
www.theoryofgroups.ir

International Journal of Group Theory
ISSN (print): 2251-7650, ISSN (on-line): 2251-7669
Vol. 8 No. 1 (2019), pp. 43-50.
(c) 2019 University of Isfahan

www.ui.ac.ir

# DIFFERENCE BASES IN DIHEDRAL GROUPS 

TARAS BANAKH AND VOLODYMYR GAVRYLKIV*

Communicated by Attila Maroti


#### Abstract

A subset $B$ of a group $G$ is called a difference basis of $G$ if each element $g \in G$ can be written as the difference $g=a b^{-1}$ of some elements $a, b \in B$. The smallest cardinality $|B|$ of a difference basis $B \subset G$ is called the difference size of $G$ and is denoted by $\Delta[G]$. The fraction $\partial[G]:=\Delta[G] / \sqrt{|G|}$ is called the difference characteristic of $G$. We prove that for every $n \in \mathbb{N}$ the dihedral group $D_{2 n}$ of order $2 n$ has the difference characteristic $\sqrt{2} \leq \partial\left[D_{2 n}\right] \leq \frac{48}{\sqrt{586}} \approx 1.983$. Moreover, if $n \geq 2 \cdot 10^{15}$, then $\partial\left[D_{2 n}\right]<\frac{4}{\sqrt{6}} \approx 1.633$. Also we calculate the difference sizes and characteristics of all dihedral groups of cardinality $\leq 80$.


## 1. Introduction

A subset $B$ of a group $G$ is called a difference basis for a subset $A \subset G$ if each element $a \in A$ can be written as $a=x y^{-1}$ for some $x, y \in B$. The smallest cardinality of a difference basis for $A$ is called the difference size of $A$ and is denoted by $\Delta[A]$. For example, the set $\{0,1,4,6\}$ is a difference basis for the interval $A=[-6,6] \cap \mathbb{Z}$ witnessing that $\Delta[A] \leq 4$.

The definition of a difference basis $B$ for a set $A$ in a group $G$ implies that $|A| \leq|B|^{2}$ and gives a lower bound $\sqrt{|A|} \leq \Delta[A]$. The fraction

$$
\partial[A]:=\frac{\Delta[A]}{\sqrt{|A|}} \geq 1
$$

is called the difference characteristic of $A$.

[^0]http://dx.doi.org/10.22108/ijgt.2017.21612

For a real number $x$ we put

$$
\lceil x\rceil=\min \{n \in \mathbb{Z}: n \geq x\} \text { and }\lfloor x\rfloor=\max \{n \in \mathbb{Z}: n \leq x\} .
$$

The following proposition is proved in [3, 1.1].
Proposition 1. Let $G$ be a finite group. Then
(1) $\frac{1+\sqrt{4|G|-3}}{2} \leq \Delta[G] \leq\left\lceil\frac{|G|+1}{2}\right\rceil$,
(2) $\Delta[G] \leq \Delta[H] \cdot \Delta[G / H]$ and $\partial[G] \leq \varnothing[H] \cdot \varnothing[G / H]$ for any normal subgroup $H \subset G$;
(3) $\Delta[G] \leq|H|+|G / H|-1$ for any subgroup $H \subset G$.

In [10] Kozma and Lev proved (using the classification of finite simple groups) that each finite group $G$ has difference characteristic $\partial[G] \leq \frac{4}{\sqrt{3}} \approx 2.3094$.

In this paper we shall evaluate the difference characteristics of dihedral groups and prove that each dihedral group $D_{2 n}$ has $ð\left[D_{2 n}\right] \leq \frac{48}{\sqrt{586}} \approx 1.983$. Moreover, if $n \geq 2 \cdot 10^{15}$, then $ð\left[D_{2 n}\right]<\frac{4}{\sqrt{6}} \approx 1.633$. We recall that the dihedral group $D_{2 n}$ is the isometry group of a regular $n$-gon. The dihedral group $D_{2 n}$ contains a normal cyclic subgroup of index 2. A standard model of a cyclic group of order $n$ is the multiplicative group

$$
C_{n}=\left\{z \in \mathbb{C}: z^{n}=1\right\}
$$

of $n$-th roots of 1 . The group $C_{n}$ is isomorphic to the additive group of the ring $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$.
Difference bases have applications in the study of structure of superextensions of groups, see [1, 3].
A subset $B$ of a group $G$ is called a basis of $G$ if each element $g \in G$ can be written as $g=a b$ for some $a, b \in B$. Bases in dihedral groups were studied in [7].

