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Generalized Ricci-Bourguignon flow

Shahroud Azami

In this paper, we consider a kind of generalized Ricci-Bourguignon flow system, which is closely
like the Ricci-Bourguignon flow and possesses a gradient form. We establish the existence and
uniqueness of the solution to this flow on an n-dimensional closed Riemannian manifold. We in-
troduce generalized Ricci-Bourguignon system soliton and give a condition to a gradient general-
ized Ricci-Bourguignon system soliton to be isometric to an Euclidean sphere. Then we give the
evolution of some geometric structure of manifold along this flow and establish higher-derivative
estimates for compact manifolds and the compactness theorem for this general Ricci-Bourguignon
flow system on closed Riemannian manifolds.
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1 Introduction

Geometric flows are evolution of geometric structures under differential equations with
functionals on a manifold, which play an important role in differential geometry and physics.
Let M be an n-dimensional complete Riemannian manifold with Riemannian metric ¢ = (g;;)-
The first important geometric flow is Ricci flow, which is defined by

Sg=2Ric,  3(0) =g, M)

where Ric denotes the Ricci curvature of ¢ and Ricci flow evolves a Riemannian metric by its
Ricci curvature. The short-time existence and uniqueness for solution of Ricci flow proved
by R. Hamilton (see [7]) and D. DeTurck (see [6]) on compact Riemannian manifolds. Also
evolution equations for geometric structures dependant to metric investigated by B. Chow and
D. Knopf (see [5]).

A generalization of Ricci flow is the Ricci-Bourguignon flow, which is defined as follows

d . .

538 = —2Ric+2pRg = —2(Ric — pRg), £(0) = go, (2)

where R is the scalar curvature of ¢ and p is a real constant. The Ricci-Bourguignon flow was

introduced by ]J.P. Bourguignon for the first time in 1981 (see [3]). Short-time existence and

uniqueness for solution to the Ricci-Bourguignon flow on [0, T) have been shown by G. Catino
1

et. al. in [4] for p < ITESE
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Recently, researchers started considering the Ricci flow together with some other geometric
flows. For instance, Y. Li [9] considered the following generalized Ricci flow on M

{%(x,t) = —2Ric(x,t) + h(x,t), g(x,0) = g(x), 3)

2H(x,t) = AppgnH(xt),  H(x,0) = H(x),

and J.Y. Wu in [12] studied a generalization of harmonic-Ricci flow as follows

a(f;j(x,t) = —2Ric(x,t) + h(x,t) + 2tdu ® du, g(x,0) = g(x),

%H(X, t) = AHL,(tg(x,t)I_I(xl t)/ H(x, 0) = H(x),
%u(x, t) = Au(x,t), u(x,0) = up(x),

where Ric is the Ricci tensor of the manifold M, h is a two-form with the components
hij = %Hile]]-‘l, Ayr = — (dd* + d*d) denotes the Hodge-Laplace operator, and 7 is a posi-
tive constant. They established the existence and uniqueness for solution of above geometric
system flow and higher-derivative estimates for compact manifolds. As an application, they
proved the compactness theorem for these flow systems.

Let (M, g) denote an n-dimensional closed Riemannian manifold and H = {H;;} be a
three-form on M. Motivated by the above works, in this paper, we consider the following
generalized Ricci-Bourguignon flow (GRBF for short) on M

{%gij(x, t) = —ZRZ-]-(x, t) + 2pRgi]-(x, t) + %Hile]'-‘l(x, t), (4)
2H(x, ) = Ay gen Hx ), H(x,0) = H(x), g(x,0) = g(x),

where Ric is the Ricci tensor of the manifold M, h is a two-form with the components
hij = %Hilekl, p is a real constant, and Ay; = —(dd* + d*d) denotes the Hodge-Laplace
operator. In the above system, if the form H is closed, then the corresponding system is called
the refined generalized Ricci-Bourguignon flow (RGRBF for short), namely

28ii(x,£) = —2Ryj(x,t) + 20Rg;;(x, ) + %Hz‘sz]kl(xlf),
%H(x,t) = —dd;j(xlt)H(x,t), H(x,0) = H(x), g(x,0)=g(x),

where d* is the dual operator of d with respect to the metric g(x, ). We prove the existence and
uniqueness of the solution to flow (4). We define the generalized Ricci-Bourguignon system
soliton and give a condition to a gradient generalized Ricci-Bourguignon system soliton to be
isometric to a Euclidean sphere. Then we study the evolution of some geometric structure of
manifold along this flow and show higher-derivative estimates for compact manifolds and the
compactness theorem for the flow (4).

The rest of this paper is organized as follows. In Section 2, we prove the existence and
uniqueness for solution of GRBF system (4). In Section 3, we introduce GRBF system soliton
and gradient GRBF system soliton. Then we give a condition to a gradient GRBF system soli-
ton to be isometric to an Euclidean sphere and we show that any complete shrinking GRBF
system soliton has finite fundamental group. In Section 4, we find the evolution formula for
Riemannain curvature tensor, Ricci curvature tensor, and scalar curvature of manifold along
the GRBF system (4). In Section 5, we establish higher-derivative estimates for compact mani-
folds. Finally, in Section 6, we prove the compactness theorems for the GRBF system.
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2 Short-time existence and uniqueness the GRBF system

In this section, by a similar argument with the existence and uniqueness of geometric flow
such as Ricci flow, and Ricci-Bourguignon flow, we establish the short-time existence and
uniqueness for the GRBF system on a compact n-dimensional Riemannian manifold. Firstly,
we show that if H(x) is closed, then we have the following propositions.

Proposition 1. Along the RGRBE, the form H(x, t) is closed if the initial value H(x) is closed.

Proof. The exterior derivative d is independent of the metric, so we get

d 0 *
dH(x,t) = d=H(x,1) = d <—ddg(x,t)H(x, t)) ~0.
Therefore, dH(x,t) is independent of time variable ¢t and dH(x,t) = dH(x). Since H(x) is

closed form, we conclude that dH(x, t) = 0. O

Proposition 2. If (g(x,t), H(x,t)) is a solution to RGRBF and the initial value H(x) is closed
form, then (g(x,t), H(x, t)) is also a solution to GRBF.

Proof. From Proposition 1, since H(x) is closed form, H(x, t) is closed form under the RGRBF.
Therefore,

AHL,(tg(x,t)I_I(x, t) = —dd;i(x’t)H(x, t)_
O

Theorem 1. Let p < ﬁ Then the evolution equation GRBF has a unique solution for a

short time on any smooth, n-dimensional, closed Riemannian manifold M.

