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PELL NUMBERS IDENTITIES FROM
TOEPLITZ-HESSENBERG DETERMINANTS AND

PERMANENTS

Taras Goy1

Abstract. In this paper, we investigate some families of Toeplitz-
Hessenberg determinants and permanents the entries of which are Pell
numbers with consecutive, even, and odd subscripts. As a consequence,
we obtain for these numbers new identities involving multinomial coeffi-
cients.
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1. Introduction and preliminaries

The well-known Fibonacci sequence (Fn)n≥0 is defined by the recurrence:
for n ≥ 2,

Fn = Fn−1 + Fn−2,

where F0 = 0, F1 = 1. Furthermore, similar to the Fibonacci sequence, the
Pell sequence (Pn)n≥0 is defined by the recurrence: for n ≥ 2,

(1) Pn = 2Pn−1 + Pn−2,

where P0 = 0, P1 = 1.
The Pell sequence has a rich history and many remarkable properties [6, 7].

As well as being used to approximate the square root of 2, the Pell numbers can
be used to find square triangular numbers, to construct integer approximations
to the right isosceles triangle, and to solve certain combinatorial enumeration
problems [1, 2, 9, 12]. Some examples of recent papers involving Pell numbers
and their generalizations include [3, 4, 8, 10, 13, 14, 15].

The purpose of the present paper is to investigate the determinants and
permanents of some families of Toeplitz-Hessenberg matrices whose entries are
Pell numbers with successive, odd or even subscripts. As a result, we obtain
for these numbers new identities involving multinomial coefficients. Also, we
establish a connection between Pell numbers and Fibonacci numbers using
Toeplitz-Hessenberg determinants.

Some results of this paper were announced without proofs in [5].
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2. Toeplitz-Hessenberg determinants and permanents

A lower Toeplitz-Hessenberg matrix is a square matrix of the order n in the
form

(2) Mn(a0; a1, . . . , an) =



a1 a0 0 · · · 0 0
a2 a1 a0 · · · 0 0
a3 a2 a1 · · · 0 0
...

...
...

. . .
...

...
an−1 an−2 an−3 · · · a1 a0
an an−1 an−2 · · · a2 a1


,

where ai ̸= 0 for at least one i > 0 and a0 ̸= 0.

Expanding Toeplitz-Hessenberg determinant and permanent, which we will
denote by det(Mn) and perm(Mn), repeatedly along the last row, we obtain
the following recurrences:

det(Mn) =

n∑
i=1

(−a0)
i−1ai det(Mn−i),(3)

perm(Mn) =

n∑
i=1

ai−1
0 ai perm(Mn−i),

where, by definition, det(M0) = 1 and perm(M0) = 1.

It can also easily be verified that

det(Mn(a0; a1, . . . , an)) = perm(Mn(−a0; a1, . . . , an)).

We investigate a particular case of Toeplitz-Hessenberg matrix, in which all
subdiagonal elements are 1.

To simplify notation, we denote det(a1, . . . , an) = det (Mn(1; a1, a2, . . . , an))
and perm(a1, . . . , an) = perm (Mn(1; a1, a2, . . . , an)).

In the next two sections, we evaluate Toeplitz-Hessenberg determinants and
permanents with special Pell numbers entries.

3. Fibonacci numbers via Toeplitz-Hessenberg determi-
nants with Pell numbers entries

The next theorem gives a connection between Fibonacci numbers and Pell
numbers using Toeplitz-Hessenberg determinants.

Theorem 3.1. For all n ≥ 1, the following formulas hold:

Fn =(−1)n−1 det(P1, P2, . . . , Pn),(4)

F2n+3 =det(P3, P4, . . . , Pn+2).(5)
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Proof. We will prove formula (4) using the principle of mathematical induction
on n. The proof of (5) follow similarly, so we omit it for brevity.

Let Dn = det(P1, P2, . . . , Pn). The formula (4) clearly holds, when n = 1
and n = 2. Suppose it is true for all k ≤ n− 1, where n ≥ 3. Using recurrence
(1) and (3), we have

Dn =

n∑
k=1

(−1)k−1PkDn−k

= P1Dn−1 +

n∑
k=2

(−1)k−1 (2Pk−1 + Pk−2)Dn−k

= Dn−1 + 2

n−1∑
k=1

(−1)kPkDn−k−1 +

n−2∑
k=0

(−1)k+1PkDn−k−2

= Dn−1 − 2Dn−1 +Dn−2 = −Dn−1 +Dn−2.

Using the induction hypothesis and the Fibonacci recurrence, we obtain

Dn = −(−1)n−2Fn−1 + (−1)n−3Fn−2

= (−1)n−1Fn.

Consequently, formula (4) is true in the n case and thus, by induction, it
holds for all positive integers.

4. Some Toeplitz-Hessenberg determinants and perma-
nents with Pell numbers entries

Next, we investigate several Toeplitz-Hessenberg determinants whose en-
tries are Pell numbers with consecutive, even and odd subscripts.