Theorem 2. For any numbers $n, m \in \mathbb{N}$ the dihedral group $D_{2 n m}$ has the difference size

$$
2 \sqrt{n m} \leq \Delta\left[D_{2 n m}\right] \leq \Delta\left[D_{2 n}\right] \cdot \Delta\left[C_{m}\right]
$$

and the difference characteristic $\sqrt{2} \leq \varnothing\left[D_{2 n m}\right] \leq ð\left[D_{2 n}\right] \cdot ð\left[C_{m}\right]$.
Proof. It is well-known that the dihedral group $D_{2 n m}$ contains a normal cyclic subgroup of order $n m$, which can be identified with the cyclic group $C_{n m}$. The subgroup $C_{m} \subset C_{n m}$ is normal in $D_{2 m n}$ and the quotient group $D_{2 m n} / C_{m}$ is isomorphic to $D_{2 n}$. Applying Proposition 1(2), we obtain the upper bounds $\Delta\left[D_{2 n}\right] \leq \Delta\left[D_{2 n m} / C_{m}\right] \cdot \Delta\left[C_{m}\right]=\Delta\left[D_{2 n}\right] \cdot \Delta\left[C_{m}\right]$ and $\partial\left[D_{2 n m}\right] \leq ð\left[D_{2 n}\right] \cdot ð\left[C_{m}\right]$.

Next, we prove the lower bound $2 \sqrt{n m} \leq \Delta\left[D_{2 n m}\right]$. Fix any element $s \in D_{2 n m} \backslash C_{n m}$ and observe that $s=s^{-1}$ and $s x s^{-1}=x^{-1}$ for all $x \in C_{n m}$. Fix a difference basis $D \subset D_{2 n m}$ of cardinality $|D|=\Delta\left[D_{2 n m}\right]$ and write $D$ as the union $D=A \cup s B$ for some sets $A, B \subset C_{n m} \subset D_{2 n m}$. We claim that $A B^{-1}=C_{n m}$. Indeed, for any $x \in C_{n m}$ we get $x s \in s C_{n m} \cap(A \cup s B)(A \cup s B)^{-1}=A B^{-1} s^{-1} \cup s B A^{-1}$ and hence

$$
\begin{gathered}
x \in A B^{-1} s^{-1} s^{-1} \cup s B A^{-1} s^{-1}=A B^{-1} \cup B^{-1} A=A B^{-1} \\
\text { http://dx.doi.org/10.22108/ijgt.2017.21612 }
\end{gathered}
$$

So, $C_{n m}=A B^{-1}$ and hence $n m \leq|A| \cdot|B|$. Then $\Delta\left[D_{2 n m}\right]=|A|+|B| \geq \min \{l+k: l, k \in \mathbb{N}$, lk $\geq$ $n m\} \geq 2 \sqrt{n m}$ and $\check{\partial}\left[D_{2 n m}\right]=\frac{\Delta\left[D_{2 n m}\right]}{\sqrt{2 n m}} \geq \frac{2 \sqrt{n m}}{\sqrt{2 n m}}=\sqrt{2}$.

Corollary 3. For any number $n \in \mathbb{N}$ the dihedral group $D_{2 n}$ has the difference size

$$
2 \sqrt{n} \leq \Delta\left[D_{2 n}\right] \leq 2 \cdot \Delta\left[C_{n}\right]
$$

and the difference characteristic $\sqrt{2} \leq \varnothing\left[D_{2 n}\right] \leq \sqrt{2} \cdot \partial\left[C_{n}\right]$.
The difference sizes of finite cyclic groups were evaluated in [2] with the help of the difference sizes of the order-intervals $[1, n] \cap \mathbb{Z}$ in the additive group $\mathbb{Z}$ of integer numbers. For a natural number $n \in \mathbb{N}$ by $\Delta[n]$ we shall denote the difference size of the order-interval $[1, n] \cap \mathbb{Z}$ and by $\circlearrowright[n]:=\frac{\Delta[n]}{\sqrt{n}}$ its difference characteristic. The asymptotics of the sequence $(\partial[n])_{n=1}^{\infty}$ was studied by Rédei and Rényi [11], Leech [9] and Golay [8] who eventually proved that

$$
\sqrt{2+\frac{4}{3 \pi}}<\sqrt{2+\max _{0<\varphi<2 \pi} \frac{2 \sin (\varphi)}{\varphi+\pi}} \leq \lim _{n \rightarrow \infty} \varnothing[n]=\inf _{n \in \mathbb{N}} \oiint[n] \leq \varnothing[6166]=\frac{128}{\sqrt{6166}}<\varnothing[6]=\sqrt{\frac{8}{3}} .
$$

In [2] the difference sizes of the order-intervals $[1, n] \cap \mathbb{Z}$ were applied to give upper bounds for the difference sizes of finite cyclic groups.

