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A family L of subsets of a set X is called linked if A ∩ B ̸= ∅ for all A,B ∈ L. A linked
family M is maximal linked if M coincides with each linked family L on X that contains M.
The superextension λ(X) consists of all maximal linked families on X. Any associative binary
operation ∗ : X × X → X can be extended to an associative binary operation ∗colonλ(X) ×
λ(X) → λ(X). In the paper we study isomorphisms of superextensions of groups and prove
that two groups are isomorphic if and only if their superextensions are isomorphic. Also we
describe the automorphism groups of superextensions of all groups of order ≤ 5.

Introduction. In this paper we investigate the automorphism group of the superextension
λ(G) of a group G. The thorough study of various extensions of semigroups was started in [12]
and continued in [1]– [9], [13]–[17]. The largest among these extensions is the semigroup υ(S)
of all upfamilies on S. A family A of non-empty subsets of a set X is called an upfamily if for
each set A ∈ A any subset B ⊃ A of X belongs to A. Each family B of non-empty subsets of
X generates the upfamily ⟨B ⊂ X : B ∈ B⟩ = {A ⊂ X : ∃B ∈ B (B ⊂ A)}. An upfamily F
that is closed under taking finite intersections is called a filter. A filter U is called an ultrafilter
if U = F for any filter F containing U . The family β(X) of all ultrafilters on a set X is called
the Stone-Čech compactification of X, see [19], [23]. An ultrafilter, generated by a singleton
{x}, x ∈ X, is called principal. Each point x ∈ X is identified with the principal ultrafilter
⟨{x}⟩ generated by the singleton {x}, and hence we can consider X ⊂ β(X) ⊂ υ(X). It was
shown in [12] that any associative binary operation ∗colonS×S → S can be extended to an
associative binary operation ∗ : υ(S)× υ(S) → υ(S) defined by the formula

L ∗M =
⟨∪

a∈L
a ∗Ma : L ∈ L, {Ma}a∈L ⊂ M

⟩
for upfamilies L,M ∈ υ(S). In this case the Stone-Čech compactification β(S) is a subsemi-
group of the semigroup υ(S).

The semigroup υ(S) contains many other important extensions of S. In particular, it
contains the semigroup λ(S) of maximal linked upfamilies. The space λ(S) is well-known in
General and Categorial Topology as the superextension of S, see [21]–[24]. An upfamily L of
subsets of S is linked if A∩B ̸= ∅ for all A,B ∈ L. The family of all linked upfamilies on S
is denoted by N2(S). It is a subsemigroup of υ(S). The superextension λ(S) consists of all
maximal elements of N2(S), see [11], [12].
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For a finite set X, the cardinality of the set λ(X) grows very quickly as |X| tends to
infinity. The calculation of the cardinality of λ(X) seems to be a difficult combinatorial
problem, which can be reformulated as the problem of counting the number λ(n) of self-dual
monotone Boolean functions of n variables, which is well-known in Discrete Mathematics.
According to Proposition 1.1 in [10], log2 λ(n) = 2n√

2πn
+o(1), which means that the sequence

(λ(n))∞n=1 has double exponential growth. The sequence of numbers λ(n) (known in Di-
screte Mathematics as Hoşten-Morris numbers) is included in the On-line Encyclopedia
of Integer Sequences as the sequence A001206. All known precise values of this sequence
(taken from [10]) are presented in the following table.

|X| = 1 2 3 4 5 6 7 8 9
|λ(X)| = 1 2 4 12 81 2646 1422564 229809982112 423295099074735261880

Each map f : X → Y induces the map λf : λ(X) → λ(Y ), λf : M 7→
⟨
f(M) ⊂

Y : M ∈ M
⟩
, see [11].

If φ : S → S ′ is a homomorphism of semigroups, then λφ : λ(S) → λ(S ′) is a homo-
morphism as well, see [14].

A non-empty subset I of a semigroup S is called an ideal if IS ∪ SI ⊂ I. An ideal I of a
semigroup S is said to be proper if I ̸= S. A proper ideal M of S is maximal if M coincides
with each proper ideal I of S that contains M .

