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Algebras of symmetric and block-symmetric functions on
spaces of Lebesgue measurable functions

Vasylyshyn T.V.

In this work, we investigate algebras of symmetric and block-symmetric polynomials and ana-
lytic functions on complex Banach spaces of Lebesgue measurable functions for which the pth power
of the absolute value is Lebesgue integrable, where p € [1, +o0), and Lebesgue measurable essen-
tially bounded functions on [0, 1]. We show that spectra of Fréchet algebras of block-symmetric en-
tire functions of bounded type on these spaces consist only of point-evaluation functionals. Also we
construct algebraic bases of algebras of continuous block-symmetric polynomials on these spaces.
We generalize the above-mentioned results to a wide class of algebras of symmetric entire functions.
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Introduction

Symmetric functions on Banach spaces were studied in [1-3,5-16,22,27]. In [26], it is shown
that two Fréchet algebras of symmetric entire functions of bounded type on complex Banach
spaces are isomorphic if semigroups of symmetries on underlying Banach spaces satisfy some
natural conditions. In the current work, we continue the investigation of such isomorphisms
of algebras.

Suppose we have two isomorphic topological algebras of functions and the spectrum of
one of these algebras consists only of point-evaluation functionals. Does the spectrum of an-
other algebra also consist only of point-evaluation functionals? In general case, the answer is
“no” (see, e.g., [13]). But, as it is shown in the current work, if the isomorphism of algebras
is generated by some bijection of underlying sets, the answer is “yes”. We apply this result
to Fréchet algebras of symmetric entire functions of bounded type on complex Banach spaces.
In particular, we show that spectra of Fréchet algebras of block-symmetric entire functions of
bounded type on complex Banach spaces of Lebesgue measurable functions for which the pth
power of the absolute value is Lebesgue integrable, where p € [1, +o0), and Lebesgue measur-
able essentially bounded functions on [0, 1] consist only of point-evaluation functionals. Also
we construct algebraic bases of algebras of continuous block-symmetric polynomials on these
spaces. We generalize the above-mentioned results to a wide class of algebras of symmetric
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entire functions. Examples of such algebras are constructed.
Results of the work can be used in investigations of algebras of symmetric and weakly
symmetric (see [25]) functions on Banach spaces.

1 Preliminaries

Let IN be the set of all positive integers. Let Z_ be the set of all nonnegative integers. Let u
be the Lebesgue measure on [0, 1].
Let us define the function Ay, ) : [a,b] — [0,1] by

t—a
Map)(t) = 5

1)

_a'

Note that A, ) is a bijection.

Symmetric mappings. Let A, B be arbitrary nonempty sets. Let S be an arbitrary fixed set
of mappings that act from A to itself. A mapping f : A — B is called S-symmetric if
f(s(a)) = f(a) foreverya € Aands € S.

The algebra Hy,(X). Let X be a complex Banach space. Let Hy(X) be the Fréchet algebra of all
entire functions f : X — C, which are bounded on bounded sets endowed with the topology
of uniform convergence on bounded sets.
Let
Ifll: = sup |f(x)]

x| <r

for f € Hy(X) and r > 0. The topology of Hy(X) can be generated by an arbitrary set of norms
{II- |l : ¥ € T}, where I' is any unbounded subset of (0, +o0).

The algebras Hy, s(X) and Ps(X). Let X be a complex Banach space. Let S be a set of operators
on X. Let Hy 5(X) be the subalgebra of all S-symmetric elements of Hj,(X). By [20, Lemma 3],
Hyps(X) is closed in Hy(X). So, Hj s(X) is a Fréchet algebra. Let Ps(X) be the subalgebra of
Hj, s(X) that consists of all S-symmetric continuous polynomials on X.

The group of bijections Ejgq). Let E(g;) be the set of all bijections o : [0,1] — [0,1] such
that both ¢ and ¢~! are measurable and preserve the Lebesgue measure, i.e. for every
Lebesgue measurable set E C [0, 1], both sets ¢(E) and ¢~ !(E) are Lebesgue measurable and
u(o(E)) = u(c '(E)) = p(E). Note that Zgy is a group with respect to the operation of
composition.

The group of bijections ="  Letn € N. Let "

Eio,1]" 04] be the set of all bijections o € E ;) such
that

o(t+1/n)=0(t)+1/n

(n)

for every t € [0,1 — 1/n]. By [26, Proposition 2], Eio1]

is a subgroup of Eg q].



176 Vasylyshyn T.V.

The group of operators S(E,X"). Let E be an arbitrary subgroup of E( ;). Let X be an arbitrary

linear space of equivalence classes with respect to the equivalence relation x ~ y < x = y
of Lebesgue measurable functions on [0, 1] such that x o ¢ belongs to X for every x € X and
o € E. Let X" be the nth Cartesian power of X, where n € IN. For ¢ € E, let the operator s, be
defined by

sei(x1,...,xp) €X' (x100,...,xp00) € X".

