PELL NUMBERS IDENTITIES FROM TOEPLITZ-HESSENBERG DETERMINANTS AND PERMANENTS

Taras Goy ${ }^{\text {T }}$

Abstract

In this paper, we investigate some families of ToeplitzHessenberg determinants and permanents the entries of which are Pell numbers with consecutive, even, and odd subscripts. As a consequence, we obtain for these numbers new identities involving multinomial coefficients.

AMS Mathematics Subject Classification (2010): 15B36; 11B37
Key words and phrases: Pell sequence; Fibonacci sequence; ToeplitzHessenberg matrix; multinomial coefficient

1. Introduction and preliminaries

The well-known Fibonacci sequence $\left(F_{n}\right)_{n \geq 0}$ is defined by the recurrence: for $n \geq 2$,

$$
F_{n}=F_{n-1}+F_{n-2},
$$

where $F_{0}=0, F_{1}=1$. Furthermore, similar to the Fibonacci sequence, the Pell sequence $\left(P_{n}\right)_{n \geq 0}$ is defined by the recurrence: for $n \geq 2$,

$$
\begin{equation*}
P_{n}=2 P_{n-1}+P_{n-2}, \tag{1}
\end{equation*}
$$

where $P_{0}=0, P_{1}=1$.
The Pell sequence has a rich history and many remarkable properties [6, 7]. As well as being used to approximate the square root of 2 , the Pell numbers can be used to find square triangular numbers, to construct integer approximations to the right isosceles triangle, and to solve certain combinatorial enumeration problems [[$\boxed{\square}, \underline{2}, \underline{\underline{y}}, \boxed{L 2}]$. Some examples of recent papers involving Pell numbers and their generalizations include [3, $4,8, \boxed{4}, \boxed{4}, \boxed{4}, ~[15]$.

The purpose of the present paper is to investigate the determinants and permanents of some families of Toeplitz-Hessenberg matrices whose entries are Pell numbers with successive, odd or even subscripts. As a result, we obtain for these numbers new identities involving multinomial coefficients. Also, we establish a connection between Pell numbers and Fibonacci numbers using Toeplitz-Hessenberg determinants.

Some results of this paper were announced without proofs in [5].

[^0]
2. Toeplitz-Hessenberg determinants and permanents

A lower Toeplitz-Hessenberg matrix is a square matrix of the order n in the form

$$
M_{n}\left(a_{0} ; a_{1}, \ldots, a_{n}\right)=\left[\begin{array}{cccccc}
a_{1} & a_{0} & 0 & \cdots & 0 & 0 \tag{2}\\
a_{2} & a_{1} & a_{0} & \cdots & 0 & 0 \\
a_{3} & a_{2} & a_{1} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_{1} & a_{0} \\
a_{n} & a_{n-1} & a_{n-2} & \cdots & a_{2} & a_{1}
\end{array}\right]
$$

where $a_{i} \neq 0$ for at least one $i>0$ and $a_{0} \neq 0$.
Expanding Toeplitz-Hessenberg determinant and permanent, which we will denote by $\operatorname{det}\left(M_{n}\right)$ and $\operatorname{perm}\left(M_{n}\right)$, repeatedly along the last row, we obtain the following recurrences:

$$
\begin{align*}
\operatorname{det}\left(M_{n}\right) & =\sum_{i=1}^{n}\left(-a_{0}\right)^{i-1} a_{i} \operatorname{det}\left(M_{n-i}\right), \tag{3}\\
\operatorname{perm}\left(M_{n}\right) & =\sum_{i=1}^{n} a_{0}^{i-1} a_{i} \operatorname{perm}\left(M_{n-i}\right),
\end{align*}
$$

where, by definition, $\operatorname{det}\left(M_{0}\right)=1$ and $\operatorname{perm}\left(M_{0}\right)=1$.
It can also easily be verified that

$$
\operatorname{det}\left(M_{n}\left(a_{0} ; a_{1}, \ldots, a_{n}\right)\right)=\operatorname{perm}\left(M_{n}\left(-a_{0} ; a_{1}, \ldots, a_{n}\right)\right) .
$$

We investigate a particular case of Toeplitz-Hessenberg matrix, in which all subdiagonal elements are 1.