An element z of a semigroup S is called a zero (resp. a left zero, a right zero) in S if
az = za = z (resp. za = z, az = z) for any a ∈ S. An element e of a semigroup S is called
an idempotent if ee = e. By E(S) we denote the set of all idempotents of a semigroup S.

Recall that an isomorphism between semigroups S and S ′ is a bijective function ψ : S →
S ′ such that ψ(xy) = ψ(x)ψ(y) for all x, y ∈ S. If there exists an isomorphism between S
and S ′, then S and S ′ are said to be isomorphic, denoted S ∼= S ′. An isomorphism ψ : S → S
is called an automorphism of a semigroup S. By Aut(S) we denote the automorphism group
of a semigroup S.

Following the algebraic tradition, we take for a model of a cyclic group of order n the
multiplicative group Cn = {z ∈ C : zn = 1} of n-th roots of 1.

For a set X by SX we denote the group of all bijections of X. For two sets X ⊂ Y we
shall identify SX with the subgroup {φ ∈ SY : φ|Y \X = id}.

1. Extending isomorphisms from groups to their superextensions. In this secti-
on we observe that each isomorphism of groups can be extended to an isomorphism of
their superextensions and two groups are isomorphic if and only if their superextensions are
isomorphic. The following statements are corollaries of the functoriality of the superextension
in the category of semigroups, see [3, 23].

Proposition 1. If ψ : G → H is an isomorphism of groups, then λψ : λ(G) → λ(H) is an
isomorphism of their superextensions.

Corollary 1. If ψ : G→ G is an automorphism of a group G, then λψ : λ(G) → λ(G) is an
automorphism of the superextension λ(G).

Corollary 2. The automorphism group Aut(λ(G)) of the superextension of a group G
contains as a subgroup an isomorphic copy of the automorphism group Aut(G) of G.
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Corollary 2 motivates a question: is the automorphism group Aut(G) of a group G normal
in the automorphism group Aut(λ(G)) of its superextension λ(G)? In the next section we
show that the automorphism group Aut(C2 × C2) of the Klein four-group C2 × C2 is not
normal in Aut(λ(C2 × C2)).

Proposition 2. Let G and H be groups. If ψ : λ(G) → λ(H) is an isomorphism, then
ψ(G) = H.

Proof. It was shown in [1, Proposition 1.1] that λ(G) \ G is an ideal of λ(G). Let us prove
that λ(G) \ G is the unique maximal ideal of λ(G). Indeed, let I be any ideal of λ(G). If
g ∈ G∩I, then λ(G) = gλ(G) ⊂ I, and hence I = λ(G). Consequently, λ(G)\G contains each
proper ideal of λ(G). In the same way λ(H)\H is the unique maximal ideal of λ(H). Taking
into account that the set of maximal ideals of a semigroup is preserved by isomorphisms
and λ(G) \ G and λ(H) \ H are unique maximal ideals of λ(G) and λ(H) respectively, we
conclude that ψ(λ(G) \G) = λ(H) \H. Therefore, ψ(G) = H.

Corollary 3. For any groups G and H, each isomorphism from λ(G) to λ(H) is an extension
of an isomorphism from G to H.

Corollary 4. For any group G, each automorphism of λ(G) is an extension of an auto-
morphism of G.

Propositions 1 and 2 imply the following theorem.

Theorem 1. Two groups are isomorphic if and only if their superextensions are isomorphic.

2. The automorphism groups of the superextensions of groups of order ≤ 5. In this
section we shall study automorphisms of superextensions of groups and describe the structure
of the automorphism groups of superextensions λ(G) of finite groups G of cardinality |G| ≤ 5.

