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Given a group X we study the algebraic structure of the compact right-topological semi-
group G(X) consisting of inclusion hyperspaces on X. This semigroup contains the semigroup
λ(X) of maximal linked systems as a closed subsemigroup. We construct a faithful represen-
tation of the semigroups G(X) and λ(X) in the semigroup P(X)P(X) of all self-maps of the
power-set P(X). Using this representation we prove that each minimal left ideal of λ(X) is
topologically isomorphic to a minimal left ideal of the semigroup pTpT, where by pT we denote
the family of pretwin subsets of X.

Introduction

After discovering a topological proof of Hindman theorem [8] (see [10, p.102], [9]), topo-
logical methods become a standard tool in the modern combinatorics of numbers, see [10],
[11]. The crucial point is that any semigroup operation ∗ defined on a discrete space X can
be extended to a right-topological semigroup operation on β(X), the Stone-Čech compacti-
fication of X. The extension of the operation from X to β(X) can be defined by the simple
formula

A ◦ B =
{
A ⊂ X : {x ∈ X : x−1A ∈ B} ∈ A}

, (1)

where A,B are ultrafilters on X. Endowed with the so-extended operation, the Stone-
Čech compactification β(X) becomes a compact right-topological semigroup. The algebraic
properties of this semigroup (for example, the existence of idempotents or minimal left ideals)
have important consequences in combinatorics of numbers, see [10], [11].

The Stone-Čech compactification β(X) of X is the subspace of the double power-set
P(P(X)), which is a complete lattice with respect to the operations of union and intersection.
In [7] it was observed that the semigroup operation extends not only to β(X) but also to the
complete sublattice G(X) of P(P(X)) generated by β(X). This complete sublattice consists
of all inclusion hyperspaces over X.
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By definition, a family F of non-empty subsets of a discrete space X is called an inclusion
hyperspace if F is monotone in the sense that a subset A ⊂ X belongs to F provided
A contains some set B ∈ F . Besides the operations of union and intersection, the set
G(X) possesses an important transversality operation assigning to each inclusion hyperspace
F ∈ G(X) the inclusion hyperspace

F⊥ = {A ⊂ X : ∀F ∈ F (A ∩ F 6= ∅)}.
This operation is involutive in the sense that (F⊥)⊥ = F .

It is known that the family G(X) of inclusion hyperspaces on X is closed in the double
power-set P(P(X)) = {0, 1}P(X) endowed with the natural product topology. The induced
topology on G(X) can be described directly: it is generated by the sub-base consisting of
the sets

U+ = {F ∈ G(X) : U ∈ F} and U− = {F ∈ G(X) : U ∈ F⊥}
where U runs over subsets of X. Endowed with this topology, G(X) becomes a Hausdorff
supercompact space. The latter means that each cover of G(X) by the sub-basic sets has
a 2-element subcover. Let also N2(X) = {A ∈ G(X) : A ⊂ A⊥} denote the family of all
linked inclusion hyperspaces on X and λ(X) = {F ∈ G(X) : F = F⊥} the family of all
maximal linked systems on X.

By [6], both the subspaces λ(X) and N2(X) are closed in the space G(X). Observe that
U+ ∩ λ(X) = U− ∩ λ(X) and hence the topology on λ(X) is generated by the sub-basis
consisting of the sets

U± = {A ∈ λ(X) : U ∈ A}, U ⊂ X.

The extension of a binary operation ∗ from X to G(X) can be defined in the same
manner as for ultrafilters, i.e., by the formula (1) applied to any two inclusion hyperspaces
A,B ∈ G(X). In [7] it was shown that for an associative binary operation ∗ on X the space
G(X) endowed with the extended operation becomes a compact right-topological semigroup.
The structure of this semigroup was studied in details in [7]. In particular, it was shown
that for each group X the minimal left ideals of G(X) are singletons containing invariant
inclusion hyperspaces. Besides the Stone-Čech extension, the semigroup G(X) contains
many important spaces as closed subsemigroups. In particular, the space λ(X) of maximal
linked systems on X is a closed subsemigroup of G(X). The space λ(X) is well-known in
General and Categorial Topology as the superextension of X, see [12].