Proposition 4. For every $n \in \mathbb{N}$ the cyclic group $C_{n}$ has difference size $\Delta\left[C_{n}\right] \leq \Delta\left[\left[\frac{n-1}{2}\right\rceil\right]$, which implies that

$$
\limsup _{n \rightarrow \infty} ð\left[C_{n}\right] \leq \frac{1}{\sqrt{2}} \inf _{n \in \mathbb{N}} \varnothing[n] \leq \frac{64}{\sqrt{3083}}<\frac{2}{\sqrt{3}}
$$

The following upper bound for the difference sizes of cyclic groups were proved in [2].
Theorem 5. For any $n \in \mathbb{N}$ the cyclic group $C_{n}$ has the difference characteristic:
(1) $\partial\left[C_{n}\right] \leq \partial\left[C_{4}\right]=\frac{3}{2}$;
(2) $\partial\left[C_{n}\right] \leq \partial\left[C_{2}\right]=\varnothing\left[C_{8}\right]=\sqrt{2}$ if $n \neq 4$;
(3) $\partial\left[C_{n}\right] \leq \frac{12}{\sqrt{73}}<\sqrt{2}$ if $n \geq 9$;
(4) Ə $\left[C_{n}\right] \leq \frac{24}{\sqrt{293}}<\frac{12}{\sqrt{73}}$ if $n \geq 9$ and $n \neq 292$;
(5) $\partial\left[C_{n}\right]<\frac{2}{\sqrt{3}}$ if $n \geq 2 \cdot 10^{15}$.

For some special numbers $n$ we have more precise upper bounds for $\Delta\left[C_{n}\right]$. A number $q$ is called a prime power if $q=p^{k}$ for some prime number $p$ and some $k \in \mathbb{N}$.

The following theorem was derived in [2] from the classical results of Singer [13], Bose, Chowla [4], [5] and Rusza [12].

Theorem 6. Let $p$ be a prime number and $q$ be a prime power. Then
(1) $\Delta\left[C_{q^{2}+q+1}\right]=q+1$;
(2) $\Delta\left[C_{q^{2}-1}\right] \leq q-1+\Delta\left[C_{q-1}\right] \leq q-1+\frac{3}{2} \sqrt{q-1}$;
(3) $\Delta\left[C_{p^{2}-p}\right] \leq p-3+\Delta\left[C_{p}\right]+\Delta\left[C_{p-1}\right] \leq p-3+\frac{3}{2}(\sqrt{p}+\sqrt{p-1})$.

The following Table 1 of difference sizes and characteristics of cyclic groups $C_{n}$ for $n \leq 100$ is taken from [2].

Table 1. Difference sizes and characteristics of cyclic groups $C_{n}$ for $n \leq 100$.