Theorem 4.1. Let n ≥ 1, except when noted otherwise. Then

det(P0, P1, . . . , Pn−1) = (−1)n−1
⌊
2n−2

⌋
,

det(P0, P2, . . . , P2n−2) =
(−3−

√
6)n−1 − (−3 +

√
6)n−1

√
6

,

det(P1, P3, . . . , P2n−1) = (−1)n−14 · 5n−2, n ≥ 2,(6)

det(P2, P3, . . . , Pn+1) = (−1)n
⌊
2

n

⌋
,

det(P2, P4, . . . , P2n) =
(−2 +

√
3)n − (−2−

√
3)n√

3
,

det(P3, P5, . . . , P2n+1) = (−1)n−14, n ≥ 2,

det(P4, P6, . . . , P2n+2) =
(3 +

√
10)n − (3−

√
10)n√

10
, n ≥ 2,

where ⌊α⌋ is the floor of α.
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Proof. We will prove formula (6) using induction on n; the others can be proved
in the same way. Let Dn = det(P1, P3, . . . , P2n−1).

When n = 1 and n = 2, the formula holds. Assuming (6) to hold for n− 1,
we proved it for n ≥ 3. Using (1), (3), and the well-known formula [7, p. 193]

P2k−2 = 2

k−1∑
i=1

P2i−1,

we then obtain

Dn =

n∑
k=1

(−1)k−1P2k−1Dn−k

= P1Dn−1 +

n∑
k=2

(−1)k−1 (2P2k−2 + P2k−3)Dn−k

= Dn−1 + 2

n∑
k=2

(−1)k−1P2k−2Dn−k +

n−1∑
k=1

(−1)kP2k−1Dn−k−1

= Dn−1 + 2

n∑
k=2

(−1)k−1P2k−2Dn−k −Dn−1

= 2

n∑
k=2

(−1)k−1P2k−2Dn−k

= 4

n∑
k=2

k−1∑
i=1

(−1)k−1P2i−1Dn−k

= 4

n−1∑
i=1

(−1)i
n−i∑
k=1

(−1)k−1P2k−1Dn−k−i

= 4

n−2∑
i=1

(−1)iDn−i + 4(−1)n−1D1.

Using the induction hypothesis, we have

Dn = 4

n−2∑
i=1

(−1)i · 4(−5)n−i−1

5
+ 4(−1)n−1

= 4(−1)n−1(5n−2 − 1) + 4(−1)n−1

=
4(−5)n−1

5
.

Since the formula holds for n, it follows by induction that it is true for all
positive integers.

Similar formulas hold true for Toeplitz-Hessenberg permanents with Pell
numbers entries.
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Theorem 4.2. For all n ≥ 1, the following formulas hold:

perm(P0, P1, . . . , Pn−1) =
(1 +

√
3)n−1 − (1−

√
3)n−1

2
√
3

,

perm(P0, P2, . . . , P2n−2) =
(3 +

√
10)n−1 − (3−

√
10)n−1

√
10

,

perm(P1, P2, . . . , Pn) =
1√
13

((
3 +

√
13

2

)n

−

(
3−

√
13

2

)n)
,

perm(P1, P3, . . . , P2n−1) =

√
41

82

(
(5 +

√
41)An−1−(5−

√
41)

(
2

A

)n−1
)
,

perm(P2, P3, . . . , Pn+1) =
(3 +

√
6)(2 +

√
6)n + (3−

√
6)(2−

√
6)n

12
,

perm(P2, P4, . . . , P2n) =
(4 +

√
15)n − (4−

√
15)n√

15
,(7)

where A = (7 +
√
41)/2.

Proof. We will prove formula (7) using induction on n; the others can be proved
in the same way. Let

Dn = perm(P2, P4, . . . , P2n).

When n = 1 and n = 2, the formula holds. Assuming (7) to hold for n− 1, we
proved it for n ≥ 2. Using (3) and well-known formula [7, p. 193]

P2k−1 = 2

k−1∑
i=1

P2i + 1,

we then obtain

Dn =

n∑
k=1

P2kDn−k

=

n∑
k=1

(2P2k−1 + P2k−2)Dn−k

= 2

n∑
k=1

(
2

k−1∑
i=1

P2i + 1

)
Dn−k +

n∑
k=2

P2k−2Dn−k

= 4

n∑
k=1

k−1∑
i=1

P2iDn−k + 2

n∑
k=1

Dn−k +

n−1∑
k=1

P2kDn−k−1

= 4

n−1∑
i=1

n−i∑
k=1

P2iDn−i−k + 2

n∑
k=1

Dn−k +Dn−1

= 4

n−1∑
i=1

Dn−i + 2

n∑
k=1

Dn−k +Dn−1
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= 4

(
n∑

i=1

Dn−i −D0

)
+ 2

n∑
k=1

Dn−k +Dn−1

= 6

(
n−2∑
i=1

Dn−i +D0 +D1

)
− 4 +Dn−1

= 6

n−2∑
i=1

Dn−i +Dn−1 + 14.