Let
S(E,X")={s;: 0 €&}

It can be verified that S (E, X") is a group of operators on X". If the context is clear, we shall
write S(E) instead of S (E, X") . Note that S (5[0,1]/ X")-symmetric functions on X" are usually

p(”)

called symmetric and S (“[0 1

X)-symmetric functions on X are called n-block-symmetric.

The Cartesian power of L,[0,1]. Let L,[0,1], where p € [1, +-00), be the complex Banach space
of all Lebesgue measurable functions x : [0,1] — C for which the pth power of the absolute
value is Lebesgue integrable with norm

Il = </[0,1} }x(t)}pdty/p'

Let (L,[0,1])", where n € N, be the nth Cartesian power of L, [0, 1] with norm

1/p

x|l pn = <S_Xn:1/[0,1] \xs(t)‘l’dt> ,

where x = (x1,...,x4) € (Lp[0,1])".

The Cartesian power of L[0,1]. Let Lo[0,1] be the complex Banach space of all Lebesgue
measurable essentially bounded functions x : [0,1] — C with norm

[x[leo = esssup |x(t)|.
tel0,1]

Let (LOO [0, 1]) " where n € N, be the nth Cartesian power of L[0,1] with norm

X ||oo,n = max, %[ c0s

where x = (x1,...,%1) € (L[0,1])".

Symmetric functions on Cartesian powers of L,[0,1] and L»[0,1]. Let X be equal to L,[0, 1]
or Le[0,1], where p > 1. By the definition of the group of operators S <E[0,1]z X”) , a function

fonX"is S <E[O,1], X”)—symmetric if
f((x100,...,xp00)) = f((x1,...,%4))

for every (x1,...,x,) € X" and ¢ € E ;). Note that S(E(), X")-symmetric functions on
Cartesian powers of L,[0, 1] and L« [0, 1] were studied in works [17-21,23,24].
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Let
[ {kezi 1< k| <p}, if X=1L,[0,1],
Mixn = { {(kez" : |kl >1}, if X = Leo[0,1], @
where |k| =k + ...+ ky, fork = (kl,...,kn) cZn.
For every multi-index k € My ,, let us define the mapping Ry x» : X" — C by

Roxet) = [ TT ()" ®
k>0

where y = (y1,...,yn) € X". Note that Ry x» is a symmetric continuous |k|-homogeneous
polynomial.

By [17, Corollary 2.11] (for the case X = L,[0,1]) and by [19, Corollary 3] (for the case
X = L]0, 1)), the following theorem holds.

Theorem 1. Let X be equal to L,[0,1] or Le[0,1], where p > 1. The set of polynomials
{Rixn : k € Mx}, where Ry xn is defined by (3) and My, is defined by (2), is an algebraic
basis of the algebra PS(’“ ) (X™).

=[01]

The isomorphism of Fréchet algebras of symmetric functions

Theorem 2 ([26, Theorem 2]). Let X and Y be complex Banach spaces. Let S1 and S, be semi-
groups of operators on X and Y respectively. Let 1 : X — Y be an isomorphism such that

1) forevery x € X and s; € Sy, there exists s, € Sy such that 1(s1(x)) = s2(1(x));
2) foreveryy € Y and s, € Sy, there exists s; € Sy such that 1= (s2(y)) =s1 (171 () .

Then the mapping
I: ge Hb,Sz(Y) = golLeE Hb,Sl(X) (4)

is an isomorphism, i.e. I is a continuous linear multiplicative bijection.

2 Generating systems of algebras

Let A be a unital commutative algebra over some field K. For every polynomial Q : K" — K
of the form

_ k1 k
Q(z1,...,2n) = Z N(ky, k)21 20 Rkykn) € K
(kl,...,kn)EQ

where () is some nonempty finite subset of Z", let us define the mapping Q4 : A" — A by

ky
Qalar,...,an) = Y, R(ky, d)01 @y, A1,...,an € A, (5)
(kl,...,kn)eﬂ

(we consider the zeroth power a? of an element 4; to be the unit element of A).

Definition 1. Let a,ay,...,a, € A. If there exists a polynomial Q : K" — K such that
a=Qa(ay,...,an), then a is called an algebraic combination of a, ..., ay.

Definition 2. A nonempty set G C A is called a generating system of A if every element of A
can be represented as an algebraic combination of some elements of G. Furthermore, if every
such a representation is unique, then G is called an algebraic basis of A.
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Definition 3. A finite nonempty set {ay,...,a,} C A is called algebraically independent if the
equality Qa(ay,...,a,) = 0 is possible only if the polynomial Q is identically equal to zero.
An infinite set Ay C A is called algebraically independent if every its finite nonempty subset
is algebraically independent.

Evidently, every algebraic basis is algebraically independent. Furthermore, every alge-
braically independent generating system is an algebraic basis.