Before describing the structure of extensions of finite groups, let us make some remarks
concerning the structure of a semigroup S containing a group G with the identity element
which also is a left identity of S. In this case S can be thought as a G-space endowed with
the left action of the group G. So we can consider the orbit space S/G = {Gs : s ∈ S} and
the projection π : S → S/G. If G lies in the center of the semigroup S (which means that the
elements of G commute with all the elements of S), then the orbit space S/G admits a unique
semigroup operation making S/G a semigroup and the orbit projection π : S → S/G into a
semigroup homomorphism. If s ∈ S is an idempotent, then the orbit Gs is a group isomorphic
to a quotient group of G. A subsemigroup T ⊂ S will be called a transversal semigroup if
the restriction π : T → S/G is an isomorphism of the semigroups. If S admits a transversal
semigroup T and the elements of G and T commute, then S is a homomorphic image of the
product G × T under the semigroup homomorphism h : G × T → S, h : (g, t) 7→ gt. This
helps to recover the algebraic structure of S from the structure of a transversal semigroup.

First note that each group G of cardinality |G| ≤ 5 is Abelian and is isomorphic to one
of the groups: C1, C2, C3, C4, C2 × C2, C5.

2.1. The semigroups λ(C1) and λ(C2). For the groups Cn with n ∈ {1, 2} the semigroup
λ(Cn) is isomorphic to Cn. Therefore, Aut(λ(Cn)) ∼= Aut(Cn) ∼= C1.

2.2. The semigroup λ(C3). For the group C3 the semigroup λ(C3) contains three principal
ultrafilters 1, z,−z where z = e2πi/3 and the maximal linked upfamily △ = ⟨{1, z}, {1,−z},
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{z,−z}⟩ which is the zero in λ(C3). The superextension λ(C3) is isomorphic to the multi-
plicative subsemigroup {z ∈ C : z4 = z} of the complex plane. Taking into account that
the zero is preserved by automorphisms of semigroups, we conclude that each automorphi-
sm of C3 is extended to the unique automorphism of λ(C3) by Corollary 4. Therefore,
Aut(λ(C3)) ∼= Aut(C3) ∼= C2.

2.3. The semigroup λ(C4). Consider the cyclic group C4 = {1,−1, i,−i}. The semigroup
λ(C4) contains 12 elements λ(C4) = {g, g△, g2 : g ∈ C4}, where

△ = ⟨{1, i}, {1,−i}, {i,−i}⟩ and � = ⟨{1, i}, {1,−i}, {1,−1}, {i,−i,−1}⟩.

Taking into account that △ ∗ 2 = 2 ∗ △ = △, △ ∗ △ = 2 ∗ 2 = 2 and C4 lies in the
center of λ(C4), we conclude that λ(C4) contains a transversal semigroup T = {1,△,�},
where 1 is the identity of C4.

Let ψ : λ(C4) → λ(C4) be an automorphism. Then the restriction of ψ to C4 is an
automorphism of C4 by Proposition 2. Taking into account that 2 is the unique idempotent
of λ(C4) \ C4, we conclude that ψ(2) = 2, and hence ψ(g2) = ψ(g) ∗ ψ(2) = ψ(g) ∗ 2 for
any g ∈ C4. Let ψ(△) = a△ for some a ∈ C4. Then

2 = ψ(2) = ψ(△ ∗△) = ψ(△) ∗ ψ(△) = a△ ∗ a△ = a22.

So a2 = 1 and a ∈ {1,−1}.
Since Aut(C4) ∼= C2 and each automorphism of C4 can be can be extended to an

automorphism of λ(C4) exactly in two different ways, the group Aut(λ(C4)) contains four
elements. Taking into account that each non-identity element ψ ∈ Aut(λ(C4)) has order 2,
we conclude that Aut(λ(C4)) ∼= C2 × C2.

2.4. The semigroup λ(C2×C2). The semigroup λ(C2×C2) has a similar algebraic structure.
It also contains 12 elements λ(C2 × C2) = {g, g△, g2 : g ∈ C2 × C2}, where

△ = ⟨{(1, 1), (1,−1)}, {(1, 1), (−1, 1)}, {(1,−1), (−1, 1)}⟩,
� = ⟨{(1, 1), (1,−1)}, {(1, 1), (−1, 1)}, {(1, 1), (−1,−1)}, {(1,−1), (−1, 1), (−1,−1)}⟩.