| $n$ | $\Delta\left[C_{n}\right]$ | ¢ $\left[C_{n}\right]$ | $n$ | $\Delta\left[C_{n}\right]$ | Ø[ $C_{n}$ ] | $n$ | $\Delta\left[C_{n}\right]$ | Ø[ $\left[C_{n}\right]$ | $n$ | $\Delta\left[C_{n}\right]$ | б[ $C_{n}$ ] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 26 | 6 | 1.1766... | 51 | 8 | 1.1202... | 76 | 10 | 1.1470... |
| 2 | 2 | 1.4142... | 27 | 6 | 1.1547... | 52 | 9 | 1.2480... | 77 | 10 | 1.1396... |
| 3 | 2 | 1.1547... | 28 | 6 | 1.1338... | 53 | 9 | 1.2362... | 78 | 10 | 1.1322... |
| 4 | 3 | 1.5 | 29 | 7 | 1.2998... | 54 | 9 | 1.2247... | 79 | 10 | 1.1250... |
| 5 | 3 | 1.3416 | 30 | 7 | 1.2780... | 55 | 9 | 1.2135... | 80 | 11 | 1.2298... |
| 6 | 3 | 1.2247 | 31 | 6 | 1.0776... | 56 | 9 | 1.2026... | 81 | 11 | 1.2222... |
| 7 | 3 | 1.1338 | 32 | 7 | 1.2374... | 57 | 8 | 1.0596... | 82 | 11 | ... |
| 8 | 4 | 1.4142 | 33 | 7 | 1.2185... | 58 | 9 | 1.181 | 83 | 11 | 1.2074... |
| 9 | 4 | 1.3333... | 34 | 7 | 1.2004... | 59 | 9 | 1.1717... | 84 | 11 | 1.2001... |
| 10 | 4 | 1.2649 | 35 | 7 | 1.1832 | 60 | 9 | 1.1618 | 85 | 11 | 1.1931... |
| 11 | 4 | 1.2060. | 36 | 7 | 1.1666... | 61 | 9 | 1.1523. | 86 | 11 | 1.1861... |
| 12 | 4 | 1.1547 | 37 | 7 | 1.1507 | 62 | 9 | 1.1430 | 87 | 11 | 1.1793... |
| 13 | 4 | 1.1094 | 38 | 8 | 1.2977... | 63 | 9 | 1.1338 | 88 | 11 | 1726... |
| 14 | 5 | 1.3363 | 39 | 7 | 1.1208... | 64 | 9 | 1.125 | 89 | 11 | 1.1659... |
| 15 | 5 | 1.2909 | 40 | 8 | 1.2649... | 65 | 9 | 1.1163 | 90 | 11 | 1595... |
| 16 | 5 | 1.25 | 41 | 8 | 1.2493... | 66 | 10 | 1.2309... | 91 | 10 | 0482... |
| 17 | 5 | 1.2126 | 42 | 8 | 1.2344... | 67 | 10 | 1.2216... | 92 | 11 | 1.1468... |
| 18 | 5 | 1.1 | 43 | 8 | 1.2199... | 68 | 10 | 1.2126 | 93 | 12 | 2443... |
| 19 | 5 | 1.1470 | 44 | 8 | 1.2060... | 69 | 10 | 1.2038. | 94 | 12 | 2377... |
| 20 | 6 | 1.3416 | 45 | 8 | 1.1925... | 70 | 10 | 1.1952. | 95 | 12 | 2311... |
| 21 | 5 | 1.0910... | 46 | 8 | 1.1795... | 71 | 10 | 1.1867. | 96 | 12 | 1.2247... |
| 22 | 6 | 1.2792... | 47 | 8 | 1.1669... | 72 | 10 | 1.1785 | 97 | 12 | 1.2184... |
| 23 | 6 | 1.2510... | 48 | 8 | 1.1547. | 73 | 9 | 1.0533. | 98 | 12 | 1.2121... |
| 24 | 6 | 1.2247... | 49 | 8 | 1.1428... | 74 | 10 | 1.1624.. | 99 | 12 | 1.2060... |
| 25 | 6 | 1.2 | 50 | 8 | 1.1313... | 75 | 10 | 1.1547... | 100 | 12 | 1.2 |

Using Theorem 6(1), we shall prove that for infinitely many numbers $n$ the lower and upper bounds given in Theorem 2 uniquely determine the difference size $\Delta\left[D_{2 n}\right]$ of $D_{2 n}$.

Theorem 7. If $n=1+q+q^{2}$ for some prime power $q$, then

$$
\Delta\left[D_{2 n}\right]=2 \cdot \Delta\left[C_{n}\right]=\lceil 2 \sqrt{n}\rceil=\left\lceil\sqrt{2\left|D_{2 n}\right|}\right\rceil=2+2 q .
$$

Proof. By Theorem 6(1), $\Delta\left[C_{n}\right]=1+q$. Since

$$
2 \sqrt{q^{2}+q+1}=2 \sqrt{n} \leq \Delta\left[D_{2 n}\right] \leq \Delta\left[D_{2}\right] \cdot \Delta\left[C_{n}\right]=2 \cdot \Delta\left[C_{n}\right]=2+2 q,
$$

it suffices to check that $(2+2 q)-2 \sqrt{q^{2}+q+1}<1$, which is equivalent to $\sqrt{q^{2}+q+1}>q+\frac{1}{2}$ and to $q^{2}+q+1>q^{2}+q+\frac{1}{4}$.