Proposition 1. Let Ay and A; be unital commutative algebras over a field K. Leth : A} — Ap
be a homomorphism.

a) Letay,...,a, € A;. Let Q : K" — K be a polynomial. Then

h(Qa,(m,...,an)) = Qa,(h(a1),..., h(an)),
where Q 4, and Q 4, are defined by (5).

b) Leth be surjective. Let G be a generating system in A,. Then h(G) is a generating system
in Az.

c) Let h be injective. Let C C A be an algebraically independent set such that h=1(C) is
nonempty. Then h—!(C) is algebraically independent.

Proof. a) Using the linearity and the multiplicativity of & and taking into account (5), we obtain
the result.

b) Let b € Aj. Let us show that b can be represented as an algebraic combination of some
elements of 1(G). Since & is surjective, the set h~1(b) is nonempty. Let a € h~1(b). Since G is
a generating system in Ay, it follows that there exist n € IN, g1,...,¢» € G and a polynomial
Q : K" — K such that

7= Qu (g1, 2.
Then, by a),
a) = Qa,(h(g1),--.,h(gn)).

h(
Since a € h=1(b), it follows that h(a) = b. Consequently,

b= Qa,(h(g1), ..., h(gn))-

So, b is an algebraic combination of elements of /1(G). Thus, h(G) is a generating system in Aj.

c) Let us show that h~!(C) is algebraically independent, i.e. that every its finite nonemp-
ty subset is algebraically independent. Let {ay,...,a,} C h™!(C). Let Q : K" — K be a
polynomial such that

QAl(a]./"'/ai’l) =0. (6)
Let us show that Q is identically equal to zero. By a) and (6),
Qa, (h(a1), ..., h(ay)) = 0. (7)

Since the set C is algebraically independent and h(a;),...,h(a,) € C, it follows that the set
{h(a1),...,h(an)} is algebraically independent. Therefore, the equality (7) is possible only if
Q is identically equal to zero. So, Q = 0. Thus, the set {a, ..., a, } is algebraically independent.
Hence, h~1(C) is algebraically independent. O
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Corollary 1. Let A; and A, be unital commutative algebras over a field K. Let I : A1 — A be
an isomorphism. Let B be an algebraic basis in A1. Then 1(B) is an algebraic basis in A;.

Proof. Since B is an algebraic basis in Ay, it follows that B is a generating system in A; and B is
algebraically independent. By the item b) of Proposition 1, since B is a generating system in A,
and I is, in particular, a surjective homomorphism, it follows that I(B) is a generating system
in Aj. By the item ¢) of Proposition 1, where we set Ay, Ay, I ~land B in place of Ay, Ay h
and C respectively, since B is algebraically independent, it follows that I(B) is algebraically
independent. So, I(B) is an algebraically independent generating system in Ay, i.e. I(B) is an
algebraic basis in A,. O

3 Point-evaluation functionals on isomorphic algebras
Let us denote by M (A) the spectrum (the set of all nontrivial continuous linear multiplica-

tive functionals) of a topological algebra A.

Lemma 1. Let A; and A; be topological algebras over the same field. Let I be an isomorphism
between A1 and A,. Then g o I € M(A7) for every ¢ € M(A3).

Proof. Let ¢ € M(A). Let us show that ¢ o I € M(A7). Since both ¢ and I are linear, multi-
plicative and continuous, it follows that ¢ o I is linear, multiplicative and continuous. Let us
show that ¢ o I is nontrivial. Suppose ¢ o I is trivial, i.e.

(9o D)(f) =0 (8)
for every f € Aj. Let ¢ be an arbitrary element of A,. Let f = I~!(g). Then, by (8),

(po) (I7'(®)) =0,

ie. ¢(g) = 0. Thus, ¢(g) = 0 for every ¢ € Ay, which contradicts the nontriviality of ¢. So,
@ o I is nontrivial. Thus, ¢ o [ € M(A7). O

Let A(T) be a topological algebra of some functions on a nonempty set T. For x € X, let
Ox(f) = f(x), where f € A(T). The mapping J, is called point-evaluation functional. Note
that Jy is linear and multiplicative.