Taking into account that △ ∗ 2 = 2 ∗ △ = △, △ ∗△ = 2 ∗ 2 = 2 and C2 × C2 lies in
the center of λ(C2 × C2), we conclude that λ(C2 × C2) contains a transversal semigroup

T = {e,△,�} ⊂ λ(C2 × C2),

where e is the principal ultrafilter supported by the neutral element (1, 1) of C2 × C2.
We shall prove that the automorphism group Aut(λ(C2×C2)) of the semigroup λ(C2×C2)

is isomorphic to the holomorph Hol(C2 × C2) of the group C2 × C2.
We recall that the holomorph Hol(S) of a semigroup S (see [22]) is the semi-direct product

S o Aut(S) := (S × Aut(S), ⋆) of the semigroup S with its automorphism group Aut(S),
endowed with the semigroup operation

(x, f) ⋆ (y, g) = (x · f(y), f ◦ g).

It is known1 that for the group G = C2 × C2 its holomorph Hol(G) is isomorphic to the
symmetric group S4.

https://groupprops.subwiki.org/wiki/Holomorph_of_a_group
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Proposition 3. For the group G = C2 × C2 the automorphism group Aut(λ(G)) is iso-
morphic to the holomorph Hol(G) of the group G and hence is isomorphic to the symmetric
group S4.

Proof. Let ψ : λ(G) → λ(G) be an automorphism. Then the restriction of ψ to G is an
automorphism of G by Proposition 2. Taking into account that 2 is the unique idempotent
of λ(G)\G, we conclude that ψ(2) = 2 and ψ(g2) = ψ(g)∗ψ(2) = ψ(g)∗2 for any g ∈ G.
It follows that ψ(△) = a△ for some a ∈ G.

It can be shown that for any pair (a, f) ∈ G × Aut(G) the map ψa,f : λ(C2 × C2) →
λ(C2 ×C2) defined by ψa,f (x) = f(x), ψa,f (x�) = f(x)�, ψa,f (x△) = f(x) · a△ for x ∈ G
is an automorphism of the semigroup λ(C2 × C2).

It follows that each automorphism of λ(G) is of the form ψa,f for some (a, f) ∈ G ×
Aut(G).

Observe that for any (a, f), (b, g) ∈ G× Aut(G) and x ∈ G we get

ψa,f ◦ ψb,g(x) = ψa,f (g(x)) = f ◦ g(x), ψa,f ◦ ψb,g(x ·�) = ψa,f (g(x) ·�) = f ◦ g(x) ·�,
ψa,f ◦ ψb,g(x · △) = ψa,f (g(x) · b · △) = f ◦ g(x) · f(b) · a · △.

Consequently, ψa,f ◦ ψb,g = ψa·f(b),f◦g and hence Aut(λ(G)) is isomorphic to the holomorph
Hol(G) of the group G, which is known to be isomorphic to the symmetric group S4.

2.5. The semigroup λ(C5). In this subsection we describe the structure of automorphism
group of the semigroup λ(C5). The algebraic structure of the semigroup λ(C5) is described
in [9]. This semigroup contains 81 elements. One of them is zero Z = {A ⊂ C5 : |A| ≥ 3},
which is invariant under any bijection of C5. All the other 80 elements have 5-element orbits
under the action of C5, which implies that the orbit semigroup λ(C5)/C5 consists of 17
elements.

It will be convenient to think of C5 as the field {0, 1, 2, 3, 4} with the multiplicative
subgroup C∗

5 = {1,−1, 2,−2} of invertible elements (here −1 and −2 are identified with 4
and 3, respectively). Also for elements x, y, z ∈ C5 we shall write xyz instead of {x, y, z}.

The semigroup λ(C5) contains 5 idempotents: U = ⟨0⟩, Z, Λ4 = ⟨01, 02, 03, 04, 1234⟩,
Λ = ⟨02, 03, 123, 014, 234⟩, 2Λ = ⟨04, 01, 124, 023, 143⟩, which commute and thus form a
commutative subsemigroup E(λ(C5)). Being a semilattice, E(λ(C5)) carries a natural partial
order: e ≤ f iff e ∗ f = e. The partial order Z ≤ Λ, 2Λ ≤ Λ4 ≤ U on the set E(λ(C5)) is
drawn in the picture:

Z
r��

@
@

rΛ r 2Λ
Λ4

r

@
@

@
@

�
�

rU

Diagram 1. The structure of the semilattice E(λ(C5)).

