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Approximation of functions from Holder class
by biharmonic Poisson integrals

Kharkevych Yu.I., Shutovskyi A.M.

The biharmonic equation in Cartesian coordinates is considered for the case of the upper half-
plane. The solution of such a fourth-order partial differential equation for given boundary condi-
tions is represented in the form of an integral of the product of the function and the delta-shaped
kernel, which in this paper plays the role of an approximating aggregate. In the paper, we found an
exact equality for the upper bound of the deviation of Holder class functions from the considered
biharmonic Poisson operator in the uniform metric.
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2.
Denote as usual V 8 = @

. Consider the biharmonic equation

V2 (vzu) —0 (1)

in the Cartesian coordinate system for the upper half-plane, i.e. for y > 0. Let the following
boundary conditions

Jim U (xy) = £ (x) @
and AU (x,7)

. X,y)

ylirﬂo a]/ =0 (3)
hold.

The fourth-order partial differential equation (1) with the boundary conditions (2) and (3) is
a boundary value problem. The solution to the boundary value problem under consideration
can be represented as an integral

_ 2P [t f(x+t)
B(fixy) / STk (4)
The positive operator (4) is also a functional of the function f and is called a biharmonic

Poisson integral in the upper half-plane. It should be noted that the integral kernel in the
expression (4) for the biharmonic Poisson operator is a special case of a more general kernel

A+ Bx
(x2 1 A2)2’
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which has already been studied earlier in [13].
Let C be the space of continuous and summable on the real axis functions f with the usual
norm ||f|| = max |f(x)]. Also, let H*, 0 < & < 1, denote the Holder class of functions f € C
xe

satisfying the condition
|f (x1) = f (x2) | < [x1 — x2]", x1,% € R. (5)

Following [16, p. 198], consider the classical problem of finding an exact equality for the
quantity
E(H", B(y)) = sup If(x) = B(f;xy)ll (6)
e H«

of upper bound on the deviation of functions of Holder class H* from the operator (4) in the
space C.

The approximative properties of the biharmonic function (4), which belongs to the class
of polyharmonic operators in the upper half-plane, are poorly studied. As for the polyhar-
monic operators in the unit disk, a considerable number of publications have been devoted
to the study of the approximative properties of such approximating aggregates. In particular,
the Abel-Poisson integrals [6, 18] and biharmonic Poisson integrals [3, 18] are well studied. In
general, the problem of approximating functions by polyharmonic operators in the metric of
the space S, 1 < p < oo, was solved by M.F. Timan [17, p. 256].

Similar questions were also studied for the case of many variable functions. In the series of
papers [8-12], approximative properties of the Taylor-Abel-Poisson summation method were
studied. This method defines the operators A, , that possess the main properties of the Abel-
Poisson and Taylor operators, however they can be also adapted to smoothness properties of
functions of arbitrarily large order. In particular, in [8, 9], the authors proved the direct and
inverse theorems on the approximation of functions of several variables by operators A,, in
terms of K-functionals of functions generated by their radial derivatives in the integral metric.

The problem of the type (6) was frequently considered in the case when the role of the
approximating aggregate is played by linear methods [1, 2, 14] of Fourier series summation
that are given by infinite triangular numerical matrices (more detailed information on this
issue is covered in the book [16]) and arbitrary sequences of functions [4,7].

It is worth noting that most of the results concerning the approximative properties of bihar-
monic Poisson integrals for a unit disk are written in the form of asymptotic equalities [5,19].

The purpose of this study is to find an exact equality for a quantity of the type (6) in the case
when the biharmonic Poisson integral (4) for the upper half-plane acts as an approximating
aggregate.

Theorem 1. For any fixedy > 0 and 0 < a < 1, the exact equality

£(H B(y) = LW 7)

C i
cos 75
holds.

Proof. Using the operator (4), we will construct an integral representation

B(fixy) - f) = 2 /+°°fx;§iy{( Vit ®)
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With the help of formulas (8) and (5), we get the estimate

3 0 ®
E(H", B(Y))c = sup 1f(x) = B(fix,y)|c < 4% /0+ ﬁ. )

In the class H* there is a function f (t) = |t|*, which transforms the inequality (9) into an
equality. So we have

—+o00 ®
£(HY, B 4y / 2t dt
(2 +y?)
The last integral can be transformed using the substitution t = yz. Then we get
_ 4 Tzt dz
o
£ (H / (1+ 22 (10)

Let us evaluate the integral in formula (10). To do this, we will consider the integral

/+°° Zz% dz _/1 z%dz +/+°° z% dz an)
o (1+z2)2  Jo (1+22)2 1 (1+422)%

dependent on the parameter a.