To simplify notation, we $\operatorname{denote} \operatorname{det}\left(a_{1}, \ldots, a_{n}\right)=\operatorname{det}\left(M_{n}\left(1 ; a_{1}, a_{2}, \ldots, a_{n}\right)\right)$ and $\operatorname{perm}\left(a_{1}, \ldots, a_{n}\right)=\operatorname{perm}\left(M_{n}\left(1 ; a_{1}, a_{2}, \ldots, a_{n}\right)\right)$.

In the next two sections, we evaluate Toeplitz-Hessenberg determinants and permanents with special Pell numbers entries.

3. Fibonacci numbers via Toeplitz-Hessenberg determinants with Pell numbers entries

The next theorem gives a connection between Fibonacci numbers and Pell numbers using Toeplitz-Hessenberg determinants.

Theorem 3.1. For all $n \geq 1$, the following formulas hold:

$$
\begin{align*}
F_{n} & =(-1)^{n-1} \operatorname{det}\left(P_{1}, P_{2}, \ldots, P_{n}\right), \tag{4}\\
F_{2 n+3} & =\operatorname{det}\left(P_{3}, P_{4}, \ldots, P_{n+2}\right) . \tag{5}
\end{align*}
$$

Proof. We will prove formula (\$) using the principle of mathematical induction on n. The proof of (国) follow similarly, so we omit it for brevity.

Let $D_{n}=\operatorname{det}\left(P_{1}, P_{2}, \ldots, P_{n}\right)$. The formula (($\mathbb{4}$) clearly holds, when $n=1$ and $n=2$. Suppose it is true for all $k \leq n-1$, where $n \geq 3$. Using recurrence (II) and (3), we have

$$
\begin{aligned}
D_{n} & =\sum_{k=1}^{n}(-1)^{k-1} P_{k} D_{n-k} \\
& =P_{1} D_{n-1}+\sum_{k=2}^{n}(-1)^{k-1}\left(2 P_{k-1}+P_{k-2}\right) D_{n-k} \\
& =D_{n-1}+2 \sum_{k=1}^{n-1}(-1)^{k} P_{k} D_{n-k-1}+\sum_{k=0}^{n-2}(-1)^{k+1} P_{k} D_{n-k-2} \\
& =D_{n-1}-2 D_{n-1}+D_{n-2}=-D_{n-1}+D_{n-2} .
\end{aligned}
$$

Using the induction hypothesis and the Fibonacci recurrence, we obtain

$$
\begin{aligned}
D_{n} & =-(-1)^{n-2} F_{n-1}+(-1)^{n-3} F_{n-2} \\
& =(-1)^{n-1} F_{n} .
\end{aligned}
$$

Consequently, formula ($\mathbb{4}$) is true in the n case and thus, by induction, it holds for all positive integers.

4. Some Toeplitz-Hessenberg determinants and permanents with Pell numbers entries

Next, we investigate several Toeplitz-Hessenberg determinants whose entries are Pell numbers with consecutive, even and odd subscripts.
Theorem 4.1. Let $n \geq 1$, except when noted otherwise. Then

$$
\begin{align*}
\operatorname{det}\left(P_{0}, P_{1}, \ldots, P_{n-1}\right) & =(-1)^{n-1}\left\lfloor 2^{n-2}\right\rfloor \\
\operatorname{det}\left(P_{0}, P_{2}, \ldots, P_{2 n-2}\right) & =\frac{(-3-\sqrt{6})^{n-1}-(-3+\sqrt{6})^{n-1}}{\sqrt{6}} \\
\operatorname{det}\left(P_{1}, P_{3}, \ldots, P_{2 n-1}\right) & =(-1)^{n-1} 4 \cdot 5^{n-2}, \quad n \geq 2 \tag{6}\\
\operatorname{det}\left(P_{2}, P_{3}, \ldots, P_{n+1}\right) & =(-1)^{n}\left\lfloor\frac{2}{n}\right\rfloor, \\
\operatorname{det}\left(P_{2}, P_{4}, \ldots, P_{2 n}\right) & =\frac{(-2+\sqrt{3})^{n}-(-2-\sqrt{3})^{n}}{\sqrt{3}} \\
\operatorname{det}\left(P_{3}, P_{5}, \ldots, P_{2 n+1}\right) & =(-1)^{n-1} 4, \quad n \geq 2 \\
\operatorname{det}\left(P_{4}, P_{6}, \ldots, P_{2 n+2}\right) & =\frac{(3+\sqrt{10})^{n}-(3-\sqrt{10})^{n}}{\sqrt{10}}, \quad n \geq 2
\end{align*}
$$

where $\lfloor\alpha\rfloor$ is the floor of α.