Proof. For the proof of theorem we use the DeTurk trick in Ricci flow to prove its short time
existence. Let (g(x,t), H(x,t)) be the solution of the GRBF and ¢ : M — M be a family of
smooth diffeomorphisms of M. Suppose ¢(x,t) = ¢;g(x,t) is the pull-back metric of g(x, f).
For computing the evolution equation for the metric ¢(x, t), let

y(x,t) = u(x) = {y' (&, 2 D,y (5, 1)},

in local coordinates system x = {xl, x2, ..., x" } Following the same calculations as in [10], we
get

) dy* dyP

$ij(x, t) = g@gaﬁ(%t)

and
gm(x t) = dy" oyP 9 (y,t) ) + 9 (9y* % (y, 1) +%i M (v, 1)
S = 9ai oxd \ @tV Y ) T oxi \Tar ) axd S8V T ni g Car ) ST

98ij _
oxk 0

For a fixed point p € M, we consider a normal coordinate {x'} around p such that
at p. Since g(x, t) is the solution of GRBF, we get

d
Egﬁlﬁ(x’ t) = _2Rlxﬁ('x’ t) + szngﬁ (x/ t) + ha/ﬂ(x/ t)/
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where .5 = %H,xlegl(x, t). Hence,

0 0gap Y7
2005 (0r1) = ~2Rap(0, 1)+ 20Rgup, )+ hip(u 1) + S 2,

and substituting above equality in (2) we infer

0 . B aya ayﬁ Iy ay,s " ayﬁ
ardi () = = 255 5 R 4 205555 gww >+a—ﬁ%«ﬁ<y,t)
Oy 2P deupy7 | 3 (o LD (W
ox! 9xJ dy7 ot a ot axz ax] ot Sup\Y,
Since
U oy o Ay ayP

Rij(x,t) = Ew e Rus(y,t),  R(x,t) =R(y,t),  hij(x,t) = 3¢ I 5 gy, t),
and in the normal coordinate

%Mﬁ%ﬁﬁﬁﬁ(ﬂiﬁﬁﬁ
axi axi ot yr  oxi o ot S ayr | Gya gyp

_ ag: a‘il (%) Si(x, 1) + %% (%) Sik(x,t)
:%(%%&Mﬂ)ﬂ%(ﬁ%ﬁd))
() St () e
a?cl (a(—;/: S;C,Xg]k( t)) + % (a(-;/f g;[;gzk( ))
_ % <%> E;L[jgaﬁ(}/ t) — ai] (%) %gzxﬁ(]// ),

we obtain

o . . . R
Egij(x, t) = —ZRZ‘]‘(X, t) + ZPRgZ‘]‘(X, t) + hi]-(x, t)

5)
Ay axk Ay axk (
According to DeTurk trick, if we define y(x, t) = ¢¢(x) by the equations

ay* _ dy” Ajl ek

or = ot (Th=Th) ©

and V; = ¢, 8/ <1A“;.‘l -1 ;.‘l), then (5) becomes

0 . . . A . X
581 (0 1) = =2Rij(x,1) + 20Rj(x, £) + hij(x, ) + ViVi + VVi, - §i5(x, 0) = §(x).
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Also,

oH oH A A A A
Frak 4] <¥ + LVH> =AgH—d(H,V), H(x,0)=H(x).

Since
po_ e, ok e

i 9x oxi ayr” *F T Qy* 9xioxi’

the initial value problem (6) can be rewritten as

W' _ <1~/3 WP | Pyt ay"‘>

ot “Yoxi oxi ' oxiox!  Iloxk 7)
y*(x,0) =

Note, that (7) is strictly parabolic system. Since manifold M is compact, it follows from the
theory of parabolic equations that the system (7) has a unique smooth solution for a short time.
At the same time, we have

J 0 928ij - po skl O
i) =85 i (0 t) = 208878 50 o (1) (8)
2 A
5kl

J
+ 2088718 o pga 4! z (x,t) + lower order terms,

and

0 A s P Hijk
ﬁHl]k(x’ t) - g axraxs

(x,t) + lower order terms. )

From [2, 4] it follows that for p < ( 1 the equations (8) and (9) form a strictly parabolic
system. Since manifold M is compact, by the standard theory of parabolic equations, the sys-
tem (8)—(9) have a unique smooth solution for a short time. From the solution of (8)—(9) we
can obtain a solution of the GRBF (4).

Let us show the uniqueness of the solution. For any two solutions gf].l) (x,t) and gf].z) (x,t) of
the GRBF system (4) with the same initial data, we solve the initial value problem (7) and find

two families gbt(l) and gbt(z) of diffeomorphisms of M. Therefore we get two solutions

8t = (") s ety and g t) = (¢7) 8 (x,1)

to the modified evolution equation (8) with same initial data ¢;;(x,0) = g;;(x). The uniqueness
result for the strictly parabolic equation (8) implies that gl(-l)(x, t) = gsz)(x,t) and then by
system (7) and the standard uniqueness result of PDE system, the corresponding solutions

(1)

qbt(l) and qbt(z) of (7) must agree. Consequently the metrics g;;’(x,t) and gf].z)(x,t) must agree

also. Hence we have proved the uniqueness for solution of the GRBF (4). O
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3 GRBF system soliton

In this section, we introduce the GRBF system soliton and give some properties of this
soliton.

Definition 1. A solution (g(t), H(t)), t € [0,T), of the GRBF system on manifold M" with
initial data (g(0), H(0)) is called a GRBF system soliton if there exists a one-parameter family
of diffeomorphisms ¢y : M — M with g = id); and a scaling function ¢ : [0, T) — Ry such

that
{g(t) = c(t)p;g(0),
H(t) = y; H(0).

The cases ¢ = %c(t) < 0,¢ = 0and ¢ > 0 correspond to shrinking, steady and expanding soli-
tons, respectively. If the diffeomorphisms ; are generated by a vector field X(t) = Vf(t) for
some function f(t) on M, then the soliton called gradient soliton and f is called the potential
of the soliton.

(10)

Lemma 1. Let M" be a Riemannain manifold and (g(t), H(t)), t € [0,T), be a GRBF system
soliton. Then there exists a vector field X on M" such that

{—Ric(gm)) + PRy(0)&(0) + 31(0) = 3Lxg(0) + Ag(0),

(11)
Apr,g(0)H(0) = LxH(0),

where A = 1¢(0) and Lxg(0) denotes the Lie derivative of the metric g(0) with respect to the

vector field X.

Conversely, given a vector field X on M and a solution of (11), there exist one-parameter
families of scalars c(t) and diffeomorphisms; : M — M with iy = id ) such that (3(t), H(t)),
t € [0,T), becomes a solution of the GRBF system, when (g(t), H(t)) is defined by (10).

Proof. First suppose that (g(t), H(t)), t € [0,T), is a GRBF system soliton. Without loss of
generality we assume that c¢(0) = 1 and ¢ = idps. Then we infer

~2Ric(3(0)) +20Ry0/8(0) + h(0) = Srg(t)]i=g

= % (c(H)y;g(0)) li=0 = ¢(0)g(0) + Ly (0)g(0),

and

Apr,g0)H(0) = %H(t)’t—o = % ($iH(0)) [t=0 = Ly (0)H(0),
where Y (t) is the family of vector fields generating the diffeomorphisms ;. This implies that
(g(0), H(0)) satisfies (11) with A = 1¢(0) and X = Y(0).

Conversely, suppose that (g(0), H(0)) satisfies (11) for some vector field X on M. Define
c(t) := 1+ 2At and define an one-parameter family of vector fields Y (t) on M by Y (t) := ﬁX
Suppose that ; are the diffeomorphisms generated by the family Y(t), where ¢y = idp; and
define (g(t), ¢(t)) as in (10). The computation

%g(t) = c()y7 (8(0)) + ()9 (Ly(18(0)) = 7 (2A8(0) + Lx8(0))

= i ( — 2Ric(3(0)) +20Ry(0)8(0) +h(0) ) = ~2Ric(g(t)) +20Ry(g(t) + (),
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and

) . [ 1 .

