EXTENDING BINARY OPERATIONS TO FUNTOR-SPACES

Abstract

Banakh T.O., Gavrylkiv V.M. Extending binary operations to funtor-spaces, Carpathian Mathematical Publications, 1, 2 (2009), 114-127.

Given a continuous monadic functor $T: \mathbf{C o m p} \rightarrow \mathbf{C o m p}$ in the category of compacta and a discrete topological semigroup X we extend the semigroup operation $\varphi: X \times X \rightarrow X$ to a right-topological semigroup operation $\Phi: T \beta X \times T \beta X \rightarrow T \beta X$, whose topological center Λ_{Φ} contains the dense subsemigroup $T_{f} X$ consisting of elements $a \in T \beta X$ that have finite support in X.

Introduction

One of powerful tools in the modern Combinatorics of Numbers is the method of ultrafilters based on the fact that each binary operation $\varphi: X \times X \rightarrow X$ defined on a discrete topological space X can be extended to a right-topological operation $\Phi: \beta X \times \beta X \rightarrow \beta X$ on the Stone-Čech compactification βX of X, see [13], [16]. The extension of φ is constructed in two step. First, for every $x \in X$ extend the left shift $\varphi_{x}: X \rightarrow X, \varphi_{x}: y \mapsto \varphi(x, y)$, to a continuous map $\bar{\varphi}_{x}: \beta X \rightarrow \beta X$. Next, for every $b \in \beta X$ extend the right shift $\bar{\varphi}^{b}: X \rightarrow \beta X$, $\bar{\varphi}^{b}: x \mapsto \bar{\varphi}_{x}(b)$, to a continuous map $\Phi^{b}: \beta X \rightarrow \beta X$ and put $\Phi(a, b)=\Phi^{b}(a)$ for every $a \in \beta X$. The Stone-Čech extension βX is the space of ultrafilters on X. In [11] it was observed that the binary operation φ extends not only to βX but also to the superextension λX of X and to the space $G X$ of all inclusion hyperspaces on X. If X is a semigroup, then $G X$ is a compact Hausdorff right-topological semigroup containing λX and βX as closed subsemigroups.

In this note we show that an (associative) binary operation $\varphi: X \times X \rightarrow X$ on a discrete topological space X can be extended to an (associative) right-topological operation $\Phi: T \beta X \times T \beta X \rightarrow T \beta X$ for any monadic functor T in the category Comp of compact Hausdorff spaces. So, for the functors β, λ or G we get the extensions of the operation φ discussed above.

2000 Mathematics Subject Classification: 18B30; 18B40; 20N02; 20M50; 22A22; 54B30; 54H10.
Key words and phrases: functor, monad, algebra, binary operation, semigroup, right-topological semigroup, topological center.

1 Monadic Functors And THEIR ALGEBRAS

Let us recall [14, VI], [17, §1.2] that a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ in a category \mathcal{C} is called monadic if there are natural transformations η : Id $\rightarrow T$ and $\mu: T^{2} \rightarrow T$ making the following diagrams

commutative. In this case the triple $\mathbb{T}=(T, \eta, \mu)$ is called a monad, the natural transformations $\eta:$ Id $\rightarrow T$ and $\mu: T^{2} \rightarrow T$ are called the unit and multiplication of the monad \mathbb{T}, and the functor T is the functorial part of the monad \mathbb{T}.

A pair (X, ξ) consisting of an object X and a morphism $\xi: T X \rightarrow X$ of the category \mathcal{C} is called a \mathbb{T}-algebra, if $\xi \circ \eta_{X}=\operatorname{id}_{X}$ and the square

is commutative. For every object X of the category \mathcal{C} the pair $(T X, \mu)$ is a \mathbb{T}-algebra called the free \mathbb{T}-algebra over X.

For two \mathbb{T}-algebras $\left(X, \xi_{X}\right)$ and $\left(Y, \xi_{Y}\right)$ a morphism $h: X \rightarrow Y$ is called a morphism of \mathbb{T}-algebras, if the following diagram

is commutative. The naturality of the multiplication $\mu: T^{2} \rightarrow T$ of the monad \mathbb{T} implies that for any morphism $f: X \rightarrow Y$ in \mathcal{C} the morphism $T f: T X \rightarrow T Y$ is a morphism of free \mathbb{T}-algebras.

Each morphism $h: T X \rightarrow Y$ from the free \mathbb{T}-algebra into a \mathbb{T}-algebra (Y, ξ) is uniquely determined by the composition $h \circ \eta$.