We call an inclusion hyperspace A ∈ G(X) invariant if xA = A for all x ∈ X. It follows
from the definition of the topology on G(X) that the set

↔
G(X) of all invariant inclusion

hyperspaces is closed and non-empty in G(X). Moreover, the set
↔
G(X) coincides with the

minimal ideal of G(X), which is a closed semigroup of right zeros. The latter means that
A ◦ B = B for all A,B ∈

↔
G(X).

The minimal ideal
↔
G(X) contains the closed subset

↔
N2(X) = N2(X)∩

↔
G(X) of invariant

linked systems on X. The subset max
↔
N2(X) of maximal invariant linked systems on X is

denoted by
↔
λ(X). It can be shown that

↔
λ(X) is a closed subsemigroup of

↔
N2(X). By [2,

2.2], this semigroup has cardinality |
↔
λ(X)| = 22|X| for every infinite group X.
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The thorough study of algebraic properties of semigroups of inclusion hyperspaces and
the superextensions of groups was started in [7] and continued in [1], [2] and [3]. In this
paper we construct a faithful representation of the semigroups G(X) and λ(X) in the semi-
group P(X)P(X) of all self-maps of the power-set P(X) and show that the image of λ(X) in
P(X)P(X) coincides with the semigroup λ(X, P(X)) of all functions f : P(X) → P(X) that
are equivariant, monotone and symmetric in the sense that f(X \ A) = X \ f(A) for all
A ⊂ X. Using this representation we prove that each minimal left ideal of λ(X) is topo-
logically isomorphic to a minimal left ideal of the semigroup pTpT, where by pT we denote
the family of pretwin subsets of X. A subset A of a group X is called a pretwin subset if
xA ⊂ X \ A ⊂ yA for some x, y ∈ X.

1 Right-topological semigroups

In this section we recall some information from [10] related to right-topological semi-
groups. By definition, a right-topological semigroup is a topological space S endowed with
a semigroup operation ∗ : S × S → S such that for every a ∈ S the right shift ra : S → S,
ra : x 7→ x ∗ a, is continuous. If the semigroup operation ∗ : S × S → S is (separately)
continuous, then (S, ∗) is a (semi-)topological semigroup.

From now on, S is a compact Hausdorff right-topological semigroup. We shall recall some
known information concerning ideals in S, see [10].

A non-empty subset I of S is called a left (resp. right) ideal if SI ⊂ I (resp. IS ⊂ I). If
I is both a left and right ideal in S, then I is called an ideal in S. Observe that for every
x ∈ S the set SxS = {sxt : s, t ∈ S} (resp. Sx = {sx : s ∈ S}, xS = {xs : s ∈ S}) is
an ideal (resp. left ideal, right ideal) ideal in S. Such an ideal is called principal. An ideal
I ⊂ S is called minimal if any ideal of S that lies in I coincides with I. By analogy we define
minimal left and right ideals of S. It is easy to see that each minimal left (resp. right) ideal
I is principal. Moreover, I = Sx (resp. I = xS) for each x ∈ I. This simple observation
implies that each minimal left ideal in S, being principal, is closed in S. By [10, 2.6], each
left ideal in S contains a minimal left ideal.

We shall use the following known fact, see [3, Lemma 1.1].

Proposition 1.1. If a homomorphism h : S → S ′ between two semigroups is injective on
some minimal left ideal of S, then h is injective on each minimal left ideal of S.

2 The function representation of the semigroup G(X)

In this section given a group X we introduce the function representation Φ : G(X) →
P(X)P(X) of the semigroup G(X) in the semigroup P(X)P(X) of all self-maps of the power-
set P(X) of X. The semigroup P(X)P(X) endowed with the Tychonov product topol-
ogy is a compact right-topological semigroup naturally homeomorphic to the Cantor cube
({0, 1}X)P(X) = {0, 1}X×P(X). The sub-base of the topology of P(X)P(X) consists of the sets

〈x,A〉+ = {f ∈ P(X)P(X) : x ∈ f(A)},
〈x,A〉− = {f ∈ P(X)P(X) : x /∈ f(A)}.
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Given an inclusion hyperspace A ∈ G(X) consider the function

ΦA : P(X) → P(X), ΦA(A) = {x ∈ G : x−1A ∈ A}

called the function representation of A.