EH(t) =i (LynyH(0)) = mlpt (LxH(0)) = @#’t (ArLg(o)H(0)) = ApporyH(E),
imply that (g(t), H(t)) is a solution of the GRBF system. O

After then we say that (M", g, H, X, A, p) is a GRBF system soliton whenever it satisfies (11)
and it is shrinking, steady and expanding, if A < 0, A = 0 and A > 0, respectively. Also, we
say that (M", g, H,Vf, A, p) is a gradient GRBF system soliton if it satisfies

{—Ric + pRg + 3h = Hessf + Ag, 12)
In the following, we provide some equation of structure for gradient GRBF system soliton.

Proposition 3. For a gradient GRBF system soliton (M", g, H,V f, A, p), the following identities
hold

(i) (1—np)R+Af—1|H>+nA =0,
(i) (1—2(n—1)p)V;R = —Vih; +2R;V'f + 1V,|H|?,
(lll) (1 — Zp(i’l - 1))V1‘R = ZPthif + hﬂVlf - VZ|Vf|2 - ZAVZ-f - V]hl] + %V1|H|2

Proof. For a gradient GRBEF system soliton the identity (12) holds. Taking trace of equation (12)
yields (). In order to obtain equation (i7), take the covariant derivative of (i) in an orthonormal
frame, this gives

: 1
(1-np)ViR+ V,V/V,f — ZWH\Z = 0.

Using the Bianchi identity and the contracted second Bianchi identity, we get
(1-np)ViR=-VIV,V;f+RyV'f+ }LVAHIZ
=_V/ (—Rij — Agij + pRgij + %hi]) + RV f+ Alivz"Hfz
_ %VZ-R _ ViR — %thi]- RV + ivi|H|2,

which proves (ii). Now, to prove equation (iii), from (ii) we obtain

1 . 1
(1 — 2p(1’l — 1))ViR = 2Vlf <—VZ-Vlf — )\gil + PRgil —+ Ehil) — V]hi]‘ + EV{’HF

= —Vi|Vf[* = 2AVf + 20RVf + hy V' f — Vh;; + %VZ-|H|2.

Hence the proof of proposition complete. O
Theorem 2. Let (M", g, H,Vf, A, p) be a compact gradient GRBF system soliton. Then

2
_n-2 1 2
dn="—= | g(VR,Vf)dp— o [ Af|HPdy

- 1
— AV - 4
[ F=0V' g+ o [,

Af 1
20  2J — 2
/Mz'Vf Lo+ - |HPg

R 1P 2, Af .
ch—;g—ih d}l—/M'V f—7g+E|H|8 dp. (14)

Jy
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Proof. Taking the divergence of equation (iii) from Proposition 3, we get

(1—-20p(n—1))AR = —A|Vf[> = 2AAf + 20V'RV,f + 20RAf
+ VgV f + 1y VIV — VIR + %A]H]z. (1
On the other hand we have
AIVFI? =2VifVIAf + 2RV fVIf + 2| V2 f 2.

Taking covariant derivative of equation (i) from Proposition 3 and using (12), we conclude
1 1
0= Visf + (1= np)ViR = 7 Vi{H|? = (1 = np) ViR — 2V, |H?
; 1
+V/ <_Rij — Agij + pRgij + Ehij) - hRilVlf
1 1 2 e, 1o
= 5 —p(i’l — 1) Vz’R - ZVZ|H| - RiZV f+ EV hz}
Therefore
A . . ‘
0= (1-20(n—1))V,RV'f — 5vzvi|H|2 + Vi Vif — 2RV fVY,
and it implies that
‘ A . .
AV =2V fV'Af + (1 —2p(n — 1)) V;RV'f — 5vzvi|H|2 + VI Vif +2|V2f12. (16)
Identity (1 — np)V,R + V,Af — 1ViV,|H|> = 0 implies
(1—np)V;RV'f + V,AfVI f — iViVAHFVif =0.
Substituting the above equality into (16), we infer

AIVF? = (20 = 1)V, RV f + VIhV'f + 2|V f|2.

Therefore we can write (15) as follows
(1-20(n — 1))AR = V'RV, + 20RAf + by V'V'f — 2| V2f2 ~ 2A6f — ViVl + S A|HP.
Then
(1—20p(n —1))AR +2AAf — %A\H\Z = 20RAf + V'RV, f + 1y V'V f = V'Viky

A 1 2 1
—Z‘sz—%ngE\H\zg _S_n’H’4

— z%f ((np — 1R —nA + jI]HF) :

By integrating of both sides of the above identity on closed Riemannian manifold M, we
obtain (13). Since

Ric—%g—%h: —sz—}\gntpRg—%g:—szJr (—A+pR—§>g

_ V4 (Af— 31|H|2> s

we conclude (14). O
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Corollary 1. In a nontrivial compact gradient GRBF system soliton (M",g,H,V f, A, p) with
n > 3, vector field V f is a nontrivial conformal vector field, if the following condition holds

n—2

—i 2 — Avil’® i/ 49, <
| 8(VR Y P)an =5 [ aflHPap+ [ (F =1V Vihgdp+ o [ |H[*dp <0

Proof. The assumptions of Corollary conclude that the right hand side of (13) is less that or
equal to zero, but left hand side of (13) is greater than or equal to zero, hence Ric = 8¢+ 1.

So, VVf = <—A +R <p - %)) g. Therefore V f is a nontrivial conformal vector field. O

Theorem 3. Let (M, g) be a complete Riemannian manifold with a 3-form H = { Hyj } satisty-
ing
. 1 1
Ric — pRg — Eh + Eﬁxg > 08 (17)
for some smooth vector field X on M and some constantc > 0. Leth > 0 and pR > a for some

constant a such thata + o > 0. Then M is compact if and only if ||X|| is bounded on (M, g) by
a constant K. Moreover, in this case, we have

diam(M) < —2T- (K—l— \/K2+ (n—l)“;“’) :

T a+o

Proof. If manifold M is compact, then it obvious that || X|| is bounded.

Conversely, let || X|| be bounded by a constant K and p be a point in M. Consider any
geodesic 7 : [0, +c0) — M emanating p and parameterized by arc length t. Along geodesic 7y
we have

d
Lxg (V0,7 (1) =28 (Vo X7 (1) = 25:8 (X7 (1) - (18)
Multiplying the both sides of (17) by 7"'9// and using (18) we obtain
- - - 1, i d o, d )
Y'Y Ri; > 7"y Iogi + 4"y ToRgij + 57" hip — (7’ Xk) =atot o (—v’ Xk) :
The Cauchy-Schwaz inequality implies that

1
2

|="X| = [gu (V5,7 (0)7*Xe] < [ga(v(1), 7' (1) XFX!

1
< max )gkl (’y(t),’y'(t))Xle t = X[l <K

and the results follow from [1, Lemma 1]. O

Corollary 2. Let (M, g, H, X, A, p) be a complete shrinking GRBF system soliton. Leth > 0 and
pR > a for some constant a such thata + A > 0. Then M is compact if and only if ||X|| is
bounded on (M, g) by a constant K. Moreovetr, in this case, we have

diam(M) < az—” (K+ \/K2+ (n—l)a;A> .