Lemma 1.1. If $h: T X \rightarrow Y$ is a morphism of a free \mathbb{T}-algebra $T X$ into a \mathbb{T}-algebra (Y, ξ), then $h=\mu \circ T(h \circ \eta)=\mu \circ T h \circ T \eta$.

Proof. Consider the commutative diagram

and observe that

$$
h=h \circ \mu \circ \eta_{T}=\xi \circ T h \circ \eta_{T}=\xi \circ T h \circ T \eta \circ \mu \circ \eta_{T}=\xi \circ T(h \circ \eta) .
$$

By a topological category we shall understand a subcategory of the category Top of topological spaces and their continuous maps such that:

- for any objects X, Y of the category \mathcal{C} each constant map $f: X \rightarrow Y$ is a morphism of \mathcal{C};
- for any objects X, Y of the category \mathcal{C} the product $X \times Y$ is an object of \mathcal{C}, and for any object Z of \mathcal{C} and morphisms $f_{X}: Z \rightarrow X, f_{Y}: Z \rightarrow Y$ the map $\left(f_{X}, f_{Y}\right): Z \rightarrow X \times Y$ is a morphism of the category \mathcal{C}.

A discrete topological space X is called discrete in \mathcal{C}, if X is an object of \mathcal{C} and each function $f: X \rightarrow Y$ into an object Y of the category \mathcal{C} is a morphism of \mathcal{C}. It is clear that any bijection $f: X \rightarrow Y$ between discrete objects of the category \mathcal{C} is an isomorphism in \mathcal{C}.

From now on we shall assume that (\mathbb{T}, η, μ) is a monad in a topological category \mathcal{C} such that for any discrete objects X, Y in \mathcal{C} the product $X \times Y$ is discrete in \mathcal{C}.

2 Binary operations and their \mathbb{T}-extensions

By a binary operation in the category \mathcal{C} we understand any function $\varphi: X \times Y \rightarrow Z$, where X, Y, Z are objects of the category \mathcal{C}. For any $a \in X$ and $b \in Y$ the functions

$$
\varphi_{a}: Y \rightarrow Z, \quad \varphi_{a}: y \mapsto \varphi(a, y)
$$

and

$$
\varphi^{b}: X \rightarrow Z, \quad \varphi^{b}: x \mapsto \varphi(x, b),
$$

are called the left and right shifts, respectively.
A binary operation $\varphi: X \times Y \rightarrow Z$ is called right-topological, if for every $y \in Y$ the right shift $\varphi^{y}: X \rightarrow Z, \varphi^{y}: x \mapsto \varphi(x, y)$, is continuous. The topological center of a righttopological binary operation $\varphi: X \times Y \rightarrow Z$ is the set Λ_{φ} of all elements $x \in X$ such that the left shift $\varphi_{x}: Y \rightarrow Z$ is continuous.

Definition 2.1. Let $\varphi: X \times Y \rightarrow Z$ be a binary operation in the category \mathcal{C}. A binary operation $\Phi: T X \times T Y \rightarrow T Z$ is defined to be a \mathbb{T}-extension of φ if:

1. $\Phi\left(\eta_{X}(x), \eta_{Y}(y)\right)=\eta_{Z}(\varphi(x, y))$ for any $x \in X$ and $y \in Y$;
2. for every $b \in T Y$ the right shift $\Phi^{b}: T X \rightarrow T Z, \Phi^{b}: x \mapsto \Phi(x, b)$, is a morphism of the free \mathbb{T}-algebras $T Y$, $T Z$;
3. for every $x \in X$ the left shift $\Phi_{\eta(x)}: T Y \rightarrow T Z, \Phi_{\eta(x)}: y \mapsto \Phi(\eta(x), y)$, is a morphism of the free \mathbb{T}-algebras $T X, T Z$.

This definition implies that for any binary operation $\varphi: X \times Y \rightarrow Z$ its \mathbb{T}-extension $\Phi: T X \times T Y \rightarrow T Z$ is a right-topological binary operation, whose topological center Λ_{Φ} contains the set $\eta(X) \subset T X$.
Theorem 1. Let $\varphi: X \times Y \rightarrow Z$ be a binary operation in the category \mathcal{C}.

1. The binary operation φ has at most one \mathbb{T}-extension $\Phi: T X \times T Y \rightarrow T Z$.
2. If X, Y are discrete in \mathcal{C}, then φ has a unique \mathbb{T}-extension $\Phi: T X \times T Y \rightarrow T Z$.