Next, consider two subsets:
√
Z = {L ∈ λ(C5) : L ∗ L = Z} and√

E(λ(C5)) = {L ∈ λ(C5) : L ∗ L ∈ E(λ(C5))} = {L ∈ λ(C5) : L ∗ L ∗ L ∗ L = L ∗ L}.
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We claim that the set
√
E(λ(C5)) \

√
Z has at most one-point intersection with each orbit.

Indeed, if L ∈
√
E(λ(C5)) and L ∗ L ̸= Z, then for every a ∈ C5 \ {0}, we get

(L+ a) ∗ (L+ a) ∗ (L+ a) ∗ (L+ a) = L ∗ L ∗ L ∗ L+ 4a =

= L ∗ L+ 4a ̸= L ∗ L+ 2a = (L+ a) ∗ (L+ a).

witnessing that L+ a /∈
√
E(λ(C5)).

By a direct calculation one can check that the set
√
E(λ(C5)) contains the following four

maximal linked upfamilies:

∆ = ⟨02, 03, 23⟩, Λ3 = ⟨02, 03, 04, 234⟩,
Θ = ⟨14, 012, 013, 123, 024, 034, 234⟩, Γ = ⟨02, 04, 013, 124, 234⟩.

For those upfamilies we get

∆ ∗∆ = ∆ ∗∆ ∗∆ = Λ, Λ3 ∗ Λ3 = Λ3 ∗ Λ3 ∗ Λ3 = Λ,

F ∗Θ = F ∗ Γ = Z for every F ∈ λ(C5) \ C5.

All the other elements of λ(C5) can be found as images of ∆,Θ,Γ,Λ3 under the affine
transformations of the field C5. Those are maps of the form fa,b : x 7→ ax+ b mod 5, where
a ∈ {1,−1, 2,−2} = C∗

5 and b ∈ C5. The image of a maximal linked upfamily L ∈ λ(C5)
under such a transformation will be denoted by aL+ b.

One can check that aΛ4 = Λ4 for each a ∈ C∗
5 while Λ = −Λ, and Θ = −Θ. Since

the linear transformations of the form fa,0 : C5 → C5, a ∈ C∗
5 , are authomorphisms of the

group C5, the induced transformations λfa,0 : λ(C5) → λ(C5) are authomorphisms of the
semigroup λ(C5). This implies that those transformations do not move the subsets E(λ(C5))
and

√
E(λ(C5)). Consequently, the set

√
E(λ(C5) contains the maximal linked upfamilies:

a∆, aΘ, aΛ3, aΓ, a ∈ Z∗
5, which together with the idempotents form a 17-element subset

T17 = E(λ(C5)) ∪
{
a∆, aΘ: a ∈ {1, 2}

}
∪ {aΛ3, aΓ: a ∈ Z∗

5}

that projects bijectively onto the orbit semigroup λ(C5)/C5. The set T17 looks as follows (we
connect an element x ∈ T17 with an idempotent e ∈ T17 by an arrow if x ∗ x = e):
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It follows that
√
E(λ(C5)) = T17 ∪

√
Z where

√
Z = {Θ, 2Θ,Γ, 2Γ,−Γ,−2Γ}+ C5.
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∗ Λ4 Λ ∆ Λ3 −Λ3 2Λ 2∆ 2Λ3 −2Λ3 aΘ, aΓ