A bit weaker result holds also for the dihedral groups $D_{8\left(q^{2}+q+1\right)}$.

Proposition 8. If $n=1+q+q^{2}$ for some prime power $q$, then

$$
4 q+3 \leq \Delta\left[D_{8 n}\right] \leq 4 q+4 .
$$

Proof. By Theorem 6(1), $\Delta\left[C_{n}\right]=1+q$. Since $\Delta\left[D_{8}\right]=4$ (see Table 2), by Theorem 2,

$$
4 \sqrt{q^{2}+q+1}=2 \sqrt{4 n} \leq \Delta\left[D_{8 n}\right] \leq \Delta\left[D_{8}\right] \cdot \Delta\left[C_{n}\right]=4(1+q) .
$$

To see that $4 q+3 \leq \Delta\left[D_{8 n}\right] \leq 4 q+4$, it suffices to check that $(4+4 q)-4 \sqrt{q^{2}+q+1}<2$, which is equivalent to $\sqrt{q^{2}+q+1}>q+\frac{1}{2}$ and to $q^{2}+q+1>q^{2}+q+\frac{1}{4}$.

In Table 2 we present the results of computer calculation of the difference sizes and characteristics of dihedral groups of order $\leq 80$. In this table $l b\left[D_{2 n}\right]:=\lceil\sqrt{4 n}\rceil$ is the lower bound given in Theorem 2. With the boldface font we denote the numbers $2 n \in\{14,26,42,62\}$, equal to $2\left(q^{2}+q+1\right)$ for a prime power $q$. For these numbers we know that $\Delta\left[D_{2 n}\right]=l b\left[D_{2 n}\right]=2 q+2$. For $q=2$ and $n=q^{2}+q+1=7$ the table shows that $\Delta\left[D_{56}\right]=\Delta\left[D_{8 n}\right]=11=4 q+3$, which means that the lower bound $4 q+3$ in Proposition 8 is attained.

Table 2. Difference sizes and characteristics of dihedral groups $D_{2 n}$ for $2 n \leq 80$.

| $2 n$ | $l b\left[D_{2 n}\right]$ | $\Delta\left[D_{2 n}\right]$ | $2 \Delta\left[C_{n}\right]$ | $\partial\left[D_{2 n}\right]$ | $2 n$ | $l b\left[D_{2 n}\right]$ | $\Delta\left[D_{2 n}\right]$ | $2 \Delta\left[C_{n}\right]$ | $\partial\left[D_{2 n}\right]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 2 | 2 | 2 | $1.4142 \ldots$ | 42 | 10 | 10 | 10 | $1.5430 \ldots$ |
| 4 | 3 | 3 | 4 | 1.5 | 44 | 10 | 10 | 12 | $1.5075 \ldots$ |
| 6 | 4 | 4 | 4 | $1.6329 \ldots$ | 46 | 10 | 11 | 12 | $1.6218 \ldots$ |
| 8 | 4 | 4 | 6 | $1.4142 \ldots$ | 48 | 10 | 10 | 12 | $1.4433 \ldots$ |
| 10 | 5 | 5 | 6 | $1.5811 \ldots$ | 50 | 10 | 11 | 12 | $1.5556 \ldots$ |
| 12 | 5 | 5 | 6 | $1.4433 \ldots$ | 52 | 11 | 11 | 12 | $1.5254 \ldots$ |
| $\mathbf{1 4}$ | 6 | 6 | 6 | $1.6035 \ldots$ | 54 | 11 | 12 | 12 | $1.6329 \ldots$ |
| 16 | 6 | 6 | 8 | 1.5 | 56 | 11 | 11 | 12 | $1.4699 \ldots$ |
| 18 | 6 | 7 | 8 | $1.6499 \ldots$ | 58 | 11 | 12 | 14 | $1.5756 \ldots$ |
| 20 | 7 | 7 | 8 | $1.5652 \ldots$ | 60 | 11 | 12 | 14 | $1.5491 \ldots$ |
| 22 | 7 | 8 | 8 | $1.7056 \ldots$ | $\mathbf{6 2}$ | 12 | 12 | 12 | $1.5240 \ldots$ |
| 24 | 7 | 7 | 8 | $1.4288 \ldots$ | 64 | 12 | 12 | 14 | 1.5 |
| $\mathbf{2 6}$ | 8 | 8 | 8 | $1.5689 \ldots$ | 66 | 12 | 13 | 14 | $1.6001 \ldots$ |
| 28 | 8 | 8 | 10 | $1.5118 \ldots$ | 68 | 12 | 13 | 14 | $1.5764 \ldots$ |
| 30 | 8 | 8 | 10 | $1.4605 \ldots$ | 70 | 12 | 12 | 14 | $1.4342 \ldots$ |
| 32 | 8 | 9 | 10 | $1.5909 \ldots$ | 72 | 12 | 13 | 14 | $1.5320 \ldots$ |
| 34 | 9 | 9 | 10 | $1.5434 \ldots$ | 74 | 13 | 14 | 14 | $1.6274 \ldots$ |
| 36 | 9 | 9 | 10 | 1.5 | 76 | 13 | 14 | 16 | $1.6059 \ldots$ |
| 38 | 9 | 10 | 10 | $1.6222 \ldots$ | 78 | 13 | 14 | 14 | $1.5851 \ldots$ |
| 40 | 9 | 9 | 12 | $1.4230 \ldots$ | 80 | 13 | 14 | 16 | $1.5652 \ldots$ |