Proof. We will prove formula (${ }^{(6)}$) using induction on n; the others can be proved in the same way. Let $D_{n}=\operatorname{det}\left(P_{1}, P_{3}, \ldots, P_{2 n-1}\right)$.

When $n=1$ and $n=2$, the formula holds. Assuming (四) to hold for $n-1$, we proved it for $n \geq 3$. Using (四), (3I), and the well-known formula [[

$$
P_{2 k-2}=2 \sum_{i=1}^{k-1} P_{2 i-1},
$$

we then obtain

$$
\begin{aligned}
D_{n} & =\sum_{k=1}^{n}(-1)^{k-1} P_{2 k-1} D_{n-k} \\
& =P_{1} D_{n-1}+\sum_{k=2}^{n}(-1)^{k-1}\left(2 P_{2 k-2}+P_{2 k-3}\right) D_{n-k} \\
& =D_{n-1}+2 \sum_{k=2}^{n}(-1)^{k-1} P_{2 k-2} D_{n-k}+\sum_{k=1}^{n-1}(-1)^{k} P_{2 k-1} D_{n-k-1} \\
& =D_{n-1}+2 \sum_{k=2}^{n}(-1)^{k-1} P_{2 k-2} D_{n-k}-D_{n-1} \\
& =2 \sum_{k=2}^{n}(-1)^{k-1} P_{2 k-2} D_{n-k} \\
& =4 \sum_{k=2}^{n} \sum_{i=1}^{k-1}(-1)^{k-1} P_{2 i-1} D_{n-k} \\
& =4 \sum_{i=1}^{n-1}(-1)^{i} \sum_{k=1}^{n-i}(-1)^{k-1} P_{2 k-1} D_{n-k-i} \\
& =4 \sum_{i=1}^{n-2}(-1)^{i} D_{n-i}+4(-1)^{n-1} D_{1} .
\end{aligned}
$$

Using the induction hypothesis, we have

$$
\begin{aligned}
D_{n} & =4 \sum_{i=1}^{n-2}(-1)^{i} \cdot \frac{4(-5)^{n-i-1}}{5}+4(-1)^{n-1} \\
& =4(-1)^{n-1}\left(5^{n-2}-1\right)+4(-1)^{n-1} \\
& =\frac{4(-5)^{n-1}}{5}
\end{aligned}
$$

Since the formula holds for n, it follows by induction that it is true for all positive integers.

Similar formulas hold true for Toeplitz-Hessenberg permanents with Pell numbers entries.

Theorem 4.2. For all $n \geq 1$, the following formulas hold:

$$
\begin{aligned}
\operatorname{perm}\left(P_{0}, P_{1}, \ldots, P_{n-1}\right) & =\frac{(1+\sqrt{3})^{n-1}-(1-\sqrt{3})^{n-1}}{2 \sqrt{3}} \\
\operatorname{perm}\left(P_{0}, P_{2}, \ldots, P_{2 n-2}\right) & =\frac{(3+\sqrt{10})^{n-1}-(3-\sqrt{10})^{n-1}}{\sqrt{10}} \\
\operatorname{perm}\left(P_{1}, P_{2}, \ldots, P_{n}\right) & =\frac{1}{\sqrt{13}}\left(\left(\frac{3+\sqrt{13}}{2}\right)^{n}-\left(\frac{3-\sqrt{13}}{2}\right)^{n}\right), \\
\operatorname{perm}\left(P_{1}, P_{3}, \ldots, P_{2 n-1}\right) & =\frac{\sqrt{41}}{82}\left((5+\sqrt{41}) A^{n-1}-(5-\sqrt{41})\left(\frac{2}{A}\right)^{n-1}\right), \\
\operatorname{perm}\left(P_{2}, P_{3}, \ldots, P_{n+1}\right) & =\frac{(3+\sqrt{6})(2+\sqrt{6})^{n}+(3-\sqrt{6})(2-\sqrt{6})^{n}}{12} \\
\operatorname{perm}\left(P_{2}, P_{4}, \ldots, P_{2 n}\right) & =\frac{(4+\sqrt{15})^{n}-(4-\sqrt{15})^{n}}{\sqrt{15}}
\end{aligned}
$$