Theorem 3. Let T1 and T, be nonempty sets. Let 1 : Ty — T, be a bijection. Let A(T;) and B(T>)
be topological algebras of some functions on Ty and T, respectively. Suppose the following
conditions are satisfied:

1) got€ A(Th) forevery g € B(Tp);
2) the mapping
[:9€B(Tp)— gote A(Th) )

is an isomorphism;

3) the spectrum of the algebra A(Ty) coincides with the set of point-evaluation functionals

(0)

onsomesetT; " C Ty, ie.
M(AM)) = {6 :x e}

Then .
M(B(Ty)) = {%) xeT! )}.
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Proof. Let ¢ € M(B(T3)). Since I, defined by (9), is an isomorphism, it follows that "1 is
also an isomorphism. Then, by Lemma 1, the mapping ¢ o I ! belongs to M (A(T;)). Conse-

quently, taking into account the condition 3), there exists x € Tl(o) such that
goolfl = Oy. (10)

Let us show that ¢ = (. Let g be an arbitrary element of B(T2). Let

f=1g). (1)
Since f € A(T1), by (10), we get
(po17t) (f) = &x(f). (12)
By (11), we have
(por™) ()= (po17!) (1) = 9(3)- (13)
On the other hand, by (9) and (11), we obtain
5:(f) = f(x) = 1(g)(x) = (g0 ) (x) = g(1(x)) = b, (8)- (14)
So, by (12), (13) and (14), we get ¢(g) = J,(y)(g)- Since the latter equality holds for every
g € B(T»), it follows that ¢ = J,(,). This completes the proof. O

4 Isomorphisms of algebras of symmetric functions

Theorem 4. Let X and Y be complex Banach spaces. Let S1 and S, be semigroups of operators
on X and Y respectively. Let: : X — Y be an isomorphism such that conditions 1) and 2) of
Theorem 2 are satisfied. Let I be the isomorphism defined by (4). Then

a) the restriction of I to Ps,(Y) is an isomorphism between algebras Ps,(Y) and Ps, (X);
b) if Ps,(Y) has some algebraic basis B, then I(B) is an algebraic basis in Pg, (X);

c) if the spectrum of the algebra Hys,(Y') consists of point-evaluation functionals at points
of some subset Yy of Y, then the spectrum of the algebra Hy s, (X) consists of point-
evaluation functionals at points of the set 1= 1(Yp).

Proof. a) Let us show that I(Ps,(Y)) C P (X). Let P € I(Ps,(Y)). Let us show that
P € Pg (X). Since P € I(Ps,(Y)), there exists Q € Ps,(Y) such that P = I(Q). By (4),
I(Q) = Qoyie. P = Qo Therefore, since Q is a polynomial and ¢ is a linear mapping,
it follows that P is a polynomial. Since P € Hyg, (X), it follows that P is continuous
and S;-symmetric. Thus, P is a continuous S;-symmetric polynomial, i.e. P € Ps, (X). So,
I(PSZ(Y)) - Psl(X).

Let us show that Pg (X) C I(Ps,(Y)). Let P € Ps,(X) and Q = I"1(P). Since P = I(Q),
by (4), we get P = Q o . Therefore Q = P o~ !. Consequently, since P is a polynomial and
1~ is a linear mapping, it follows that Q is a polynomial. Since Q € Hjs,(Y), it follows
that Q is continuous and Sp-symmetric. So, Q is a continuous Sp-symmetric polynomial, i.e.
Q € Ps,(Y). Therefore I(Q) € I(Ps,(Y)),ie. P € I(Ps,(Y)). Thus, Ps, (X) C I(Ps,(Y)).
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Hence, I(Ps,(Y)) = Ps, (X). Consequently, taking into account that I is an isomorphism,
the restriction of I to Ps,(Y) is an isomorphism between algebras Ps, (Y) and P, (X).

b) Suppose the algebra Ps, (Y) has some algebraic basis B. Then, by Corollary 1, taking into
account a), I(B) is an algebraic basis in Pg, (X).

c¢) Suppose the spectrum of the algebra Hys,(Y) consists of point-evaluation functionals
at points of some subset Yy of Y. Let us substitute Y, Yo, X, Hy 5, (Y), Hp 5, (X), 1~1 171 instead
of Ty, Tl(o), Ty, A(T1), B(Tz), 1, I respectively into Theorem 3. Then the spectrum of the algebra
Hy,s,(X) consists of point-evaluation functionals at points of the set 1~ (Yp). O

Let us apply Theorem 4 to algebras of symmetric functions on spaces of Lebesgue measur-
able functions.

Theorem 5. Letn € IN and let X be equal to L,[0,1] or L« [0, 1], where p € [1,+0c0). Then

a) the set
{Gk,n,X ke Mx » }r (15)

where My , is defined by (2) and Gy, x : X — C is defined by

n _ ks
Ginx(x) = /[0,1} 11 <x <STW)> dt, (16)

ks>0

is an algebraic basis of the algebra P (20) (X) of all continuous n-block symmetric poly-
o]
nomials on X;

b) the spectrum of the algebra H, _/_u)
b,S (E‘[O,l]

bounded type on X consists of point-evaluation functionals.

) (X) of all entire n-block symmetric functions of

Proof. For x = (x1,...,x,) € X", let us define the function ix ,(x) : [0,1] — C by

<xjoA[(jfl)/n,j/n]>(t)r if te [(j—l)/n,j/n), je {1,...,11},

txq(x)(t) = (17)
0, if t=1,
where A((j_1)/y,j/n 1S defined by (1). Let us define the mapping tx ,, : X" — X by
Ixn:x €X' = ix,(x) €X, (18)

where 1x ,(x) is defined by (17). By [26, Proposition 5], the mapping ix ,, defined by (18), is an
isomorphism.