Λ4 Λ4 Λ Λ Λ Λ 2Λ 2Λ 2Λ 2Λ Z
Λ Λ Λ Λ Λ Λ Z Z Z Z Z
∆ ∆ Λ Λ Λ Λ 2Θ 2Θ 2Θ 2Θ Z
Λ3 Λ3 Λ Λ Λ Λ 2Θ + 2 2Θ + 2 2Θ + 2 2Θ + 2 Z
−Λ3 −Λ3 Λ Λ Λ Λ 2Θ− 2 2Θ− 2 2Θ− 2 2Θ− 2 Z
2Λ 2Λ Z Z Z Z 2Λ 2Λ 2Λ 2Λ Z
2∆ 2∆ Θ Θ Θ Θ 2Λ 2Λ 2Λ 2Λ Z
2Λ3 2Λ3 Θ− 1 Θ− 1 Θ− 1 Θ− 1 2Λ 2Λ 2Λ 2Λ Z
−2Λ3 −2Λ3 Θ+ 1 Θ + 1 Θ + 1 Θ + 1 2Λ 2Λ 2Λ 2Λ Z
Θ Θ Θ Θ Θ Θ Z Z Z Z Z
2Θ 2Θ Z Z Z Z 2Θ 2Θ 2Θ 2Θ Z
Γ Γ Θ + 1 Θ + 1 Θ + 1 Θ + 1 2Θ + 2 2Θ + 2 2Θ + 2 2Θ + 2 Z
−Γ −Γ Θ− 1 Θ− 1 Θ− 1 Θ− 1 2Θ− 2 2Θ− 2 2Θ− 2 2Θ− 2 Z
2Γ 2Γ Θ− 1 Θ− 1 Θ− 1 Θ− 1 2Θ + 2 2Θ + 2 2Θ + 2 2Θ + 2 Z
−2Γ −2Γ Θ + 1 Θ + 1 Θ + 1 Θ + 1 2Θ− 2 2Θ− 2 2Θ− 2 2Θ− 2 Z

Table 1: The Cayley table for the set T17.

Since each element of λ(C5) can be uniquely written as the sum L+ b for some L ∈ T17
and b ∈ C5, the multiplication table for the semigroup λ(C5) can be recovered from the
Cayley Table 1 for multiplication of the elements of the set T17.

Now we are able to prove the main result of this subsection.

Theorem 2. Aut(λ(C5)) ∼= Aut(C5) ∼= C4.

Proof. We identify the group Aut(C5) with the subgroup {λφ : φ ∈ Aut(C5)} of Aut(λ(C5)).
To see that Aut(λ(C5)) = Aut(C5), it suffices to prove that an automorphism ψ of λ(C5) is
identity if its restriction ψ|C5 is the identity automorphism of the group C5. So, we assume
that ψ(x) = x for all x ∈ C5. Since each element A ∈ λ(C5) is of the form A = L + x for
some L ∈ T17 and x ∈ C5, it suffices to prove that ψ(L) = L for every L ∈ T17.

Let us call a subset A ⊂ λ(C5) ψ-invariant if ψ(A) = A. An element a ∈ λ(C5) is defined
to be ψ-invariant if the singleton {a} is ψ-invariant. Observe that for any ψ-invariant sets
A,B ⊂ λ(C5) the set A ∗ B = {a ∗ b : a ∈ A, b ∈ B} is ψ-invariant. In particular, the set
A+ x is ψ-invariant for every x ∈ C5.

Since ψ is an automorphism of the semigroup λ(C5), the set E(λ(C5)) = {U ,Z,Λ4,Λ, 2Λ}
of idempotents of λ(C5) is ψ-invariant and ψ|E(λ(C5)) is an automorphism of the semilattice
E(λ(C5)). Looking at the structure of the semilattice E(λ(C5)), we can see that its elements
Z,U and Λ4 are ψ-invariant and hence ψ(Λ) ∈ {Λ, 2Λ}.

Two cases are possible:
1) ψ(Λ) = Λ. In this case the following sets are ψ-invariant:

{Λ}, {2Λ},
√
Λ \ {Λ} = {∆,Λ3,−Λ3},

√
{2Λ} \ {2Λ} = {2∆,−2Λ2, 2Λ3},

{2∆,−2Λ2, 2Λ3} ∗ {Λ} = {Θ,Θ− 1,Θ+ 1}, {∆,Λ3,−Λ3} ∗ {2Λ} = {2Θ, 2Θ + 2, 2Θ− 2}.
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It follows that the set {Θ,Θ− 1,Θ + 1} + 2 = {Θ + 2,Θ + 1,Θ + 3} is ψ-invariant and
so are the sets {Θ + 1} = {Θ,Θ − 1,Θ + 1} ∩ {Θ + 2,Θ + 1,Θ + 3} and {Θ}. By analogy
we can prove that the element 2Θ is ψ-invariant.