+A

Remark 1. In Theorem 3, the assumption of boundedness of || X|| is necessary to show that M
is compact. For instance, Euclidean space with the vector field X(v) = v, Vv € R", and H = 0
satisfies (17).
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Theorem 4. Let (M, g) be a complete Riemannian manifold with a vector field X and 3-form
H = {Hjj } satisfying h > 0 and (17) for some o > 0. Then for any p,q € M and p > 0 we have

1
d(p,q) < max {1, Y (2(n — 1)+ Gp+ Gy + 2|1 X, || + quu) } (19)
where o + pA > 0,R > A, and

G, = max {O,sup {Ric,(v,v) : y € B(p,1), ||v]| = }}

Proof. Assume that r = d(p,q) > 1 and let y be the minimal geodesic from p to g parameter-
ized by arc length. Using equations (17) and Lx (7/(s),7'(s)) = 24¢(X,~'(s)), we get

[ Ric(7/(5),7/($)ds = [ [om(7/(5),7'9)) = 3Lx8(7'(5),7'(5))

+pRg(7’(S),v’(S))]dS+%/rh 7' (5),7(s))ds

(20)
> od(p,q) +8p(X,7'(0)) — gq (X, 7/( +p/ Rds
> 0d(p,q) +gp(X,7'(0) = 84(X,7'(5)) + pAd(p, q)-
On the other hand, [13, Lemma 2.2] implies that
/ Ric(y '(s))ds <2(n—1)+ Gp + G,. (21)
Combining (20) and (21) and solving for d(p, q) gives (19). O

Theorem 5. Let M be a complete Riemannian manifold satisfying (17), whereh > 0, R > A,
p>0,0>0andoc+ pA > 0. Then M has finite fundamental group.

Proof. Let f : M — M be the universal covering manifold of M. Notice that the fundamental
group of M is in one-to-one corresponding with discrete counterimage of a base point p € M
and

f'¢e=¢ f*H=H, f*Ric=Ric, f*Lxg=Lx§
Inequality (17) implies that

Ric — pRg — %E + %ﬁxg > 0g.

Fix p in M. Let a € 7r1(M) identifies a deck transformation on M. A deck transformation on
the universal covering manifold M is an isometry. Also, B(f,1) and B(«(f),1) are isometric.
Hence, G, = Gy(p) and |1 X5]| = Hsz(ﬁ) |- Then, by applying Theorem 4 to the point § and
a(p), we get

(5 a(p)) < max {1, 722 (n =14 Gy + %] )}

for any deck transformation a. Thus the set « ~!(p) is bounded, where p = a(p). By applying
the geodesically completeness and the Hopf-Rinow’s theorem, the closed and bounded subset
a~1(p) of M is compact and being discrete is finite. Since M is connected and 71 (M, p) is in
bijective relation with a~!(p), we imply that 7t (M) is finite. O

Corollary 3. Let (M, g, H, X, u, A, p) be a complete shrinking GRBF system soliton. If h > 0,
R>A,p>0and —A 4+ pA > 0, then M has finite fundamental group.
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4 Evolution of the curvatures
In this section, we compute evolution equations for curvature tensors under the GRBF sys-
tem (4). As the metric tensor evolves by
d
5:8ii = —2Rij + 20Rg;j + i,
where hl] = %Hile]I-d, we get
d g L
—g" =2RY —2pRg"7 — K"
28 PRZ ’
and the canonical volume measure dy evolves by

odp 1 og B 1,9
T Etrg <§> dy = {(np —1)R+ Z|H| dy.

To compute evolution equation for curvature tensors, we need the following results for a
general flow (see [5, Lemma 6.5], [11]).

Lemma 2. Let (M", g(t)) be a Riemannian manifold with % gij = vjj, then

%rfj = %gkl (Vz-vﬂ + Vv — Vlvij) ,

%Riﬂd - % [ViVioj+ VVivy — ViVivy — V,Viou] + %8’7 T(Rijpitkg — Rijpivig),
%sz = _% [ALvij + ViVj(tro) — g7 (ViV o + ViVpoig) |,

%—1: = —B0+gMg" (V) Viogs — Ryrvgs)

where ALvij = AUZ']' + ZRilijlp — Rfvjp - Rfvip'

By computing in a normal coordinates system, the evolution equation for the Christoffel

symbols is given by
) 1
ST = —ViRE = ViR — V¥R +p (V;R0f + ViRSS + VFRgy ) + 5 (Vi + Yk — V).

Proposition 4. Under the GRBF system (4), the Riemannian curvature tensor R;j; of (M", g(t))
satisfies the evolution equation
d
5 Rijkt = ARij +2 (Bijki — Bijix — Bijk + Bikjt) — RpjuR} — RipklR;-7 — RijpiR} — RyjxpR}
1 1 22
— 0 (ViVikRgji — ViViRgjx — V;ViRgi + V;V|Rgix) + 20RR;ji,
where Bjji = 18" Ripjr Riqis-

Proof. Since the quantities —2R;; + 2pRg;j and h;; are independent, we can compute the evolu-
tion of Riemannian curvature tensor along the metric evolving by those two quantities sepa-
rately. In [4], for v;; = —2R;; + 2pRg;; it has been shown that

0
—Rijii = ARyj + 2 (Biji — Bijik — Bitjk + Bikjt) — RpjuRY — Rz‘pszf — RijpiR} — RijxpR}

ot
—p (Vinjol — ViViRgjx — V;ViRgi + VleRgik) + 20RR;ji-
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If v;j = hjj, using Lemma 2, we have that

0 1

1
= Rijp = 5 (Rijpihy — Rijpchl) + 5 (ViVihje + VjVihy — ViVihy — YV k) .

Therefore (22) follows by adding the above two evolution formulas. O

Definition 2. Suppose that A and B are two tensorial quantities on a Riemannian manifold
(M, g). We denote by A * B any tensor quantity obtained from A ® B by summation over pairs
of matching indices, contractions on lower indices with respect to the dual metric, contractions
on upper indices with respect to the metric, and multiplication with constants depending only
onn = dim M and ranks of A and B. We also write A*! := 1% A and A*? := A x A.

Corollary 4. Under the GRBF system (4) we have
2

o) . .
= Rim = ARm + Rm % Rm+pV?R*g+pRRm+ H+«H*Rm+ Y V'H+«V*'H.  (23)
i=0

Proof. From Proposition 4 we obtain
d

= Rm = ARm + R« Rm + PV?R % g + pRRm + V?h + h x Rm. (24)
Since h = H * H, we get

V2h =V (V(HxH)) =V(VH*H) = V2H*H+ VH = VH. (25)
Substituting (25) into (24), we obtain the result. O

Proposition 5. The evolution equation of Ricci curvature tensor under the GRBF system (4) is

as follow

d
5 Rik = AR + 2gP18" Rk Rgs — 287 RpiRgr — (n — 2)p Vi ViR — pARg;

1 . .
+5 (Ripht = "Ry ) = W' Ry (26)

1/ . .
3 <8]le'Vlhjk +¢/'ViVihy — ViV H|* — Ahz‘k) :
Proof. We have

% ¢ = 2RI — 2R — W' (27)
and
g'hjy = ' HjpgH['" = |HI.
Since 3 3 3 3
5 Rik =3 <8j lRijkl) =g ZgRijkz + Rz‘jklﬁgj ! (28)
by replacing (27) and (28) in (22) we get the result. O

Corollary 5. Under the GRBF system (4), the evolution equation of the scalar curvature satis-
fies
d

= R=(1-2(n—1)p)AR + 2|Ric|? — 20R? — ZA\H\Z + %'V Vil — W Ry.  (29)

Proof. We have

d 9 [ % O Jd

SR == (&R ) = g S Ri+ Rics; 8" (30)
and

o1 ‘ .
k z I
g {E <Riph]l: -8 Rz‘jpkhf) —H Rz‘jkl] =0.