where $A=(7+\sqrt{41}) / 2$.
Proof. We will prove formula ($\mathbb{\pi}$) using induction on n; the others can be proved in the same way. Let

$$
D_{n}=\operatorname{perm}\left(P_{2}, P_{4}, \ldots, P_{2 n}\right)
$$

When $n=1$ and $n=2$, the formula holds. Assuming ($\mathbb{\square}$) to hold for $n-1$, we proved it for $n \geq 2$. Using (3) and well-known formula [$\mathbf{\square}$, p. 193]

$$
P_{2 k-1}=2 \sum_{i=1}^{k-1} P_{2 i}+1
$$

we then obtain

$$
\begin{aligned}
D_{n} & =\sum_{k=1}^{n} P_{2 k} D_{n-k} \\
& =\sum_{k=1}^{n}\left(2 P_{2 k-1}+P_{2 k-2}\right) D_{n-k} \\
& =2 \sum_{k=1}^{n}\left(2 \sum_{i=1}^{k-1} P_{2 i}+1\right) D_{n-k}+\sum_{k=2}^{n} P_{2 k-2} D_{n-k} \\
& =4 \sum_{k=1}^{n} \sum_{i=1}^{k-1} P_{2 i} D_{n-k}+2 \sum_{k=1}^{n} D_{n-k}+\sum_{k=1}^{n-1} P_{2 k} D_{n-k-1} \\
& =4 \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} P_{2 i} D_{n-i-k}+2 \sum_{k=1}^{n} D_{n-k}+D_{n-1} \\
& =4 \sum_{i=1}^{n-1} D_{n-i}+2 \sum_{k=1}^{n} D_{n-k}+D_{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& =4\left(\sum_{i=1}^{n} D_{n-i}-D_{0}\right)+2 \sum_{k=1}^{n} D_{n-k}+D_{n-1} \\
& =6\left(\sum_{i=1}^{n-2} D_{n-i}+D_{0}+D_{1}\right)-4+D_{n-1} \\
& =6 \sum_{i=1}^{n-2} D_{n-i}+D_{n-1}+14 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
D_{n} & =6 \sum_{i=1}^{n-2} \frac{(4+\sqrt{15})^{n-i}-(4-\sqrt{15})^{n-i}}{\sqrt{15}}+\frac{(4+\sqrt{15})^{n-1}-(4-\sqrt{15})^{n-1}}{\sqrt{15}}+14 \\
& =\frac{(4+\sqrt{15})^{n}-(4-\sqrt{15})^{n}}{\sqrt{15}}
\end{aligned}
$$

Since the formula holds for n, it follows that it is true for all positive integers.

5. Multinomial extensions

In this section, we focus on multinomial extension of Theorems [3.1, ㅈ..1, and 4.2.

It is known that the determinant and permanent of M_{n} can be evaluated using Trudi's formulas [【I, Ch. 7] as follows:

$$
\begin{equation*}
\operatorname{det}\left(M_{n}\right)=\sum_{\substack{t=\left(t_{1}, t_{2}, \ldots, t_{n}\right) \\ t_{1}, \ldots, t_{n} \geq 0 \\ t_{1}+2 t_{2}+\cdots+n t_{n}=n}}\left(-a_{0}\right)^{n-|t|} s_{n}(t) a_{1}^{t_{1}} a_{2}^{t_{2}} \cdots a_{n}^{t_{n}}, \tag{8}
\end{equation*}
$$

where $|t|=t_{1}+\cdots+t_{n}$ and $s_{n}(t)=\binom{t_{1}+\cdots+t_{n}}{t_{1}, \ldots, t_{n}}=\frac{\left(t_{1}+\cdots+t_{n}\right) \text { ! }}{t_{1}!\cdots t_{n}!}$ is the multinomial coefficient.