Let us substitute X, X”,S(Efg)l , X),S(Efé)l , XM, L}_(,ln instead of X,Y, Sy, Sy, into Theo-
rem 4, respectively. By [26, Corolliary 7] and ﬂ26, Corollary 8], the conditions 1) and 2) of
Theorem 2, which are also required for Theorem 4, are satisfied. So, by Theorem 2, the map-
pmg

I:¢eH _,_ X" = goigt € H /oy (X
3 € Hys(apy) ) 7 89 n € (e )

is an isomorphism. By [26, Proposition 4], a function on X" is S (E[O,l]/ X")-symmetric if and

only if itis S (E[(S )1]’ X")-symmetric. Therefore

" o n
Hb,S(”U) )(X ) = Hb,S(E[o,ll) (X7).

=01
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So, in fact, I is an isomorphism between algebras H (X") and H bs (=) (X).
S Epy

b5 (Z0) ,
Let us prove the item a) of the current theorem. By Theorem 1, the set of polynomials

{Rk’Xn . k 6 MX,n} 7

where Ry x» is defined by (3) and Mx , is defined by (2), is an algebraic basis of the algebra
Ps (Z0m) (X™). Therefore, by the item b) of Theorem 4, the set of polynomials

=[0,1]
{I (Rk,Xn> . k G MX’n}

is an algebraic basis of the algebra P (=) (X). By [4, equalities (12) and (13)], we have
o]

I(Rgxn) = Gy x-

Thus, the set of polynomials { Gy , x : k € Mx , } is an algebraic basis of the algebra P (=) (X).
~[o1]
Let us prove the item b) of the current theorem. By [20, Theorem 5] (for the case

X = Lp[0,1]) and by [21, Theorem 5] (for the case X = L0, 1]) the spectrum of the algebra
H, 5(= )(X”) consists of point-evaluation functionals. Therefore, by the item c) of Theo-
2\ =0,

rem 4, the spectrum of the algebra H bs(=)) (X) consists of point-evaluation functionals. O
= \ToA]

Letn € IN and let X be equal to L,[0, 1] or L [0, 1], where p € [1, +oc0). Let 7 : [0,1] — [0, 1]
be such that the mapping

lr:xeX—xoTteX (19)
is an isomorphism. Let
Se={iztoson s € S(E[), %)} (20)

It can be checked that S; is a group of operators on X. Let us establish some properties of the
algebra Hj s (X) of all S;-symmetric entire functions of bounded type on X and the algebra
Ps.(X) of all Sz-symmetric continuous polynomials on X.

Theorem 6. Let n € IN and let X be equal to Ly[0,1] or L«[0,1], where p € [1,+4c0). Let
T :[0,1] — [0, 1] be such that the mapping i, defined by (19), is an isomorphism. Then

a) the mapping
IT ' 8 c Hb,S(W(”) )(X) — golir c Hb,ST(X> (21)

1]

is an isomorphism, i.e. I; is a continuous linear multiplicative bijection;
b) the restriction of I to P s (=) )(X) is an isomorphism between algebras P s (=) )(X)
Z(01] Z[01)
and Ps_(X);

c) the set of polynomials
{x = Grpx(xoT) ke Mx,}, (22)

where the set Mx , is defined by (2) and polynomials Gy, x are defined by (16), is an
algebraic basis of the algebra Ps_(X);

d) the spectrum of the algebra Hj, s (X) consists of point-evaluation functionals.
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Proof. Let us substitute X, X, S, S (EE(’; )1}’ X), 17 instead of X, Y, 51, S, 1, respectively, into The-
orem 2 and Theorem 4. Let us check the condition 1) of Theorem 2. Let x € X and s; € Sr.
Then, by (20), there exists s € S(E[(g)l],X) such that s; = i;'oso. Let s = s. Then

17(s1(x)) = s2(1¢(x)). Thus, the condition 1) of Theorem 2 is satisfied.

Let us check the condition 2) of Theorem 2. Take x € X and s, € S(Efg )1},X). Let
_ -1 1 _ -1

s = Iy o5Syoir. By (20), we have s; € S;. Note that s; o17" = i7" osy. Therefore
s1 (1z1(x)) = i1 (s2(x)). Thus, the condition 2) of Theorem 2 is satisfied.

By Theorem 2, the mapping I, defined by (21), is an isomorphism. So, the item a) of the
current theorem holds.

The item a) of Theorem 4 implies the item b) of the current theorem.

By the item a) of Theorem 5, the set (15) is an algebraic basis of the algebra P (=) (X).