By replacing (26) and % gf =R — ZpRgf I — W' in (30), we obtain (29). O
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5 Derivative estimate

At first, from [5], we recall several basic identities of commutators [A, V] and [, V].
For any t-dependency tensor A = A(t) under a general geometric flow % gij = vjj we have

0 d

and
[V,A]JA = VAA —AVA =RmxVA+ VRmx A.

In this section, C is denotes a constant and it may changes line to line. Therefore, under the
GRBF system (4), we get

0 ) *2
§VRm—V§Rm+Rm*V<Rm+pRg~I—H )

2 . .
=V (ARm + Rm*? + pV?R x g + pRRm + H** x Rm + Y V'H * v21H>
i=0 (31)

+ R+ V (Rm + pRg + H'2) = AVRm + VRm % Rm + pV°R « g

+po Y V*RxVPRm+ Y V*HxVPH+ Y V*HxVPHx*V'Rm.
a+p=1 a+p=3 a+pB+r=1

More general result is as follow.

Proposition 6. Under the GRBF system (4) for any nonnegative integer k we have

9 <VkRm) =A (VkRm> + )., V*Rmx VPRm +pVF2Rx g +p Y VR« VPRm
+ Y V*HxVFPFH+ Y V*H*VPH«=VRm.
a+pB=2+k a+pB+y=k

Proof. From (23) and (31), we see that (32) holds for k = 0,1. For the induction step, assume
that (33) holds for all 0 < j < k. We have

% (VkRm> = %V <Vk_1Rm) = V% <Vk_1Rm> + <Vk_1Rm> x V (Rm + pRg + H*Z)
— Vv {A (V'Rm) + Y VRmx VPRm +pV* IR g
a+p=k—1
+p Y V*RxVPRm+ Y V*HxVFPH
atp=k—1 atp=1+k

+ Y V'HxVPHx VVRm] + (V*"Rm) =V (Rm + pRg + H*?)
a+p+r=k—-1
= A <VkRm) + Y V'RmxVERm+pVF2Rxg+p Y V*Rx VPRm
a+p=k a+p=k
+ Y V*Hx«VPFH+ Y V*HxVFPH=*V'Rm.
a+B=2+k a+pB+y=k
(33)

This completes the inductive step and we obtain the required result. O
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As an immediate consequence, we get the following assertion.

Corollary 6. Under the GRBF system (4) the evolution of the length of derivative of Rieman-
nian curvature tensor satisties
)
g|Rm|2 < A|Rm|? = 2|VRm|* 4 C|Rm?
+ |pIC[Rm||V2R| + |o|C|R||Rm|* (34)

+ClH*Rm*+C Y |V*H||VPH||Rm|
a+pB=2

and for any positive integer k we have
2 2 2
% VERm|" < | VERm|" — 2| VFF T Rm|

+C‘VkRm) ) |V”‘Rm|)VﬁRm‘
a+pB=k

+pC ‘VkRm’ )VHZR)

+pC‘V"Rm’ Y ]V”‘R\’VﬁRm‘ (35)
a+p=k

—|—C‘VkRm) y |V"‘H|‘V5H‘
a+p=2+k

—i—C‘VkRm’ y \V”‘H\‘vﬁH‘yvmm\,
a+p+r=k

where C represents universal constants depending only on the dimension of M.

Proof. By the evolution equation (23), we get

a 2 a *2 *2
< |Rm[? = 2Rm + <ng> + (Rm)*2 % <Rm~|—pRg+H )

2 . .
— 2Rm * (ARm + Rm * Rm + pV?R x g+ pRRm + H** «x Rm + Y_ V'H « V21H>
i=0

+ (Rm)*2 « <Rm + pRg + H*2>
< A[Rm|* = 2|VRm|? + C|Rm* + |p|C|Rm| ‘VZR‘ + |p|C|R||Rm[* + C|H*|Rm?

+C Y |V*H| ‘vﬁH‘ IRm|.
a+p=2

Hence (34) follows. To prove (35), we note
9 )VkRm‘z =2 (V*Rm) + 9 (V*Rm) ) + (kam)*2 « (Rm -+ pRg + H'2).
ot ot
Combining it with (32), we obtain the required result. O

Now we derive the evolution equations for the covariant derivative of H.
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Proposition 7. Under the GRBF system (4) we have

%(VH) =A(VH)+ Y, V*HxVFPRm+pH* VR + VH x H* (36)
a+p=1
and
aﬁ (V'H) =a(V*H)+ Y V*H«VPRm+p Y V*HxV'*PR
t a+pB=k a+p=k—1 (37)
+ Y V*H«xVPH«V"H
a+pB+r=k
forallk > 2.
Proof. Since %H = AH + H * Rm, we conclude
) _ _OH o
S (VH) = VS + HxV <Rm—|—pRg+H )

= V(AH + H % Rm) + H* VRm + pH x VR + VH % H*?
= A(VH)+VH*Rm + H+VRm + pH % VR+ VH % H*.

Hence (36) holds. Let us prove (37) by induction. Assume the evolution equation V/H holds
forall1 <j < kin (37). We have

Q k _ Q k—1 _ ﬁ k—1 k—1 %2
= (VH) = =V (V'H) =V <8t (V*'H) ) + VF ' H+ V (Rm + pRg + H2)
Y [A (V<'H)+ ¥ V'H«VPRm+p Y, V'Hs:V'*R
a+p=k—1 atp=k—2
+ Y V'HxVPHx VVH] + V< H« V (Rm + pRg + H*?)
a+p+y=k—1
=AV*H)+ Y V*H«VPRm+p Y, V*HxV''FR
a+pB=k a+p=k—1
+ Y V*HxVPHx«V'H.
a+p+r=k
This completes the proof. O

By Proposition 7, we get the following result.

Corollary 7. Under the GRBF system (4) we have

%}VH\ZgA\VH\Z—z}VZH}ZJrcWH\ Y |V*H||VFRm|
a+p=1
+lo|C|VH| ¥ |VeH||VPR| +C|VH['|H[
ax+p=1
and
%}V"H\zgAWkH\z—z}VkH\Z—I—CWkH\ Y. |V*H||VFRm|
a+pB=k
+[o|CIViH| ) [V*H||VFR]
a+p=k
+C|VFH| Y. |V*H||VPH||VTH]
a+pB+r=k
forallk > 2.
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Proposition 8. Under the GRBF system (4) we have

%(VR) = (1-2(n—1)p)AVR+ (1 -2(n—1)p)Rm =+ VR

+(2—2(n—1)p)RVRm

+ VRm x Rm — 20RVR

— ZAWH!Z +Rmx V|H|*> — %\H\ZVRm

+ Y V*H=xVFPH
a+p=3

+ Y V*HxVPH*V'Rm
a+pB+y=1

+RHx* H +2o0R%g

and

9 (ka) — (1-2(n—1)p)AVFR+ Y V*Rm * VFR
ot a+pB=k
+ Z V*Rm x VPRm
a+pB=k

+ Y V*RxVFR-—
a+p<k

+ Y V*Rm=xVF|HJ?
a+p=k

+ Y V'HxVFH
a+pB=2+k

+ Y V*HxVPH=V'Rm
a+B+v=k

+ Y V*HxVPHxV'R
a+p+y=k—1

3

“AV?|H?
1 |H|

forallk > 2.