Thus,

Dn = 6

n−2∑
i=1

(4 +
√
15)n−i − (4−

√
15)n−i

√
15

+
(4 +

√
15)n−1 − (4−

√
15)n−1

√
15

+14

=
(4 +

√
15)n − (4−

√
15)n√

15
.

Since the formula holds for n, it follows that it is true for all positive integers.

5. Multinomial extensions

In this section, we focus on multinomial extension of Theorems 3.1, 4.1, and
4.2.

It is known that the determinant and permanent of Mn can be evaluated
using Trudi’s formulas [11, Ch. 7] as follows:

det(Mn) =
∑

t=(t1,t2,...,tn)
t1,...,tn≥0

t1+2t2+···+ntn=n

(−a0)
n−|t|sn(t) a

t1
1 at22 · · · atnn ,(8)

perm(Mn) =
∑

t=(t1,t2,...,tn)
t1,...,tn≥0

t1+2t2+···+ntn=n

a
n−|t|
0 sn(t) a

t1
1 at22 · · · atnn ,(9)

where |t| = t1+ · · ·+ tn and sn(t) =
(
t1+···+tn
t1,...,tn

)
= (t1+···+tn)!

t1!···tn! is the multinomial
coefficient.

For example, from (8) and (9) we obtain

det(M4) =

(
4

4, 0, 0, 0

)
a41 −

(
3

2, 1, 0, 0

)
a21a2 +

(
2

1, 0, 1, 0

)
a1a3

+

(
2

0, 2, 0, 0

)
a22 −

(
1

0, 0, 0, 1

)
a4

= a41 − 3a21a2 + 2a1a3 + a22 − a4;

perm(M3) =

(
3

3, 0, 0

)
a31 +

(
2

1, 1, 0

)
a1a2 +

(
1

0, 0, 1

)
a3

= a31 + 2a1a2 + a3.
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Trudi’s formulas (8) and (9), coupled with Theorems 3.1, 4.1, 4.2 yield the
following Pell identities with multinomial coefficients.

Corollary 5.1. Let n ≥ 1, except when noted otherwise, and let a = 7+
√
41

2 ,

b = 5 +
√
41, c = 3 +

√
6, τn = t1 + 2t2 + · · ·+ ntn, ti ≥ 0. Then

∑
τn=n

(−1)|t|sn(t)P
t1
0 P t2

1 · · ·P tn
n−1=−2n−2, n ≥ 2,

∑
τn=n

sn(t)P
t1
0 P t2

1 · · ·P tn
n−1=

(1 +
√
3)n−1 − (1−

√
3)n−1

2
√
3

,

∑
τn=n

(−1)|t|sn(t)P
t1
0 P t2

2 · · ·P tn
2n−2=

(3−
√
6)n−1 − (3 +

√
6)n−1

√
6

,

∑
τn=n

sn(t)P
t1
0 P t2

2 · · ·P tn
2n−2=

(3 +
√
10)n−1 − (3−

√
10)n−1

√
10

,(10) ∑
τn=n

(−1)|t|sn(t)P
t1
1 P t2

2 · · ·P tn
n =−Fn,(11)

∑
τn=n

sn(t)P
t1
1 P t2

2 · · ·P tn
n =

(3 +
√
13)n − (3−

√
13)n

2n
√
13

,∑
τn=n

(−1)|t|sn(t)P
t1
1 P t2

3 · · ·P tn
2n−1=−4 · 5n−2, n ≥ 2,

∑
τn=n

sn(t)P
t1
1 P t2

3 · · ·P tn
2n−1=

√
41

82

(
ban−1 +

2n+3

ban−1

)
,∑

τn=n

(−1)|t|sn(t)P
t1
2 P t2

3 · · ·P tn
n+1=0, n ≥ 3,(12)

∑
τn=n

sn(t)P
t1
2 P t2

3 · · ·P tn
n+1=

c2(2 +
√
6)n + 3(2−

√
6)n

12c
,

∑
τn=n

(−1)|t|sn(t)P
t1
2 P t2

4 · · ·P tn
2n=

(2−
√
3)n − (2 +

√
3)n√

3
,

∑
τn=n

sn(t)P
t1
2 P t2

4 · · ·P tn
2n=

(4 +
√
15)n − (4−

√
15)n√

15
,∑

τn=n

(−1)|t|sn(t)P
t1
3 P t2

4 · · ·P tn
n+2=(−1)nF2n+3,∑

τn=n

(−1)|t|sn(t)P
t1
3 P t2

5 · · ·P tn
2n+1=−4, n ≥ 2,

∑
τn=n

(−1)|t|sn(t)P
t1
4 P t1

6 · · ·P tn
2n+2=

(−3−
√
10)n−(−3 +

√
10)n√

10
, n ≥ 2.
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Example 5.2. It follows from (11), (12), and (10) that

P 3
1 − 2P1P2 + P3 = F3,

P 4
2 − 3P 2

2P3 + 2P2P4 + P 2
3 − P5 = 0,

P 5
0 + 4P 3

0P2 + 3P 2
0P4 + 3P0P

2
2 + 2P0P6 + 2P2P4 + P8 = 456,

respectively.
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