Proof. 1. Let $\Phi, \Psi: T X \times T Y \rightarrow T Z$ be two \mathbb{T}-extensions of the operation φ. By the condition (3) of Definition 2.1, for every $x \in X$ and $a=\eta_{X}(x) \in T X$ the left shifts $\Phi_{a}, \Psi_{a}: T Y \rightarrow T Z$ are morphisms of the free \mathbb{T}-algebras.

By the condition (1) of Definition 2.1,

$$
\Phi_{a} \circ \eta_{Y}=\eta_{Z} \circ \varphi_{x}=\Psi_{a} \circ \eta_{Y}
$$

Then Lemma 1.1 implies that

$$
\Phi_{a}=\mu \circ T\left(\Phi_{a} \circ \eta_{X}\right)=\mu \circ T\left(\eta_{Z} \circ \varphi_{x}\right)=\mu \circ T\left(\Psi_{a} \circ \eta_{X}\right)=\Psi_{a} .
$$

The equality $\Phi=\Psi$ will follow as soon as we check that $\Phi^{b}=\Psi^{b}$ for every $b \in T Y$. Since $\Phi^{b}, \Psi^{b}: T X \rightarrow T Z$ are morphisms of the free \mathbb{T}-algebras $T X$ and $T Z$, the equality $\Phi^{b}=\Psi^{b}$ follows from the equality

$$
\Phi^{b} \circ \eta(x)=\Phi_{\eta(x)}(b)=\Psi_{\eta(x)}(b)=\Psi^{b} \circ \eta(x), \quad x \in X,
$$

according to Lemma 1.1.
2. Now assuming that the spaces X, Y are discrete in \mathcal{C}, we show that the binary operation $\varphi: X \times Y \rightarrow Z$ has a \mathbb{T}-extension. For every $x \in X$ consider the left shift $\varphi_{x}: Y \rightarrow Z$. Since Y is discrete in \mathcal{C}, the function φ_{x} is a morphism of the category \mathcal{C}. Applying the functor T to this morphism, we get a morphism $T \varphi_{x}: T Y \rightarrow T Z$. Now for every $b \in T Y$ consider the function $\varphi^{b}: X \rightarrow T Z, \varphi^{b}: x \mapsto T \varphi_{x}(b)$. Since the object X is discrete, the function φ^{b} is a morphism of the category \mathcal{C}. Applying to this morphism the functor T, we get a morphism $T \varphi^{b}: T X \rightarrow T^{2} Z$. Composing this morphism with the multiplication $\mu: T^{2} Z \rightarrow T Z$ of the monad \mathbb{T}, we get the function $\Phi^{b}=\mu \circ T \varphi^{b}: T Z \rightarrow T Z$. Define a binary operation $\Phi: T X \times T Y \rightarrow T Z$, letting $\Phi(a, b)=\Phi^{b}(a)$ for $a \in T X$.

Claim 2.1. $\Phi(\eta(x), b)=T \varphi_{x}(b)$ for every $x \in X$ and $b \in T Y$.
Proof. The commutativity of the diagram

implies the desired equality

$$
\Phi(\eta(x), b)=\mu \circ T \varphi^{b}(\eta(x))=\varphi^{b}(x)=T \varphi_{x}(b)
$$

Now we shall prove that Φ is a \mathbb{T}-extension of φ.
i) For every $x \in X$ and $y \in Y$ we need to prove the equality

$$
\Phi\left(\eta_{X}(x), \eta_{Y}(y)\right)=\eta_{Z} \circ \varphi(x, y) .
$$

By Claim 2.1,

$$
\Phi\left(\eta_{X}(x), \eta_{Y}(y)\right)=T \varphi_{x} \circ \eta_{Y}(y)=\eta_{Z} \circ \varphi_{x}(y)=\eta_{Z} \circ \varphi(x, y) .
$$

The latter equality follows from the naturality of the transformation η : Id $\rightarrow T$.
ii) The definition of Φ implies that for every $b \in T Y$ the right shift $\Phi^{b}=\mu_{Z} \circ T \varphi^{b}$ is a morphism of free \mathbb{T}-algebras, being the composition of two morphisms $T \varphi^{b}: T X \rightarrow T^{2} Z$ and $\mu_{Z}: T^{2} Z \rightarrow T Z$ of free \mathbb{T}-algebras.
iii) Claim 2.1 guarantees that for every $x \in X$ the left shift $\Phi_{\eta(x)}=T \varphi_{x}: T Y \rightarrow T Z$ is a morphism of the free \mathbb{T}-algebras.
Proposition 2.1. Let $\varphi: X \times Y \rightarrow Z, \psi: X^{\prime} \times Y^{\prime} \rightarrow Z^{\prime}$ be two binary operations in $\mathcal{C}, \Phi: T X \times T Y \rightarrow T Z, \Psi: T X^{\prime} \times T Y^{\prime} \rightarrow T Z^{\prime}$ be their \mathbb{T}-extensions, and $h_{X}: X \rightarrow$ $X^{\prime}, h_{Y}: Y \rightarrow Y^{\prime}, h_{Z}: Z \rightarrow Z^{\prime}$ be morphisms in \mathcal{C}. If $\psi\left(h_{X} \times h_{Y}\right)=h_{Z} \circ \varphi$, then $T \Psi\left(T h_{X} \times T h_{Y}\right)=T h_{Z} \circ \Phi$.