Proof. We have
d oR
E(VR) = Vﬁ + RV (Rm+ H =+ H+2pRg)

= (1-2(n—1)p) VAR + 2V|Ric|> — 20RVR — ZVA|H|2

+V( Y V“H*V5H+H*H*Rm) + RVRm + RH * H +20R%g
a-+pB=2

=(1-2(n—-1)p)AVR+ (1 —2(n—1)p)Rm* VR+ (1 —2(n—1)p)R VRm
+ VRm % Rm — 20RVR — ZAWH!Z + Rm x V|H|?> — %\H\ZVRm

+ Y V*HxVPH+ Y V*H*VPH«V'Rm
a+p=3 a+pB+v=1

+RVRm+ RH* H+2o0R%g.

By using the induction we conclude the second result. O
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Corollary 8. Under the GRBF system (4) we have

%\vmz = (1-2(n—1)p)A|VR]*~2(1 = 2(n —1)p)|V?*R| + VR * Rm * VR + R VR x VRm
+ VR % VRm * Rm — 20RVR * VR + VR * AV|H|> + VR % Rm  V|H|?

+|HP?VR«VRm+VRx* Y V*HxVPH+VRx Y  V*H«VPH«V'Rm
x+pB=3 a+p+v=1

+RVR*H*H+R*VR*g+Rm* VR* VR+Hx* H+VR* VR +RVR*g
< (1-2(n—1)p)A|VR]* —=2(1—2(n —1)p) |V*R| + C|VR|?*|Rm|
+ C|Rm||VR||VRm| 4+ C|VR||AV|H|* + C|VR||Rm||V|H|* + C|H|*| VR||V Rm|
+C|VR| Y |V*H||VPH|+C|VR| Y |V*H||VPH||V"Rm|
a+p=3 a+pB+v=1
+ C|Rm||VR||H|? + C|Rm|*|VR| + C|H|*|VR|?* + |Rm||VR|
and
%\ka}z < (1=2(n—1)p)A|VFR|> = 2(1 = 2(n — 1)p) |V IR
+C|V*R| Y. |V*Rm||VFR]
a+pB=k
+C|V*R| Y. |V*Rm||VFRm|
a+p=k
+C|V*R| Y |V*R||VFR]
a+p<k
+C|V*R*|AV2||H|
+C|V*R| Y |V*Rm||VFP||H?|
a+p=k
+C|V*R| Y |V*H||VFH]
a+pB=2+k
+C|V*R| Y. |V*H||VPH||V"Rm]|
a+pB+r=k
+C|V*R| Y |V*H||VPH||VTR|
a+p+y=k—1
+ C|Rm||V*R[".
forallk > 2.

Theorem 6. Let (g(x,t), H(x, t)) be a solution to GRBF system (4) on a closed manifold M" on
0 <t < T and Ky, K, be arbitrary given nonnegative constants. Then there exists a constant
C(n) depending only on n such that if

}Rm(x,t)‘g <Ky and |H(x)| <K,

(x,t)
for all (x,t) € M" x [0, T], then

|H(x, t)} < Kze%c(")Klt

8(xt)
forall (x,t) € M" x [0, T].
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Proof. Since aaij = AH + Rm * H we have

SIHP = 2H ¥ (2R — 20Rg'l - Eh”) +2(AH +Rm+H)+ H
= A|H|? —=2|VH|> + Rm+ H* H+ pRH « H — |H|*
< A[H[? + C1(n)[Rm|[H|* + Cy(n) o] [R[|[H[
< A|H|? + C(n)Ky|H|?.

Suppose that y(t) is the solution to the corresponding ordinary differential equation
% = C(n)Kyy with y(0) = K3. Then y(t) = K3e“WXi! and by the maximum principle we
obtain ‘H(x,t)} < Kze%c(”)Klt. O

6 Compactness theorem for the GRBF system

In [2], the compactness theorem and its various versions for solutions of the Ricci flow are
discussed to understand singularity formation. This is most effective when the compactness
theorem is combined with monotonicity formulas on other geometric techniques. The com-
pactness for the Ricci flow has applications to study solution (M", g(t)) to the Ricci flow on
t € (a,b), where b < oo is maximal. It helps in understanding the limiting behavior of the
solution g(t) as t — b and to determining, when there exists a subsequence of pointed solu-
tion to the Ricci flow (M, gx(t), O), that converges to a complete solution (Meo, goo(), Oco). In
this section, using the definitions and notations of [2], we prove the compactness theorem for
solution of the GRBF system.

In the following, we find bounds on the metric and its derivatives.

Lemma 3. Let (M",g) be a close manifold, p < ﬁ, U be a compact subset of M, and

(gx(t), H(t)) be smooth solutions of the GRBF system in neighborhood of U x [B, ], where
B <0< . Attimet = 0 on U suppose that:

(a) the metrics g(x,0) are all uniformly equivalent to g(x) on U, ie. forall V € TyM, k
and x € U, we have cg(V,V) < g(x,0)(V,V) < Cg(V,V), where c and C are constants
independent of V, k, and x,

(b) |Vpgk|g < Cp for all p > 1, where C,, is a constant independent of k,
(c) \Vka\g < C; for all p > 0, where C; is a constant independent of k, and in addition

(d) sup ‘Vmek‘gk < CZ for all p > 0, where CZ is a constant independent of k,

Uux (g y]
(e) sup ‘V;lek‘gk < CZ’ forall p >0, where CZ’ is a constant independent of k.
Ux[gy

Then we have

(ii) sup ‘Vfgk‘g <C, forall p>1,
ux[p,yl

(iii) sup ‘VfHk‘g < C’p forall p >0,
ux(py]

onU x [B,y], where ¢, C,Cp, and C'j, are constants independent of k for all t € [0, T].



656 Shahroud Azami

Proof. In the process of proving the Lemma, Cy, 1 < k < 31 are constants. For any V € T,M
we have

0 .
58k )V, V) = =2Ric(x, 1) (V, V) + 20Reg (x, 1) (V, V) + e (x, 1) (V, V).
Then using (d) and (e), we infer
|Rick (x,1)(V, V)g, < C1(n)Cogi(x,t)(V, V),

[Ri(x, )| < Co(n)Cy,
i (2, 8)(V, V)|, < Ca(n) [Hi(x, 1) 3, 8x(x, 1) (V, V) < Ca(n)CY'g(x, £)(V, V),

which give

) .
58k (V. V)| < 2|Rick (x, ) (V, V][ + 2[0] [Rel 82 (V. V) + [ (x, ) (V, V) |,

8k
< (Co(n)CY + 20| Ca(m)CY + Ca(m)CY) g, £)(V, V).

Therefore for 0 < t < ¢ we obtain

gk(x/ t)(Vr V) _ t %gk(x/ t)(V/ V)
108 0y (¢ o><v,‘v>‘ - /0 " OV, V) ‘”'
Jd
f Egk(x/ t)(V/ V)
: /0 Sk(x,t)(V, V) g(t)dt

< (C1(n)Cy + 2|p|Ca(n)Cy + C3(n)Cy' ) .