~[o1]
Consequently, by the item b) of Theorem 4, the set { I (G, x) : k € Mx , }, where the set M ,
is defined by (2) and polynomials Gy ,, x are defined by (16), is an algebraic basis of the algebra

Ps,(X). By (21) and (19), we have

IT(Gk,n,X) = Gk,n,X Olr.

Therefore, by (19), we get

I(Ginx)(x) = (Grpx 0 t1)(x) = Gy x(x07)

for every x € X. So, the set (22) is an algebraic basis of the algebra Ps_(X). This completes the
proof of the item ¢) of the current theorem.

The item c) of Theorem 4 and the item b) of Theorem 5 imply the item d) of the current
theorem. O

5 Isomorphisms of L [0,1]
Let K € {IR,C}. For an arbitrary set A C [0,1], let 14 : [0,1] — K be defined by

1, if t€A,
La(t) _{ 0, if te[0,1]\ A.

Proposition 2. Let 7 : [0,1] — [0, 1]. The following conditions are equivalent:

1) for every Lebesgue measurable function x : [0,1] — K, the function x o T is Lebesgue
measurable;

2) for every Lebesgue measurable set A C [0,1], the set T }(A) is Lebesgue measurable.

Proof. Suppose the condition 1) holds. Let A C [0,1] be a Lebesgue measurable set. Let us
show that the set T7!(A) is Lebesgue measurable. Let x = 14. Let B C K be an arbitrary
Borel set that contains 1 and does not contain 0. By 1), x o T is a Lebesgue measurable function.
Therefore, the set (x o T) ! (B) is Lebesgue measurable. Note that

(xo1)"Y(B) = v1 (x—l(B)) =71 (1;1(3)) = 1(A).

Thus, 771 (A) is a Lebesgue measurable set. So, the condition 2) holds.
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Suppose the condition 2) holds. Let x : [0,1] — K be a Lebesgue measurable function. Let
us show that x o T is a Lebesgue measurable function, i.e. the inverse image with respect to
x o T of every Borel set is a Lebesgue measurable set. Let B C K be a Borel set. Since x is a
Lebesgue measurable function, the set x 1 (B) is Lebesgue measurable. Therefore, taking into
account the condition 2), the set 7! (x~1(B)) is Lebesgue measurable. Consequently, taking
into account the equality

(xor)'(B) =77 (x'(B)),

the set (x o T) “!(B) is Lebesgue measurable. Thus, x o T is a Lebesgue measurable function.
So, the condition 1) holds. O

Proposition 3. Let 7 : [0,1] — [0,1]. The following conditions are equivalent:
1) xo1 % yo 1 for every Lebesgue measurable functions x,y : [0,1] — K such that x = y;
2) forevery null set N C [0, 1], the set T~'(N) is a null set.

Proof. Suppose the condition 1) holds. Let N C [0,1] be a null set. Let M = 7 !(N). Let
us show that M is a null set. Let x = 1y and y = 0. Evidently, both x and y are Lebesgue
measurable functions and, since N is a null set, 1y =0 ie x = y. Therefore, by 1), we get
x o T = y o 7. Consequently, taking into account the equalities

xoTr=1yoT=1y and yor=00T=0,

we have 1,1 2= 0. Therefore M is a null set. Thus, the condition 2) holds.
Suppose the condition 2) holds. Let x,y : [0,1] — K be Lebesgue measurable functions
such that x = . Let us show that x o T = y o 7, i.e.

M={te[01]: (xoT)(t) £ (yoT)()}
is a null set. Let
N={te 01]:x(t) £ y(1)}.
Since x = y, it follows that N is a null set. Therefore, by the condition 2), 1 (N) is a null set.
Let us show that M C 771(N). Lett € M. Then (x o 7)(t) # (v o T)(t), i.e. x(T(t)) # y(T(t)).

Therefore 7(t) € N. Consequently, t € T-!(N). Thus, M C T~ !(N). Consequently, M is a null
set. So, xo T = y o 7. Thus, the condition 1) holds. O

Proposition 4. Let T : [0,1] — [0,1] be such that T(E) is a Lebesgue measurable set and
u(t(E)) = 1 for every Lebesgue measurable set E C [0,1] such that u(E) = 1. Let
x,v: [0,1] — K be some Lebesgue measurable functions such that x o T = y o T. Then x = y;.

Proof. Let x,y : [0,1] — K be Lebesgue measurable functions such that x o T = y o 7. Let us
show that x = y. Let

E={te[0,1]:(xoT)(t) = (yoT)(t)}. (23)

Since x o T = y o 7, it follows that the set E is Lebesgue measurable and p(E) = 1. Therefore,
by the condition of the proposition, the set T(E) is Lebesgue measurable and y(7(E)) = 1.
By (23), x(7(t)) = y(t(t)) for every t € E. Therefore x(6) = y(6) for every 6 € 7(E). Con-
sequently, taking into account the equality y(7(E)) = 1, we get x % . This completes the
proof. O
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Proposition 5. Let 7 : [0,1] — [0, 1] be such that the following conditions hold:

1) there exists a Lebesgue measurable set E C [0,1] such that u(E) = 1 and the restriction
of T to E is injective;

2) for every Lebesgue measurable set A C [0,1], the set T(A) is Lebesgue measurable.