Numerical values of the parameter a for which the integral (11) exists will be found be-
low. We will transform the second integral on the right-hand side of the identity (11) by new
integration variable A = z~1. Then we get

/+°° 2'dz /1 AZTa A
L A+27 S Gtz
Next, we substitute the above result into the right-hand side of the equality (11) and obtain

teo Zidz (24227 dz
I (1+z2)2_/o Ar227 (12)

The integral on the right-hand side of the equality (12) can be simplified by extracting a
rational part. Using transformation

z7 4+ Zqu B Zl+a + Z3fa / (1 _ ll) (Z” _ 227”)
(1+22)2 | 2(1+22) 2(1+22) 7

we obtain

dz
= : 13
(1+22)? 2(1+2?) 0 2 / LmZ (13)
The first term on the right-hand side of the identity (13) shows that the considered integral
(12) exists under the condition |a — 1| < 2. Thus, we get the formula

/1 (Za +22—a) dz 1+a +Z3 a
0

1 (-0 2—a _ 1 (-8 _ 2—a
/ (2" +z 2)Zd.z:l%_l a [1(z¢—z 2)dz (14)
o (1+2z?) 2 2 Jo 1+z
Comparison of the results (12) and (14) allows us to obtain the identity
T 20z 1 1—a [1(z"—22%dz
— _ 1
/0 (1+22)? 2T 2 0 1+22 (15
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The integral on the right-hand side of the equality (15) contains the integration variable z
that varies from 0 to 1. This allows us to use the binomial series

(142" —1+Z: 1)kz%
to calculate the integral in the right-hand side of the identity (15). Then we have the equality
L(z" 2% ") dz ! (2+a — g2r2-
/0 =2 :/0 (2" — 2%~ dz—{—z / bz ) dz,
which can also be represented in the following form

128 —227")dz ¥ P 1 1
A 1+ 22 "é%‘” &%+1+a_2k+3—a>' (16)

Let us introduce a new variable k' = k+ 1. Using it, we transform the sum in the right-hand
side of the identity (16). We get the result

128 =227 dz &% 1 1
/0 1+22 Z (1—a—2k+1—a—|—2k>' (17)

After that, we substitute the integral (17) into the right-hand side of the equality (15). Then

we have
too Zhdy 1—a| 1 = 1 1
/0 (1+22)2 2 {1—a+k_Z:1(_1) <1—a—2k+1—a—|—2k>}' (18)

To calculate the sum of the series on the right-hand side of the identity (18), we use the
so-called parameterization method (see, e.g., [15]), which is a powerful tool in mathematical
physics. In this case, we can write the parameterizations

)efa (19)

(—1)F 1 n 1—a
= cos
1—a—2k 2cos’ Jo

(-1 n 1-a
1—a+2k_2cos% ; cos 5 tpdt. (20)

Addition of the integral representations (19) and (20) gives us the following one

(—if (— 2y 1 L7 cos(kt)cos { (1 —a) £ L
T—a—2k  T—a+2k) cosZ Jy VP 2/

After summing over k in the above equality, we get the sum

E(—l)k(l_a1_2k+1_al+2k) T {Zcoskt}cos{(l—a)%}dt.

Let us add parameterization

1 1 T(1 t
= = 1—a) < pdt
1—a cos% Jo {Z}COS{( a)Z}

and
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to this sum. Therefore, we obtain

! ++f(—1)k LR
1—a = 1—-a—-2k 1—a+2k

— /n LY cos (kt) 1-a)ila
_COS% 0 > : 1COS COS > .