Hence, this inequality and the assumption condition (a) complete the proof of (i).
Let V, T, *V and *T be connections and Christoffel symbols of metrics ¢ and gy, respectively.
From the definition we have

1
T = Tij = 5(80" {Vil8)jr + Vj(ge)ir — Vir(g0)ij}
thus [FT'(x,t) — T'(x) }g < Cy(n) |Vgi(x,t) ’gk' On the other hand, for a tensor T, we have

0 I !
Vil = 5T - rLT, — T, Ty = *V,T), - (rﬁj - krij) Ty, — (rﬁ, - krir) T,

therefore,
Vi 8y, = — (T =*T4) (g, — (T =*Th) (80
It follows that |V;(gc)(x, )|, < Cs(n) |FT'(x, ) — T'(x) ‘gk and hence Vg is equivalent to

T — T =kV — V. Since V is independent of time, the evolution equation for T — T is

d . . .
= (kl“ - F) =— {kvi(Rlck)jr +*V;(Ricg)ir — er(Rle)ij}

ot
+p {sz'Rk(gk)jr + 5V iR (8k)ir — erRk(gk)zj}
1

+ 5 (il + 1905 =4V ()
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N

It follows from the assumption that

3 (r=1)

§C_7(n,]p])“kV(Rick)‘ +['V(R| + [0
Sk 8k 8k

S CS(”, |p|) [Clll + Cu{[c//([)] .

We conclude

0 - |9 k aNe I ol

_ < _ _ < C// CII C//

athk . = C9 ot ( I 1") N < C9C8(1’l, ’p’) [ 1+ 1 0},
where constant Cy comes from (i). Integrating on both sides, we get

59810 = |20) + [ Vge(ryir

< G+ GoGs(n, lpl) [C"1 + C"1C75] 9.

By (e) and (i), we obtain
|Hylq < Cio[Hilg, < C10Cp’ == Cp.

Since V is independent of time, we get

0

d
gVHk = V—Hk =V [Aka + Rmk *Hk]

ot
= (V=*V) AcHy + ¥V H + (V =5 ) Ry« Hy + 5V R Hi

+ Ry (v - kv) Hy + Ry« "V Hy = Vg  AgHy + FV A Hy
+ ng ES Rmk % Hk + kVRmk kS Hk —+ Rmk * ng kS Hk —+ Rmk * kVHk,

where Ay is the Laplace operator associated to gx and we used Vg, ~ V —*V. From the
assumptions (d), (e), (i) and (ii) for p = 1, the above equation implies that )%VH;() < Cp1. As
above 5

EVHk(T)

t _ -
IVH,(£)] < [VHL(0)] +/0 dt < C, + Cry = C.

For higher derivative of (g, Hy) with respect to g, we have

d ,
ﬁvzgk = V? (—2Ric +2pRxg + h)

= —2V2Ric + V2Ry * g + R1 % V2g + VR * Vg + Hy * V?Hy + VH;  VHy.

We can write

%VZRick - (v - "v) [(v - kv) Ricy + kVRick] kY (v - "v) Ricy +¥V°Ricy

— Vg, # [ng « Ricy + kVRick] + V2g, * Ricy + ¥V Ricy.

Therefore

0
gvzgk =Vgi * [ng * Ricy + kVRick] + Vzgk * Ricy

2 .,
+ ¥V Ricp + V2R * g + Ril V2 + VR % Vg

+ Hj * [ng * [ng * Hy + kVRick] + Vzgk * Hy + kVZHk + VHj * VH;.
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Hence the assumptions and (i)—(iii) for the case p = 0,1 imply that

iVzgk

< Cu( V2] + )vsz)) G (39)

Similarly we have

0
EVZH,( =V? (Aka + Rmy * Hk)

— Vg # [vgk « AcHy + kVAka] V2 AcHy + KV ALH,
+ V2Rmy * Hy + Ry x V2Hy + V gy * Ry« VHy + VR « VHj
and

0 - -
‘gvsz < C14<‘V2gk‘ + ‘VZH](D + C15. (39)

Putting (38) and (39) together, we arrive at
0 - _
= (V28] + }vsz\)‘ < cm(\vzgk\ + \vsz\) + Cy7.

Since | V2g,(0)| + | V2Hi(0)| < C; + C}, integrating on both sides of above inequality, we get
|V2gk(t)] + [ V2 Hi(t)] < Cs.

Suppose that the estimates hold for p < N with N > 2. Let us show that they also hold for
p = N. Notice

N .
Y N (v . kv) kv 'Ricy + 5V Riey

)VNRiCk‘ =
i=1

<y VNV = V) 59" Ricg| + [V Ricy|.
=1
By induction on p we show thzlit

|VPRicy| < Ap |[VPgk| + By,  |VPg| + |VPH| < D,

forall p > 1, where Ay, By, and D), are constants independent of k. For i = 1, by induction and
the assumptions we have

’VN_l <V _ kv> Rick’ < Cq9 ’VN—1 (ngRiCk)’

< Cyg Ijg:)l <N]_ 1) <VN*7gk> (VfRick)
< (_719NZ_:1 <N_ 1) )VN*jgk) ‘VjRick)
=0\
< Cyg Ij__ol <N]_ 1) <Aj )ngk‘ + Bj) ‘VN*jgk)
< C v <N-_ 1) (4;D;j + Bj) )V ]8k)
=0 \
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For 2 <i < N we have

‘vNi (v . "v) kv Ricy

N-1 _ .. ) i—

<Cn), <N]. 1) VAR AT ‘vf (kv 1Rick)'
j=0
N-1 _ . j i

— Cp <N]. 1) yN-i—itle, ‘((v-kv)ﬂv) ("v 1Rick)'
j=0
N-1 /nj o i i

:ng, <N 1) VN_Z_]+1gk <Z <§>‘Vlngkv] " 1Rick‘>
j—o N/ 1=0

< Co4

Combining the above two inequalities, we deduce
|VNRicy| < An|VNgi| + Bu.
Similarly we have
|VNRmy | < AN|VNG| + By, | VNAHK| < AR | VNgi| + BY,

where A}, A}, By, and BY; are constants independent of k. By induction, we have that | V7 Hy|
bounded for all p < N. Now, for p > 1, the equality

4 ) ) p ) .
%vpgk = VP (—2Ric + 2pRxg + h) = —2VPRic+ ) V'R« VP "¢+ ) V'Hy x VP 'H;
i=0 i=0
implies that
)

P

On the other hand, equality

< C_25<‘VNgk‘ + ‘VNH](D + Co. (40)

P .
EVPH]( = VP Aka —+ Rmk *Hk = VPAka + VZRmk * Vp_sz
ot
i=1
yields
) - -
S VNAH| < Cor (|98 + [VNHY| ) + Cas. (41)

Combining (40) and (41), we conclude
0 - -
(17| + [VNHY|) ' < Coo (V| + [V Hy|) + Cao.

Since |VNgi(0)| + [VNHi(0)| < Cn + Cj, integrating on both sides of the above inequal-
ity, we get
V28 (B)| + |V Hi(t)] < Car.

