci numbers, and
multinomial coefficients.
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