Proposition 2.1. A function ϕ : P(X) → P(X) coincides with the function representation
ΦA of some (invariant) inclusion hyperspace A ∈ G(X) if and only if ϕ is

1) equivariant in the sense that ϕ(xA) = xϕ(A) for any A ⊂ X and x ∈ X;

2) monotone in the sense that ϕ(A) ⊂ ϕ(B) for any subsets A ⊂ B of X;

3) ϕ(∅) = ∅, ϕ(X) = X (and ϕ(P(X)) ⊂ {∅, X}).

Proof. To prove the “only if” part, take any inclusion hyperspace A ∈ G(X) and consider
its function representation ΦA.

It is equivariant because

ΦA(xA) = {y ∈ X : y−1xA ∈ A} = {xy : y−1A ∈ A} = x ΦA(A)

for any x ∈ X and A ⊂ X.
Also it is monotone because

ΦA(A) = {x ∈ G : x−1A ∈ A} ⊂ {x ∈ G : x−1B ∈ A} = ΦA(B)

for any subsets A ⊂ B of X.
It is clear that ΦA(∅) = ∅ and ΦA(X) = X.
If A is invariant, then for every A ∈ A we get ΦA(A) = X and for each A ∈ P(X) \ A

we get ΦA(A) = ∅.
To prove the “if” part, fix any equivariant monotone map ϕ : P(X) → P(X) with ϕ(∅) =

∅ and ϕ(X) = X and observe that the family

Aϕ = {x−1A : A ⊂ X, x ∈ ϕ(A)}

is an inclusion hyperspace with ΦAϕ = ϕ. If ϕ(P(X)) ⊂ {∅, X}, then the inclusion hyper-
space Aϕ is invariant.

Remark 2.1. If X is a left-topological group and A is the filter of neighborhoods of the
identity element e of X, then the functional representations ΦA and ΦA⊥ have transparent
topological interpretations: for any subset A ⊂ X the set ΦA(A) coincides with the interior
of a set A ⊂ X while ΦA⊥(A) with the closure of A in X!

The correspondence Φ : A 7→ ΦA determines a map Φ : G(X) → P(X)P(X) called the
function representation of the semigroup G(X).

Theorem 1. The function representation Φ : G(X) → P(X)P(X) is a continuous injective
semigroup homomorphism.
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Proof. To check that Φ is a semigroup homomorphism, take any two inclusion hyperspaces
X ,Y ∈ G(X) and let Z = X ◦ Y . We need to check that ΦZ(A) = ΦX ◦ ΦY(A) for every
A ⊂ X. Observe that

ΦZ(A) = {z ∈ G : z−1A ∈ Z} = {z ∈ G : {x ∈ G : x−1z−1A ∈ Y} ∈ X} =

= {z ∈ G : ΦY(z−1A) ∈ X} = {z ∈ G : z−1ΦY(A) ∈ X} = ΦX (ΦY(A)).

To see that Φ is injective, take any two distinct inclusion hyperspaces X ,Y ∈ G(X).
Without loss of generality, X \ Y contains some set A ⊂ X. It follows that e ∈ ΦX (A) but
e /∈ ΦY(A) and hence ΦX 6= ΦY .

To prove that Φ : G(X) → P(X)P(X) is continuous we first define a convenient sub-base of
the topology on the spaces P(X) and P(X)P(X). The product topology of P(X) is generated
by the sub-base consisting of the sets

x+ = {A ⊂ X : x ∈ A} and x− = {A ⊂ X : x /∈ A}
where x ∈ X. On the other hand, the product topology on P(X)P(X) is generated by the
sub-base consisting of the sets

〈x,A〉+ = {f ∈ P(X)P(X) : x ∈ f(A)} and 〈x,A〉− = {f ∈ P(X)P(X) : x /∈ f(A)}
where A ∈ P(X) and x ∈ X.

Now observe that the preimage

Φ−1(〈x,A〉+) = {A ∈ G(X) : x ∈ ΦA(A)} = {A ∈ G(X) : x−1A ∈ A} = (x−1A)+

is open in G(X). The same is true for the preimage

Φ−1(〈x,A〉−) = {A ∈ G(X) : x /∈ ΦA(A)} = {A ∈ G(X) : x−1A /∈ A} = (X \ x−1A)−

which also is open in G(X).