This completes the proof of the lemma. O
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Definition 3. Let E be a vector bundle on a Riemannian manifold M, and let metric § and
connection V be given on E and on TM. Let Q) C M be an open set with compact closure () in
M, and let (1;) be a sequence of sections of E.

For any p > 0 we say that 1y converges in CP (M) to jc € T (E|gn) if for any € > 0 there
exists kg = ko(€) such that

sup sup |V* (x — 17e0) | <€,
0<a<pxeQ)

whenever k > k.

We say 17k converges in C* to 1], on Q) if g converges in CP to 1j on Q) for any p € IN.

Definition 4. A pointed Riemannian manifold is a 4-tuple (M, g, H,O), where (M,g) is a
Riemannian manifold and O € M is a choice of point. If the metric g is complete, then the
4-tuple is called a complete pointed Riemannian manifold. We say that (M, g(t), H(t),0),
t € (a,b), is a pointed solution to the GRBF system if (M, g(t), H(t)) is a solution to the GRBF
system.

Definition 5. A sequence { (M, gk, Hy, Ox) } of complete pointed Riemannian manifolds con-
verges to a complete pointed Riemannian manifold (Me, §oo, Heo, Oo) as Cheeger-Gromov
convergence if there exist

1) an exhaustion (Uy) of M« with O € Uy such that Uy is compact and Uy C Uy, 1 for allk,
and > Uy = M,

2) a sequence of diffeomorphisms ¢y : Uy — Vi C My with ¢ (Ox) = Oy such that
(¢:8k, 93 Hi) converges in C® to (g, Heo) 0n compact sets in Meo.

Definition 6. A sequence { (Mg, gx(t), Hx(t),Ox) }, t € (a,b), of complete pointed solutions
to the GRBF system converges to a complete pointed solution to the GRBF system
(Moo, §00(t), Hoo (1), Oso), t € (a,b), if there exist

1) an exhaustion (Uy) of M with O € Uy,

2) a sequence of diffeomorphisms ¢ : Uy — Vi C My with ¢ (O) = Oy such that
(pigi(t), ¢iHi(t)) converges in C* to (geo(t), Heo(t)) on compact sets in Moo X (a,b).

In [8], the following theorem about compactness of metrics has been proven.

Theorem 7. Let { (M, g, Ok) } be a sequence of complete pointed Riemannian manifolds that
satisty

1) }V,’:Rmk}k < Cp on My for each p > 0 and k, where C, < oo is a sequence of constants
independent of k, and

2) injg, (Ox) > ko for some constant ko, where injq, (Oy) is the injectivity radius of the met-
ric g at the point Oy.

Then there exists a subsequence {ji} such that {(M,,,gj,0j,)} converges to a complete
pointed Riemannian manifold (M, §oo, Oco) as k — oo.
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Theorem 8 (compactness for the GRBF system). Let { (M, gk(t), Hi(t),O0k)}, t € (a,b),
—c0 < a < 0 < b < oo, be a sequence of complete pointed solutions to the GRBF system
such that

(i) the curvature is uniformly bounded, i.e.
\Rmk\gk S Ko, ’Hk‘ S Kl on Mk X (ﬂ, b)
for some constants Ky, K; < oo independent of k, and

(ii) injectivity radius at t = 0 has the following estimate

injg, 0y (Ok) > ko
for some constant ky > 0.

Then there exists a subsequence {ji} such that {(M;,g; (t), H;(t),0j,)} converges to a
complete pointed solution to the GRBF system (Mo, §o0(t), Hoo(t), Oco) ask — oo fort € (a, b).

Proof. We only prove the case, where each M is compact. Consider a sequence of pointed
solutions { My, g (t), Hi(t), Ok}, t € (a,b), to the GRBF system, where

sup |Rmg| <Ky and  sup |Hy)| <Kj.
MkX(ﬂ,b) MkX(ﬂ,b)

The Lemma 3 gives bounds of the form
|VPRm(x,t)| < A

forall x € Mand t € [a +¢,b) for each small € > 0.

Theorem 7 implies that there is a subsequence of {(My,gx(0),Ok)}, which converges
t0 (Moo, §oos Oco). We write this subsequence again by { (M, gx(0), O) } if there is no am-
biguous. Let us show that there are metrics go(t), t € (a,b), such that go(0) = g and
{(My, gx(t), H(t), Ok) } converges to (M, §oo(t), Heo(t), Oco). Since { (M, gx(0), Ok) } conver-
ges t0 (Mo, §0o(t), Owo), there are an exhaustion (Uy) of Me and smooth maps ¢y : U — Vi
taking Owo to Oy such that (§(0), Hi(0)) = (¢7 (gk(0)),¢; (Hk(0))) uniformly converges
in C® on compact sets of Me t0 (oo, Hoo). The metrics $x(0) are uniformly comparable to
§ = oo, then by Lemma 3, (§i(t), Hi(t)) = (95 (3k(t)), ¢; (Hi(t))) remain comparable for
other t € (a,b).

We have |VPg;| < B. Now, by the Arzela-Ascoli theorem, there is a subsequence, which
converges to (Mo, Soo(t), Hoo, Oco) in C*, where (gwo(t), Heo(t)) is defined to be the limit of
(97 (gk(t)) , @F (Hi(t))). Since all derivatives of the metric converge, the Ricci curvature of
Qk(t) converges to the Ricci curvature of g (t) and hence the limit is a solution of the GRBF
system. Since any complete manifold is a c-compact, locally compact Hausdortf space, then for
complete manifolds, it is sufficient to use Arzela-Ascoli theorem. This completes the proof. [J
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Y it poboTi MM pO3TASIAAEMO y3araAbHeHy cUCTeMy MOTOKY Pivui-ByprinbiioHa, sika Mae cxo-
XicTp i3 morokoMm Piudi-ByprinbitoHa Ta Boaoaie rpaaieHTHOIO popMOI0. MM BCTaHOBAIOEMO icCHY-
BaHHS Ta EAVHICTb PO3B’S13KY 1IbOTO IIOTOKY Ha 1-BMMipHOMY 3aMKHEHOMY PiMaHOBOMY MHOTOBMAIL.
Mu BBOAMMO y3araabHEHMII COAITOH cucTemu Piuui-ByprisbiioHa Ta HaAaEMO YMOBY, 3a SIKOI Tpa-
Al€HTHMIT y3araAbHEHMII COAITOH crcTemn Pigui-Bypriabiiona € i3oMeTpUIHMM A0 eBKAIAOBOI cdoe-
pu. IToTiM MU AOCAIAKYEMO €BOAIOLIIO ACSIKMX T€OMETPUYHMX CTPYKTYP MHOTOBMAA B3AOBX IIbOTO
TOTOKY Ta BCTAHOBAIOEMO OLIIHKM AASI ITOXIAHMX BUIIVIX MOPSIAKIB AASI KOMIIAKTHVMX MHOTOBMAIB, a
TaKOX TeOpeMy KOMIIAKTHOCTi AASI ITi€i y3araabHEHOI cyucTeMu IOTOKY Piudi-Byprinbiiona Ha 3a-
MKHEHUX piMaHOBMX MHOTOBMAAX.

Kntouosi crosa i ppasu: morix Piudi-Byprispitona, rpasieHTHENMI coaiToH Piui-Byprinsiiona, rpa-
Ai€HTHa OLiHKa, TeOpeMa KOMIAKTHOCTI.