Theorem 9. For any number $n \in \mathbb{N}$ the dihedral group $D_{2 n}$ has the difference characteristic

$$
\sqrt{2} \leq \varnothing\left[D_{2 n}\right] \leq \frac{48}{\sqrt{586}} \approx 1.983
$$

Moreover, if $n \geq 2 \cdot 10^{15}$, then $\partial\left[D_{2 n}\right]<\frac{4}{\sqrt{6}} \approx 1.633$.
Proof. By Corollary 3, $\sqrt{2} \leq ð\left[D_{2 n}\right] \leq \sqrt{2} \cdot \partial\left[C_{n}\right]$. If $n \geq 9$ and $n \neq 292$, then $\partial\left[C_{n}\right] \leq \frac{24}{\sqrt{293}}$ by Theorem $5(4)$, and hence $ð\left[D_{2 n}\right] \leq \sqrt{2} \cdot ð\left[C_{n}\right] \leq \sqrt{2} \cdot \frac{24}{\sqrt{293}}=\frac{48}{\sqrt{586}}$. If $n=292$, then known values $ð\left[C_{73}\right]=\frac{9}{\sqrt{73}}$ (given in Table 1), $\partial\left[D_{8}\right]=\frac{4}{\sqrt{8}}=\sqrt{2}$ (given in Table 2) and Theorem 2 yield the upper bound

$$
\nearrow\left[D_{2 \cdot 292}\right]=\nearrow\left[D_{8.73}\right] \leq ð\left[D_{8}\right] \cdot ð\left[C_{73}\right]=\sqrt{2} \cdot \frac{9}{\sqrt{73}}<\frac{48}{\sqrt{586}} .
$$

Analyzing the data from Table 2, one can check that $\varnothing\left[D_{2 n}\right] \leq \frac{48}{\sqrt{586}} \approx 1.983$ for all $n \leq 8$. If $n \geq 2 \cdot 10^{15}$, then $ð\left[C_{n}\right]<\frac{2}{\sqrt{3}}$ by Theorem 5(5), and hence

$$
ð\left[D_{2 n}\right] \leq \sqrt{2} \cdot \partial\left[C_{n}\right]<\frac{4}{\sqrt{6}} .
$$

Question 10. Is $\sup _{n \in \mathbb{N}} \varnothing\left[D_{2 n}\right]=\varnothing\left[D_{22}\right]=\frac{8}{\sqrt{22}} \approx 1.7056$ ?
To answer Question 10 affirmatively, it suffices to check that $\partial\left[D_{2 n}\right] \leq \frac{8}{\sqrt{22}}$ for all $n<1212464$.
Proposition 11. The inequality $\partial\left[D_{2 n}\right] \leq \sqrt{2} \cdot ð\left[C_{n}\right] \leq \frac{8}{\sqrt{22}}$ holds for all $n \geq 1212464$.
Proof. It suffices to prove that $\partial\left[C_{n}\right] \leq \frac{4}{\sqrt{11}}$ for all $n \geq 1212464$. To derive a contradiction, assume that $\varnothing\left[C_{n}\right]>\frac{4}{\sqrt{11}}$ for some $n \geq 1212464$. Let $\left(q_{k}\right)_{k=1}^{\infty}$ be an increasing enumeration of prime powers. Let $k \in \mathbb{N}$ be the unique number such that $12 q_{k}^{2}+14 q_{k}+15<n \leq 12 q_{k+1}^{2}+14 q_{k+1}+15$. By Corollary 4.9 of $[2], \Delta\left[C_{n}\right] \leq 4\left(q_{k+1}+1\right)$. The inequality $\partial\left[C_{n}\right]>\frac{4}{\sqrt{11}}$ implies