Proof. Observe that for any $x \in X$ and $x^{\prime}=h_{X}(x)$ the commutativity of the diagrams

implies that $T h_{Z} \circ T \varphi_{x}(b)=T \psi_{x^{\prime}}\left(b^{\prime}\right)$ for every $b \in T Y$ and $b^{\prime}=T h_{Y}(b) \in T Y^{\prime}$.
It follows from Lemma 2.1 that $\Phi_{\eta(x)}=T \varphi_{x}: T Y \rightarrow T Z$ and $\Psi_{\eta\left(x^{\prime}\right)}=T \psi_{x^{\prime}}: T Y^{\prime} \rightarrow T Z^{\prime}$. Consequently,

$$
T h_{Z} \circ \Phi^{b}(\eta(x))=T h_{Z} \circ \Phi_{\eta(x)}(b)=T h_{Z} \circ T \varphi_{x}(b)=T \psi_{x^{\prime}}\left(b^{\prime}\right)=\Psi_{\eta\left(x^{\prime}\right)}\left(b^{\prime}\right)=\Psi^{b^{\prime}}\left(\eta\left(x^{\prime}\right)\right)
$$

and hence

$$
T h_{Z} \circ \Phi^{b} \circ \eta=\Psi^{b^{\prime}} \circ \eta \circ h_{X} .
$$

Applying the functor T to this equality, we get

$$
T^{2} h_{Z} \circ T\left(\Phi^{b} \circ \eta\right)=T\left(\Psi^{b^{\prime}} \circ \eta\right) \circ T h_{X} .
$$

Since $\Phi^{b}: T X \rightarrow T Z$ and $\Psi^{b^{\prime}}: T X^{\prime} \rightarrow T Z^{\prime}$ are homomorphisms of the free \mathbb{T}-algebras, we can apply Lemma 1.1 and conclude that $\Phi^{b}=\mu \circ T\left(\Phi^{b} \circ \eta\right)$, and hence $T h_{Z} \circ \Phi^{b}=T h_{Z} \circ \mu_{Z} \circ T\left(\Phi^{b} \circ \eta\right)=\mu_{Z^{\prime}} \circ T^{2} h_{Z} \circ T\left(\Phi^{b} \circ \eta\right)=\mu_{Z^{\prime}} \circ T\left(\Psi^{b^{\prime}} \circ \eta\right) \circ T h_{X}=\Psi^{b^{\prime}} \circ T h_{X}$.

Then for every $a \in T X$ we get

$$
T h_{Z} \circ \Phi(a, b)=T h_{Z} \circ \Phi^{b}(a)=\Psi^{b^{\prime}} \circ T h_{X}(a)=\Psi\left(T h_{X}(a), T h_{Y}(b)\right) .
$$

3 Binary operations and tensor products

In this section we shall discuss the relation of \mathbb{T}-extensions to tensor products. The tensor product is a function $\otimes: T X \times T Y \rightarrow T(X \times Y)$ defined for any objects $X, Y \in \mathcal{C}$ such that X is discrete in \mathcal{C}.

For every $x \in X$ consider the embedding $i_{x}: Y \rightarrow X \times Y, i_{x}: y \mapsto(x, y)$. The embedding i_{x} is a morphism of the category \mathcal{C}, because the constant map $c_{x}: Y \rightarrow\{x\} \subset X$ and the identity map id : $Y \rightarrow Y$ are morphisms of the category and \mathcal{C} contains products of its objects. Applying the functor T to the morphism i_{x}, we get a morphism $T i_{x}: T Y \rightarrow T(X \times$ Y) of the category \mathcal{C}. Next, for every $b \in T Y$ consider the function $T i^{b}: X \rightarrow T(X \times Y)$, $T i^{b}: x \mapsto T i_{x}(b)$. Since X is discrete in \mathcal{C}, the function $T i^{b}$ is a morphism of the category \mathcal{C}. Applying the functor T to this morphism, we get a morphism $T T i^{b}: T X \rightarrow T^{2}(X \times Y)$. Composing this morphism with the multiplication $\mu: T^{2}(X \times Y) \rightarrow T(X \times Y)$ of the monad \mathbb{T}, we get the morphism $\otimes^{b}=\mu \circ T T i^{b}: T X \rightarrow T(X \times Y)$. Finally, define the tensor product $\otimes: T X \times T Y \rightarrow T(X \times Y)$, letting $a \otimes b=\otimes^{b}(a)$ for $a \in T X$.