(21)

Next, we substitute the integral representation (21) into the formula (18). Thus, we get

+oo LA ds 1—a (1 +oo ;
/0 (1+22)2  2cos & /o {5 +kzlcos(kt)} cos {(1 —a) E} dt. (22)

Evaluation of the integral on the right-hand side of the identity (22) becomes possible only
after finding the sum of the series in curly braces. It should be noted that the sum of the
considered series is a generalized function. This means that the classical methods of series
summation are inapplicable in this case. To find the sum of the series, we use the well-known
harmonic Poisson kernel

sinh e 1 I
2 (coshe — cost) 2—|—}§1exp( ek) cos (kt), where ¢ >0 (23)

Let us transform the left-hand side of the equality (23). We use the double angle formulas
for the functions sinhe¢, coshe and cost. This enables us to replace the identity (23) by the
following one

sinh 5 cosh 5 1 o
) - k kt . 24
2((sinh§)2 + (sinb)2) 2 +k§e><p( ek) cos(kt) 24

Application of the parameterization

Sinh% ~+ o0 ' e ' t
(Simh%)2 + (sin%)z o /0 exp <_q sinh 5) cos <q sin E) dg

converts the formula (24) into the result

cosh &+ S ot 1
5 /0 exp <—q sinh E) cos <q sin 5) dg = 5 —{—kg:lexp(—ek) cos(kt).

Now let ¢ — +0. It follows from the above identity, that

1/Wcos sini d —1++Zo:ocos(kt) (25)
2 Jo ISy ) =T L '

The equality (25) contains the integral representation

.t 1 [* ot
) <sm 5) = ;/0 cos <q sin 5) dq
for the Dirac delta function.

Then instead of the identity (25) we can write the result

) (sin%) = % {% ~|—§cos(kt)}
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that allows us to reduce the integral (22) into the following form

T 204z n(l—a) (7 .t
= ) = 1- dt. 2
/0 A+27  dcos /0 <smz> COS{( a)z} (26)
Next, the integration variable { = sin (¢#/2) must be introduced in the integral (26). Then
we obtain the following expression

teo Zhd (1 — ,
/O o Zzz) 2COS a) / \/@ cos { (1 —a)arcsin (¢) }. (27)
Using the well-known property f (¢)d (E—¢') = f(¢') 6 (& —¢'), from formula (27) we
obtain
‘o 20dz m(l—a) [T
L G = res ), 2O 28)

Consider another well-known property 6(&) = H'() represented via the Heaviside step
function

L1 e sinee) 0, ¢<0,
_ 1 1 /7®singe) , _
1, > 0.

Then we can write

[lo@dz= [ H(@)dz = HE|, = HO) - H©) = 29)
0 B 0 B B B

1
0 2
Substituting the integral (29) into the expression (28), we obtain the result

‘e z%dz m(l—a)
/0 (1+22)2  4cosZt” (30)

If we apply the integral (30) to calculate the right-hand side of the identity (10), we get the
result (7). The theorem is proved. O
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Xapkesnu 0.1, Ilytoschkmmt A.M. Habnuowcenns pyuxyiii knacy I'envdepa 6ieapmoniiinumu inmeepa-
aamu [Iyaccona // Kapmarcbki Mmarem. my6a. — 2024. — T.16, Ne2. — C. 631-637.

birapmoHiliHe piBHSIHHS B AGKAPTOBMX KOOPAMHATAX PO3LASHYTO AAS BUIIAAKY BEPXHbBOI IiB-
naomyEN. Po3B’s130K Takoro AndpepeHITiaAbHOTO PiBHSHHS YeTBEPTOTO MOPSIAKY B UaCTVMHHMX II0-
XiAHMX AASI 3aAQHVIX KPallOBMX YMOB IIOAQHO y BUTASIAL iHTerpana Bia A06YTKy (pyHKIII Ta AeAbTa-
TIOAIGHOTO sIApa, SIKVMIA y AaHil poboTi Biairpae poab HabAVKYBaABHOTO arperary. 3HalfA€HO TOUHY
PiBHICTD AASI BepXHBOI MeXi BiaXMAeHHs pyHKIIIN kaacy ['eabaepa Bia posrasiayBaHOro 6irapmo-
HiViHOTO onepaTopa IlyaccoHa B piBHOMIipHIli MeTpPMWIIi.

Kntouosi cnosa i ¢ppasu: 6irapmomiiiHe piBHsIHHSI, birapMonilEmit iHTerpan Ilyaccona, kaac I'ean-
Aepa.