$$
4\left(q_{k+1}+1\right) \geq \Delta\left[C_{n}\right]>\frac{4}{\sqrt{11}} \sqrt{n} \geq \frac{4}{\sqrt{11}} \sqrt{12 q_{k}^{2}+14 q_{k}+16} .
$$

By Theorem 1.9 of [6], if $q_{k} \geq 3275$, then $q_{k+1} \leq q_{k}+\frac{q_{k}}{2 \ln ^{2}\left(q_{k}\right)}$. On the other hand, using WolframAlpha computational knowledge engine it can be shown that the inequality $1+x+\frac{x}{2 \ln ^{2}(x)} \leq$ $\frac{1}{\sqrt{11}} \sqrt{12 x^{2}+14 x+16}$ holds for all $x \geq 43$. This implies that $q_{k}<3275$.

Analyzing the table ${ }^{1}$ of (maximal gaps between) primes, it can be shows that $11\left(q_{k+1}+1\right)^{2} \leq$ $12 q_{k}^{2}+14 q_{k}+16$ if $q_{k} \geq 331$. So, $q_{k} \leq 317, q_{k+1} \leq 331$ and $11 \cdot\left(q_{k+1}+1\right)^{2}=11 \cdot 332^{2}=1212464 \leq n$, which contradicts $4\left(q_{k+1}+1\right)>\frac{4}{\sqrt{11}} \sqrt{n}$.

## References

[1] T. Banakh and V. Gavrylkiv, Algebra in the superextensions of twinic groups, Dissertationes Math. 473 (2010) pp. 74.
[2] T. Banakh and V. Gavrylkiv, Difference bases in cyclic groups, em J. Algebra Appl. bf 18 (2019) pp. 18.
[3] T. Banakh, V. Gavrylkiv and O. Nykyforchyn, Algebra in superextension of groups, I: zeros and commutativity, Algebra Discrete Math., 3 (2008) 1-29.
[4] R. C. Bose, An affine analogue of Singer's theorem, J. Indian Math. Soc., 6 (1942) 1-15.
[5] R. C. Bose and S. Chowla, Theorems in the additive theory of numbers, Comment. Math. Helv., $\mathbf{3 7}$ (1962-63) 141-147.
[6] P. Dusart, Autour de la fonction qui compte le nombre de nombres premiers, Ph.D. Thesis, Univ. de Limoges, 1998.
[7] V. Gavrylkiv, Bases in dihedral and Boolean groups, J. Integer Seq., 20 (2017).
[8] M. Golay, Notes on the representation of $1,2, \ldots, n$ by differences, J. Lond. Math. Soc., 4 (1972) 729-734.
[9] J. Leech, On the representation of $1,2, \ldots, n$ by differences, J. Lond. Math. Soc., 31 (1956) 160-169.

[^1][10] G. Kozma and A. Lev, Bases and decomposition numbers of finite groups, Arch. Math. (Basel), 58 (1992) $417-424$.
[11] L. Rédei and A. Rényi, On the representation of the numbers $1,2, \ldots, N$ by means of differences, Math. Sbornik N.S., 24 (1949) 385-389.
[12] I. Z. Ruzsa, Solving a linear equation in a set of integers I, Acta Arith., 3 (1993) 259-282.
[13] J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc., 43 (1938) 377-385.

## Taras Banakh

Ivan Franko National University of Lviv (Ukraine), and
Institute of Mathematics, Jan Kochanowski University in Kielce (Poland)
Email: t.o.banakh@gmail.com

## Volodymyr Gavrylkiv

Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
Email: vgavrylkiv@gmail.com


[^0]:    MSC(2010): Primary: 05B10; Secondary: 05E15, 20D60.
    Keywords: dihedral group, difference basis, difference characteristic.
    Received: 12 April 2017, Accepted: 08 August 2017.
    *Corresponding author.

[^1]:    ${ }^{1}$ See https://primes.utm.edu/notes/GapsTable.html and https://primes.utm.edu/lists/small/1000.txt