3 The semigroup λ(X, P(X)) and its projections λ(X, F)

Since for a group X the function representation Φ : G(X) → P(X)P(X) is an isomorphic
embedding, instead of the semigroup λ(X) we can study its isomorphic copy λ(X, P(X)) =

Φ(λ(X)) ⊂ P(X)P(X). Our strategy is to study λ(X, P(X)) via its projections λ(X, F) onto
the faces P(X)F of the cube P(X)P(X), where F is a suitable subfamily of P(X).

Given a subfamily F ⊂ P(X) by

prF : P(X)P(X) → P(X)F, prF : f 7→ f |F,

we denote the projection of P(X)P(X) onto its F-face P(X)F. Let

ΦF = prF ◦ Φ : λ(X) → P(X)F

and
λ(X, F) = ΦF(λ(X)) = prF(λ(X, P(X)) = (prF ◦ Φ)(λ(X)).

Now we detect functions f : F → P(X) belonging to the image λ(X, F). Let us call a
family F ⊂ P(X)
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• X-invariant if xF ∈ F for every F ∈ F and every x ∈ X;

• symmetric if for each A ∈ F we get X \ A ∈ F.

Theorem 2. A function f : F → P(X) defined on a symmetric X-invariant subfamily
F ⊂ P(X) belongs to the image λ(X, F) = ΦF(λ(X)) if and only if

1) f is equivariant;

2) f is monotone;

3) f is symmetric in the sense that f(X \ A) = X \ f(A) for each A ∈ F.

Proof. To prove the “only if” part, take any maximal linked system L ∈ λ(X) and consider
its function representation f = ΦL : P(X) → P(X).

By Proposition 2.1, the function f is equivariant and monotone. Consequently, the
restriction f |F satisfies the items (1), (2). To prove the third item, take any set A ∈ F and
observe that

f(X \ A) = {x ∈ X : x−1(X \ A) ∈ L} = {x ∈ X : X \ x−1A ∈ L} =

= {x ∈ X : x−1A /∈ L} = X \ {x ∈ X : x−1A ∈ L} = X \ f(A).

This completes the proof of the “only if” part.
To prove the “if” part, take any function f : F → P(X) satisfying the conditions 1)–3)

and consider the family
Lf = {x−1A : A ∈ F, x ∈ f(A)}.

We claim that this family is linked. Assuming the converse, find two sets A,B ∈ F and
two points x ∈ f(A) and y ∈ f(B) with x−1A ∩ y−1B = ∅. Then yx−1A ⊂ X \ B and
hence yx−1f(A) ⊂ f(X \ B) = X \ f(B) by the properties 1)–3) of the map f . Then
x−1f(A) ⊂ X \ y−1f(B), which is not possible because the neutral element e of the group
X belongs to x−1f(A) ∩ y−1f(B).

Enlarge the linked family Lf to a maximal linked family L ∈ λ(X). We claim that
ΦL|F = f . Indeed, take any set A ∈ F and observe that

f(A) ⊂ {x ∈ X : x−1A ∈ Lf} ⊂ {x ∈ X : x−1A ∈ L} = ΦL(A).

To prove the reverse inclusion, observe that for any x ∈ X \ f(A) = f(X \ A) we get
x−1(X \ A) = X \ x−1A ∈ Lf ⊂ L. Since L is linked, x−1A /∈ L and hence x /∈ ΦL(A).

A subfamily F ⊂ P(X) is called ⊂-incomparable if for any subset A,B ∈ F the inclusion
A ⊂ B implies the equality A = B. In this case each function f : F → P(X) is monotone,
so the characterization Theorem 2 simplifies as follows.

Corollary 3.1. A function f : F → P(X) defined on a ⊂-incomparable symmetric X-
invariant subfamily F ⊂ P(X) belongs to the image λ(X, F) = ΦF(λ(X)) if and only if f is
equivariant and symmetric.
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A subfamily F ⊂ P(X) is called λ-invariant if ΦL(F) ⊂ F for every maximal linked system
L ∈ λ(X). In this case λ(X, F) ⊂ FF is a subsemigroup of the right-topological group FF of
all self-maps of F.

Now we see that Theorem 1 implies

Proposition 3.1. For any λ-invariant subfamily F ⊂ P(X) the map

ΦF = prF ◦ Φ : λ(X) → λ(X, F) ⊂ FF

is a continuous semigroup homomorphism and λ(X, F) is a compact right-topological semi-
group.