For example, from ($(\mathbb{})$ and (\mathbb{I}) we obtain

$$
\begin{aligned}
\operatorname{det}\left(M_{4}\right)= & \binom{4}{4,0,0,0} a_{1}^{4}-\binom{3}{2,1,0,0} a_{1}^{2} a_{2}+\binom{2}{1,0,1,0} a_{1} a_{3} \\
& +\binom{2}{0,2,0,0} a_{2}^{2}-\binom{1}{0,0,0,1} a_{4} \\
= & a_{1}^{4}-3 a_{1}^{2} a_{2}+2 a_{1} a_{3}+a_{2}^{2}-a_{4} \\
\operatorname{perm}\left(M_{3}\right)= & \binom{3}{3,0,0} a_{1}^{3}+\binom{2}{1,1,0} a_{1} a_{2}+\binom{1}{0,0,1} a_{3} \\
= & a_{1}^{3}+2 a_{1} a_{2}+a_{3} .
\end{aligned}
$$

Trudi's formulas (($\mathbb{8}$) and ($\mathbf{(1)}$), coupled with Theorems [3.1, 4.1, 4.2 yield the following Pell identities with multinomial coefficients.

Corollary 5.1. Let $n \geq 1$, except when noted otherwise, and let $a=\frac{7+\sqrt{41}}{2}$, $b=5+\sqrt{41}, c=3+\sqrt{6}, \tau_{n}=t_{1}+2 t_{2}+\cdots+n t_{n}, t_{i} \geq 0$. Then

$$
\begin{align*}
\sum_{\tau_{n}=n}(-1)^{|t|} s_{n}(t) P_{0}^{t_{1}} P_{1}^{t_{2}} \cdots P_{n-1}^{t_{n}} & =-2^{n-2}, \quad n \geq 2 \\
\sum_{\tau_{n}=n} s_{n}(t) P_{0}^{t_{1}} P_{1}^{t_{2}} \cdots P_{n-1}^{t_{n}} & =\frac{(1+\sqrt{3})^{n-1}-(1-\sqrt{3})^{n-1}}{2 \sqrt{3}} \\
\sum_{\tau_{n}=n}(-1)^{|t|} s_{n}(t) P_{0}^{t_{1}} P_{2}^{t_{2}} \cdots P_{2 n-2}^{t_{n}} & =\frac{(3-\sqrt{6})^{n-1}-(3+\sqrt{6})^{n-1}}{\sqrt{6}} \tag{10}
\end{align*}
$$

$$
\begin{equation*}
\sum_{\tau_{n}=n}(-1)^{|t|} s_{n}(t) P_{1}^{t_{1}} P_{2}^{t_{2}} \cdots P_{n}^{t_{n}}=-F_{n} \tag{11}
\end{equation*}
$$

$$
\sum_{\tau_{n}=n} s_{n}(t) P_{1}^{t_{1}} P_{2}^{t_{2}} \cdots P_{n}^{t_{n}}=\frac{(3+\sqrt{13})^{n}-(3-\sqrt{13})^{n}}{2^{n} \sqrt{13}}
$$

$$
\sum_{\tau_{n}=n}(-1)^{|t|} s_{n}(t) P_{1}^{t_{1}} P_{3}^{t_{2}} \cdots P_{2 n-1}^{t_{n}}=-4 \cdot 5^{n-2}, \quad n \geq 2
$$

$$
\sum_{\tau_{n}=n} s_{n}(t) P_{1}^{t_{1}} P_{3}^{t_{2}} \cdots P_{2 n-1}^{t_{n}}=\frac{\sqrt{41}}{82}\left(b a^{n-1}+\frac{2^{n+3}}{b a^{n-1}}\right)
$$

$$
\begin{equation*}
\sum_{\tau_{n}=n}(-1)^{|t|} s_{n}(t) P_{2}^{t_{1}} P_{3}^{t_{2}} \cdots P_{n+1}^{t_{n}}=0, \quad n \geq 3 \tag{12}
\end{equation*}
$$

$$
\sum_{\tau_{n}=n} s_{n}(t) P_{2}^{t_{1}} P_{3}^{t_{2}} \cdots P_{n+1}^{t_{n}}=\frac{c^{2}(2+\sqrt{6})^{n}+3(2-\sqrt{6})^{n}}{12 c}
$$

$$
\sum_{\tau_{n}=n}(-1)^{|t|} s_{n}(t) P_{2}^{t_{1}} P_{4}^{t_{2}} \cdots P_{2 n}^{t_{n}}=\frac{(2-\sqrt{3})^{n}-(2+\sqrt{3})^{n}}{\sqrt{3}}
$$

$$
\sum_{\tau_{n}=n} s_{n}(t) P_{2}^{t_{1}} P_{4}^{t_{2}} \cdots P_{2 n}^{t_{n}}=\frac{(4+\sqrt{15})^{n}-(4-\sqrt{15})^{n}}{\sqrt{15}}
$$