Then for every Lebesgue measurable functiony : [0,1] — K there exists a Lebesgue measur-
able function x : [0,1] — K such thaty = xo T.

Proof. Let y : [0,1] — K be an arbitrary Lebesgue measurable function. Let us construct a
Lebesgue measurable function x : [0,1] — K such that y = x o 7. By the condition 1), the
restriction of T to E is injective. Consequently, for every t € 7(E), the set T~(t) contains
exactly one element. Therefore the function

[ (yor (1), if teT(E),
w={ § it ¢ 0,1]\ 7(E)

is well defined.
Let us show that the function x is Lebesgue measurable. Let B C K be an arbitrary Borel
set. Let us show that x 1 (B) is a Lebesgue measurable set. Note that

1 [ T(yH(B)), if 0¢ B,
(B) _{ T (y"1(B)) U ([0,1]\ =(E)), if 0 € B.

Consequently, it is enough to show that both sets T(y~ (B)) and [0,1] \ 7(E) are Lebesgue
measurable. Since y is a Lebesgue measurable function, y~!(B) is a Lebesgue measurable set.
Consequently, taking into account the condition 2), the set 7(y~!(B)) is Lebesgue measurable.
Since E is Lebesgue measurable, by the condition 2), the set 7(E) is Lebesgue measurable.
Therefore, the set [0,1] \ T(E) is Lebesgue measurable. So, x~!(B) is Lebesgue measurable.
Thus, the function x is Lebesgue measurable.

Let us show that y = x o 7. For every t € E,

(xor)(t) = x(x(1)) = (yor") ((t) = y(®).

Thus, y(t)=(x o T)(t) for every t € E. Consequently, taking into account that u(E) = 1, we
a.e. .
have y =" x o 7. This completes the proof. O

Theorem 7. Let T : [0,1] — [0, 1] be such that
1) for every Lebesgue measurable set A C [0,1], the set T~ }(A) is Lebesgue measurable;
2) for every Lebesgue measurable set A C [0, 1], the set T(A) is Lebesgue measurable;
3) for every null set N C [0,1], the set T~1(N) is a null set;

4) for every Lebesgue measurable set E C [0,1] such that u(E) = 1, the set T(E) is Lebesgue
measurable and u(t(E)) = 1;

5) there exists a Lebesgue measurable set E C [0,1] such that u(E) = 1 and the restriction
of T to E is injective.
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Then the mapping
1 X € Loo[0,1] — x0T € Leo[0,1] (24)

is an isomorphism.

Proof. Let us show that the mapping i, defined by (24), is well defined.

By the condition 3) and by Proposition 3, x o T % y o T for every Lebesgue measurable
functions x, y on [0, 1] such that x S y. So, for equivalent functions x and vy, functions x o T
and y o T are equivalent. Thus, the result of the action of /; to some class of equivalence that
belongs to Le [0, 1] does not depend on the choice of the representative of the class.

By the condition 1) and by Proposition 2, for every Lebesgue measurable function x on
[0,1], the function x o T is Lebesgue measurable. Thus, (r(x) is some class of equivalence
consisting of Lebesgue measurable functions for every x € L0, 1]. Let us show that 1,(x) €

L0, 1]. Note that

esssup|(xoT)(t)| = esssup |x(t)| < esssup |x(t)]
te[O,l] tET([O,”) te[O,l]

for every x € Le[0, 1]. Therefore
e () || o < Mx]leo (25)

for every x € Lo[0,1]. Thus, ir(x) € L0, 1] for every x € Leo[0, 1]. So, the mapping ¢ is well
defined.

By the condition 4) and by Proposition 4, the mapping i is injective.

By conditions 2) and 5) and by Proposition 5, the mapping (. is surjective.

It can be checked that i; is linear. Consequently, taking into account (25), (¢ is continu-
ous. So, i is a continuous linear bijection. Therefore, by the bounded inverse theorem, (7! is
continuous. Thus, the mapping i, is an isomorphism. O

Let us denote by 7 the set of all the mappings 7 : [0,1] — [0, 1] that satisfy all conditions
of Theorem 7.

Corollary 2. Letn € IN, X = Loo[0,1] and T € T. Then items a)—d) of Theorem 6 hold.
Proof. By Theorem 7, the mapping
lr 1 X € Leo[0,1] = x0T € Loo[0,1]

is an isomorphism. Therefore, conditions of Theorem 6 are satisfied. Consequently, items
a) —d) of Theorem 6 hold. O

Let us construct some examples.