4 Self-linked sets in groups

Our strategy in studying minimal left ideals of the semigroup λ(X) consists in finding
a relatively small λ-invariant subfamily F ⊂ P(X) such that the function representation
ΦF : λ(X) → λ(X, F) is injective on some (equivalently all) minimal left ideals of λ(X).

The first step in finding such a family F is to consider the family of self-linked sets in X.

Definition 4.1. A subset A of a group X is self-linked if xA ∩ yA 6= ∅ for all x, y ∈ X.

Self-linked sets in (finite) groups were studied in details in [1]. The following simple
characterization can be easily derived from the definitions.

Proposition 4.1. For a subset A ⊂ X the following conditions are equivalent:

1) A is self-linked;

2) the family of shifts {xA : x ∈ X} is linked;

3) AA−1 = X;

4) A belongs to an invariant linked system A ∈
↔
N2(X);

5) A belongs to a maximal invariant linked system A ∈
↔
λ(X) = max

↔
N2(X).

The following proposition was first proved in [3, 4.1]. Here we present a short proof for
completeness.

Proposition 4.2. For any invariant linked system L0 ∈
↔
N2(X) the upper set

↑L0 = {L ∈ λ(X) : L ⊃ L0}

is a closed left ideal in λ(X).
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Proof. Let A,B ∈ λ(X) be maximal linked systems with L0 ⊂ B. Then for every subset
L ∈ L0 we get

L =
⋃
x∈X

x(x−1L) ∈ A ∗ L0 ⊂ A ∗ B

which means that L0 ⊂ A ∗ B.
To show that ↑L0 is closed in λ(X), take any maximal linked system L ∈ λ(X) \ ↑L0

and find a set A ∈ L0 with A /∈ L. Since L is maximal linked, X \ A ∈ L. Consequently,
(X \ A)± is an open neighborhood of L that does not intersect ↑L0.

Observe that any linked system L ∈ N2(X) extending an invariant linked system L0 ∈↔
N2(X) lies in the inclusion hyperspace L⊥0 . It turns out that sets from L⊥0 \L0 have a specific
structure described in the following theorem.

Theorem 3. For any maximal invariant linked system L0 ∈
↔
λ(X) and any A ∈ L⊥0 \ L0

there are points a, b ∈ X such that aA ⊂ X \ A ⊂ bA.

Proof. Fix a subset A ∈ L⊥0 \ L0. We claim that

aA ∩ A = ∅ (2)

for some a ∈ X. Assuming the converse, we would conclude that the family {xA : x ∈ X}
is linked and then the invariant linked system L0 ∪ {xA : x ∈ X} is strictly larger than L0,
which impossible because of the maximality of L0.

Next, we find b ∈ X with
A ∪ bA = X. (3)

Assuming that no such a point b exist, we conclude that for any x, y ∈ X the union xA∪yA 6=
X. Then (X \ xA) ∩ (X \ yA) = X \ (xA ∪ yA) 6= ∅, which means that the family
{X \ xA : x ∈ X} is linked and invariant. We claim that X \ A ∈ L⊥0 . Assuming the
converse, we would conclude that X \ A misses some set L ∈ L0. Then L ⊂ A and hence
A ∈ L0 which is not the case. Thus X \A ∈ L⊥0 and hence {X \ xA : x ∈ X} ⊂ L⊥0 because
L⊥0 is invariant. Since L0 ∪ {X \ xA : x ∈ X} is an invariant linked system containing L0,
the maximality of L0 guarantees that G \ A ∈ L0 which contradicts A ∈ L⊥0 .

Unifying the equalities (2) and (3) we get the required inclusions

aA ⊂ X \ A ⊂ bA.

5 Twin and pretwin sets in groups

Having in mind the sets appearing in Theorem 3 we introduce the following two notions.

Definition 5.1. A subset A of a group X is called

• a twin subset if X \ A = xA for some x ∈ X;

• a pretwin subset if xA ⊂ X \ A ⊂ yA for some x, y ∈ X.
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By T and pT we denote the families of twin and pretwin subsets of X, respectively.

Proposition 5.1. The families pT and T are λ-invariant.

Proof. Take any maximal linked system L ∈ λ(X) and consider its function representation
f = ΦL : P(X) → P(X), which is equivariant, monotone, and symmetric according to
Theorem 2.