Since the elements Λ, 2Λ, Θ and 2Θ are ψ-invariant, the set

{L ∈ λ(C5) : L ∗ L = Λ, L ∗ Λ = Λ, L ∗ 2Λ = 2Θ} = {∆}

is ψ-invariant and hence the element ∆ is ψ-invariant. By analogy we can prove that the
element 2∆, Λ3, 2Λ3, −Λ3, −2Λ3 are ψ-invariant.

Since the elements Z, Λ, Θ+ 1, 2Θ + 2 are ψ-invariant, the set

{L ∈ λ(C5) : L ∗ L = Z, L ∗ Λ = Θ+ 1, L ∗ 2Λ = 2Θ + 2} = {Γ}

is ψ-invariant. So, the element Γ is ψ-invariant. By analogy we can prove that the elements
−Γ, 2Γ, −2Γ are ψ-invariant.

Therefore, ψ(L) = L for all L ∈ T17 and ψ is the identity automorphism of λ(C5).
2) ψ(Λ) ̸= Λ. Then ψ(Λ) = 2Λ, ψ(2Λ) = Λ, and by the first case, ψ ◦ ψ is the identity

automorphism of λ(C5). It follows that

ψ({∆,Λ3,−Λ3}) = ψ(
√
Λ \ {Λ}) =

√
2Λ \ {2Λ} = {2∆, 2Λ3,−2Λ3},

ψ({Θ,Θ−1,Θ+1})=ψ({2∆, 2Λ3,−2Λ3}∗{Λ}) = {∆,Λ3,−Λ3}∗{2Λ} = {2Θ, 2Θ+2, 2Θ−2}.

Then ψ({Θ + 1,Θ,Θ + 2}) = ψ({Θ,Θ − 1,Θ + 1} + 1) = {2Θ, 2Θ + 2, 2Θ − 2} + 1 =
{2Θ+1, 2Θ−2, 2Θ−1} and hence ψ({Θ,Θ+1}) = ψ({Θ,Θ−1,Θ+1}∩{Θ+1,Θ,Θ+2}) =
{2Θ, 2Θ+2, 2Θ−2}∩{2Θ+1, 2Θ−2, 2Θ−1} = {2Θ−2}, which contradicts the bijectivity of
ψ. So, the case ψ(Λ) ̸= Λ is impossible and by the first case, ψ is the identity automorphism
of λ(C5). Therefore, Aut(λ(C5)) = Aut(C5) ∼= C4.

2.6. The final table. We summarize the obtained results on the automorphism groups
Aut(λ(G)) of superextensions of groups G of cardinality |G| ≤ 5 in the following table:

G C1 C2 C3 C4 C2 × C2 C5

Aut(G) C1 C1 C2 C2 S3 C4

Aut(λ(G)) C1 C1 C2 C2 × C2 S4 C4

Analyzing the entries of this table, we can ask the following question.

Problem 1. Is Aut(λ(G)) isomorphic to Aut(G) for a finite (cyclic) group G of odd order?
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19. N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification, de Gruyter, Berlin, New York,

1998.
20. J.M. Howie, Fundamentals of semigroup theory, The Clarendon Press Oxford University Press, New

York, 1995.
21. J. van Mill, Supercompactness and Wallman spaces, Mathematical Centre Tracts, V.85 Amsterdam,

1977.
22. D. Robinson, A course in the theory of groups, Graduate Texts in Mathematics, V.80 (Springer-Verlag,

New York, 1996).
23. A. Teleiko, M. Zarichnyi, Categorical Topology of Compact Hausdofff Spaces, V.5, VNTL, Lviv, 1999.
24. A. Verbeek, Superextensions of topological spaces, Mathematical Centre Tracts, V.41, Amsterdam, 1972.

Ivan Franko National University of Lviv, Ukraine, and
Institute of Mathematics, Jan Kochanowski University in Kielce, Poland
t.o.banakh@gmail.com

Faculty of Mathematics and Computer Science
Vasyl Stefanyk Precarpathian National University
vgavrylkiv@gmail.com

Received 15.11.2017