Example 1. Letn € N and#6y,...,0, € T. Let 1y, g, :[0,1] — [0,1] be defined by

{ (A[i(].lil)/n’]./n] o 9] o A[(j—l)/n,j/n]) (t), if te [(] — 1)/n,j/n), ] S {1, . ,1’1},
1, if t=1,

where Al(j=1)/n,j/n) 18 defined by (1). It can be checked that 14, g, € T. Therefore, by Corol-
lary 2, in the case T = Ty, g,, items a)—d) of Theorem 6 hold. Note that

H" —1465(1)) \©
Gk,}’l,Loo[O,”(x © Telr---rgn) = / (x <M> ) dtr
[O/” S_l n

ks>0
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for every x € L«[0,1], where Gy, 1 (01 18 defined by (16). Therefore, elements of the algebraic
basis (22) have the form

cenioo [T (s (50))

ks>0

where (ky,...,ky) € Mx, i.e. taking into account (2), (ky,...,ky,) € Z".\ {(0,...,0)}.

Consider two specific examples.

a)Letn = 2,0,(t) = t*,0,(t) = tF, wherea, B > 0. Then elements of the algebraic basis (22)
have the form ;

2
ve a0 | ](x (*/2))" (x (1/2+ tﬁ/2)> dt,
0,1

where (k1,k2) € 2%\ {(0,0)}.

b) Letn = 2, 01(t) = t, 6,(t) = 1 —t. Then elements of the algebraic basis (22) have the
form

x € Lo[0,1] — o (x (t/Z))kl (x(1- t/z))kz dt,

where (k1,k2) € Z% \ {(0,0)}. Note that

/[0,1} (x(2/2))" (x (1 = £/2)) 2 dt = / (x(£)) " (x(1 - 1)) at.

(01]

Thus, elements of the algebraic basis (22) have the form

x € Loo[0,1] — o (x(8) " (x(1 — 1)) 2 att,

where (k1,k2) € 22\ {(0,0)}.

Example 2. Let n € IN. Let Ey,...,E, C [0,1] be Lebesgue measurable sets such that
y(E]- NEy) = 0ifj # k. Then, by [9, Proposition 2.2], there exists 0, F, € Elo,] such that
1, = L, 1 by © O, E, for every m € {1,...,n} almost everywhere on [0,1], where by = 0

and by = Z;-‘Zl u(E;) fork € {1,...,n}. Lettg,, g, : [0,1] — [0, 1] be defined by

e (f) = { (8,85, © At ) MGt mjm)) (), B £ € [G=1)/m j/n), j € {1, m},
1, it t=1,

where )\[(]-,1) /n,j/n] is defined by (1). It can be checked that 1g,, f, € T. Therefore, by Corol-
lary 2, in the case T = Tf,,.. ,, items a) —d) of Theorem 6 hold.

Consider some specific example.

Letn = 1. Let E C [0,1] be a Lebesgue measurable set such that yu(E) > 0. Then elements
of the algebraic basis (22) have the form

1 k
x € Loo[0,1] E/E(x(t)) dt,

where k € IN.
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Y AaHil pob0Ti AOCAIAXYIOTHCS aATeOPY CMMETPUIHIX i DAOUHO-CMMETPIYIHMX TOAIHOMIB i aHa-
AlTraHMX PYHKIIiN Ha KOMIIAEKCHMX 6aHaXOBMX IPOCTOpax BUMIpHIMX 3a AeberoM (OYHKIIIN, AAS
SIKMX P-TUI CTEIiHb aBCOAIOTHOTO 3HAUEHHS € IHTerpoBHUM 3a AeberoM, ae p € [1,4+00), i Bumip-
HUX 3a AeberoM cyTTeBo 06MexxeHmx dpyHKiit Ha Biapisky [0, 1]. [TokasaHo, IO crieKTpy aArebp
Dperre 6A0YHO-CHMMETPIUYHMX HIAMX (PYHKIII 06MEXEHOro THITy Ha IMX IPOCTOPaX CKAAAAIOThCS
BUKAIOUHO i3 (pyHKIIIOHaAIB 06UMCAEHHS 3HaUeHb B TOUKaX. Takox 1mobyaoBaHO aArebpaivuni 6asm-
c11 aATe6p HenepepBHUX GAOYHO-CUMETPUYHMX IOAIHOMIB Ha IMX IpocTopax. 3rajaHi pe3yAbTaTu
y3araAbHEHO Ha IIVPOKMI KAAC aATebp CHMeTPUYHNX IiAMX (PYHKIIIA.

Kntouosi cnosa i ppasu: cvimeTpuduHa pyHKITiSI, 6BAOUHO-CUMeTpUYHA (PYHKIIiS, aHaAiTMIHA PYH-
KIIist Ha 6baHaXOBOMY IIPOCTOPI, MpOCTip BUMipHNMX 3a Aeberom pyHKIIiMN, CIEKTp aAre6pu, arrebpa-
Turit 6asmc.