To show that the family pT is λ-invariant, take any pretwin set A ∈ pT and find two
points x, y ∈ X with xA ⊂ X \ A ⊂ yA. Applying to those inequalities the monotone
equivariant symmetric function f we get

xf(A) = f(xA) ⊂ f(X \ A) = X \ f(A) ⊂ f(yA) = yf(A),

which means that f(A) is pretwin.
If a set A is twin, then X \ A = xA for some x ∈ X and then X \ f(A) = f(X \ A) =

f(xA) = xf(A), which means that f(A) is a twin set.

Propositions 5.1 and 3.1 imply that λ(X, T) and λ(X, pT) both are compact right-
topological semigroups. The importance of the family pT is explained by the following

Theorem 4. For every maximal invariant linked system L0 ∈
↔
λ(X) the restriction ΦpT|↑L0 :

↑L0 → λ(X, pT) is a topological isomorphism of the compact right-topological semigroups.

Proof. Since ΦpT is continuous and the semigroups λ(X) and λ(X, pT) are compact. It
suffices to check that the restriction ΦpT|↑L0 is bijective.

To show that it is surjective, take any function f ∈ λ(X, pT), which is equivariant,
monotone, and symmetric according to Theorem 2.

By the proof of Theorem 2, the family

Lf = {x−1A : A ∈ pT, x ∈ f(A)}

is linked. We claim that so is the family L0 ∪ Lf . Assuming the opposite we could find
disjoint sets A ∈ Lf and B ∈ L0. Since A is pretwin, xA ⊂ X \ A ⊂ yA for some x, y ∈ X.
Now we see that

B ⊂ X \ A ⊂ yA ⊂ X \ yB,

which is not possible as B is self-linked and hence meets its shift yB.
Now extend the linked family L0 ∪ Lf to a maximal linked family L ∈ λ(X) and show

that ΦL|pT = f (repeating the argument of the proof of Theorem 2).
Next, we show that the restriction ΦpT|↑L0 is injective. Take any two distinct maximal

linked systems X ,Y ∈ ↑L0. It follows that there is a set A ∈ X \ Y . This set belongs to
L⊥0 \L0 and hence is pretwin by Theorem 3. Now the definition of the function representation
yields that e ∈ ΦX (A) \ ΦY(A), witnessing that ΦpT(X ) 6= ΦpT(Y).

Since the function representation ΦpT is injective on the left ideal ↑L0 of λ(X), it is
injective on some minimal left ideal of λ(X) and hence is injective on each minimal left ideal
of λ(X), see Proposition 1.1. In such a way we prove
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Corollary 5.1. The function representation ΦpT : λ(X) → λ(X, pT) is injective on each
minimal left ideal of λ(X). Consequently, each minimal left ideal of λ(X) is topologically
isomorphic to a minimal left ideal of the semigroup λ(X, pT).
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Гаврилкiв В.М. Про зображення напiвгруп гiперпросторiв включення // Карпатськi ма-
тематичнi публiкацiї. — 2010. — Т.2, №1. — C. 24–34.

В роботi вивчається алгебраїчна структура компактної правотопологiчної напiвгрупи
G(X), яка складається зi всiх гiперпросторiв включення на групi X. Дана напiвгрупа
мiстить напiвгрупу λ(X) всiх максимальних зчеплених систем як замкнену пiднапiвгрупу.
Побудовано точне зображення напiвгруп G(X) та λ(X) в напiвгрупi P(X)P(X) всiх вiдобра-
жень степiнь-множини P(X) в себе. Використовуючи це зображення доведено, що кожен
мiнiмальний лiвий iдеал напiвгрупи λ(X) топологiчно iзоморфний мiнiмальному лiвому
iдеалу напiвгрупи pTpT.

Гаврилкив В.М. О представлении полугрупп гиперпространств включения // Карпат-
ские математические публикации. — 2010. — Т.2, №1. — C. 24–34.

В работе изучается алгебраическая структура компактной правотопологической полу-
группы G(X), которая содержит все гиперпространства включения на группе X. Эта
полугруппа содержит полугруппу λ(X) всех максимальных сцепленных систем в качестве
замкнутой подполугруппы. Построено точное представление полугрупп G(X) и λ(X)
в полугруппе P(X)P(X) всех отображений степень-множества P(X) в себя. Используя
это представление доказано, что каждый минимальный левый идеал полугруппы λ(X)
топологически изоморфен минимальному левому идеалу полугруппы pTpT.