$$
\sum_{\tau_{n}=n}(-1)^{|t|} s_{n}(t) P_{3}^{t_{1}} P_{4}^{t_{2}} \cdots P_{n+2}^{t_{n}}=(-1)^{n} F_{2 n+3}
$$

$$
\sum_{\tau_{n}=n}(-1)^{|t|} s_{n}(t) P_{3}^{t_{1}} P_{5}^{t_{2}} \cdots P_{2 n+1}^{t_{n}}=-4, \quad n \geq 2
$$

$$
\sum_{\tau_{n}=n}(-1)^{|t|} s_{n}(t) P_{4}^{t_{1}} P_{6}^{t_{1}} \cdots P_{2 n+2}^{t_{n}}=\frac{(-3-\sqrt{10})^{n}-(-3+\sqrt{10})^{n}}{\sqrt{10}}, \quad n \geq 2
$$

$$
\begin{aligned}
P_{1}^{3}-2 P_{1} P_{2}+P_{3} & =F_{3}, \\
P_{2}^{4}-3 P_{2}^{2} P_{3}+2 P_{2} P_{4}+P_{3}^{2}-P_{5} & =0, \\
P_{0}^{5}+4 P_{0}^{3} P_{2}+3 P_{0}^{2} P_{4}+3 P_{0} P_{2}^{2}+2 P_{0} P_{6}+2 P_{2} P_{4}+P_{8} & =456,
\end{aligned}
$$

respectively.

References

[1] Benjamin, A. T., Plott, S. S., and Sellers, J. A. Tiling proofs of recent sum identities involving Pell numbers. Ann. Comb. 12, 3 (2008), 271-278.
[2] Chow, C.-O., Ma, S.-M., Mansour, T., and Shattuck, M. Counting permutations by cyclic peaks and valleys. Ann. Math. Inform. 43 (2014), 43-54.
[3] Dasdemir, A. On the Pell, Pell-Lucas and modified Pell numbers by matrix method. Appl. Math. Sci. (Ruse) 5, 61-64 (2011), 3173-3181.
[4] Djordjević, G. B. Convolutions of the generalized Pell and Pell-Lucas numbers. Filomat 30, 1 (2016), 105-112.
[5] Goy, T. On Pell identities with multinomial coefficients. In Proceedings of the International Conference "Numbers, Forms and Geometry" (Sochi, Russia, 2017) (2017), Institute of Applied Mathematics, Khabarovsk Division, Khabarovsk, pp. 23-24.
[6] Horadam, A. F. Pell identities. Fibonacci Quart. 9, 3 (1971), 245-252, 263.
[7] Koshy, T. Pell and Pell-Lucas numbers with applications. Springer, New York, 2014.
[8] Li, H.-C. On Fibonacci-Hessenberg matrices and the Pell and Perrin numbers. Appl. Math. Comput. 218, 17 (2012), 8353-8358.
[9] Mansour, T., and Shattuck, M. A statistic on n-color compositions and related sequences. Proc. Indian Acad. Sci. Math. Sci. 124, 2 (2014), 127-140.
[10] Martinjak, I., and Vrsaljko, I. On polynomial identities for recursive sequences. Miskolc Math. Notes 18, 1 (2017), 327-336.
[11] Muir, T. A treatise on the theory of determinants. Revised and enlarged by William H. Metzler. Dover Publications, Inc., New York, 1960.
[12] Sellers, J. A. Domino tilings and products of Fibonacci and Pell numbers. J. Integer Seq. 5, 1 (2002), Article 02.1.2, 6.
[13] Srisawat, S., and Sriprad, W. On the (s, t)-Pell and ($s, t)$-Pell-Lucas numbers by matrix methods. Ann. Math. Inform. 46 (2016), 195-204.
[14] Yilmaz, F., and Bozkurt, D. Hessenberg matrices and the Pell and Perrin numbers. J. Number Theory 131, 8 (2011), 1390-1396.
[15] Zatorsky, R., and Goy, T. Parapermanents of triangular matrices and some general theorems on number sequences. J. Integer Seq. 19, 2 (2016), Article 16.2.2, 23.

Received by the editors September 5, 2018
First published online March 31, 2019

[^0]: ${ }^{1}$ Faculty of Mathematics and Computer Science, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine, e-mail: taras.goy@pnu.edu.ua