The following proposition describes some basic properties of the tensor product. For monadic functors in the category Comp of compact Hausdorff spaces those properties were established in [17, 3.4.2].

Proposition 3.1. 1. The diagram $X \times Y \underset{\eta \times \eta}{ } \frac{\eta}{\longrightarrow} T X \times T Y \longrightarrow \underset{\otimes}{\longrightarrow} T(X \times Y)$ is commutative for any discrete object X and any object Y of \mathcal{C};
2. the tensor product is natural in the sense that for any morphisms $h_{X}: X \rightarrow X^{\prime}$, $h_{Y}: Y \rightarrow Y^{\prime}$ of \mathcal{C} with discrete X, Y the following diagram

is commutative;
3. the tensor product is associative in the sense that for any discrete objects X, Y, Z of \mathcal{C} the diagram

is commutative, which means that $(a \otimes b) \otimes c=a \otimes(b \otimes c)$ for any $a \in T X, b \in T Y$, $c \in T Z$.

Proof. 1. Fix any $y \in Y$ and consider the element $b=\eta_{Y}(y) \in T Y$. The definition of the
right shift \otimes^{b} implies that the following diagram is commutative:

Consequently, for every $x \in X$ we get

$$
\eta(x) \otimes \eta(y)=\otimes^{b} \circ \eta(x)=T i^{b} \circ \eta(x)=T i_{x}(\eta(y))=\eta\left(i_{x}(y)\right)=\eta(x, y) .
$$

The latter equality follows from the diagram

whose commutativity follows from the naturality of the transformation η : Id $\rightarrow T$.
2. Let $h_{X}: X \rightarrow X^{\prime}$ and $h_{Y}: Y \rightarrow Y^{\prime}$ be any functions between discrete objects of the category \mathcal{C}. Let $Z=X \times Y, Z^{\prime}=X^{\prime} \times Y^{\prime}$ and $h_{Z}=h_{X} \times h_{Y}: Z \rightarrow Z^{\prime}$. Given any point $b \in T Y$, consider the element $b^{\prime}=T h_{Y}(b) \in T Y^{\prime}$. The statement (2) will follow as soon as we check that $T h_{Z} \circ \otimes^{b}=\otimes^{b^{\prime}} \circ T h_{X}$. By Lemma 1.1, this equality will follow as soon as we check that $T h_{Z} \circ \otimes^{b} \circ \eta_{X}=\otimes^{b^{\prime}} \circ T h_{X} \circ \eta_{X}=\otimes^{b^{\prime}} \circ \eta_{X^{\prime}} \circ h_{X}$. The last equality follows from the naturality of the transformation η : Id $\rightarrow T$. As we know from the proof of the preceding item, $\otimes^{b^{\prime}} \circ \eta_{X^{\prime}}\left(x^{\prime}\right)=T i_{x^{\prime}}\left(b^{\prime}\right)$ for any $x^{\prime} \in X^{\prime}$. For every $x \in X$ and $x^{\prime}=h_{X}(x)$ we can apply the functor T to the commutative diagram

and obtain the equality $T h_{Z} \circ T i_{x}=T i_{x^{\prime}} \circ T h_{Y}$, which implies the desired equality:

$$
\otimes^{b^{\prime}} \circ \eta_{X^{\prime}} \circ h_{X}(x)=\otimes^{b^{\prime}} \circ \eta_{X^{\prime}}\left(x^{\prime}\right)=T i_{x^{\prime}}\left(b^{\prime}\right)=T h_{Z} \circ T i_{x}(b)=T h_{Z} \circ \otimes^{b} \circ \eta(x) .
$$

3. The proof of the associativity of the tensor product can be obtained by literal rewriting the proof of Proposition 3.4.2(4) of [17].
Theorem 2. Let $\varphi: X \times Y \rightarrow Z$ be a binary operation in the category \mathcal{C} and $\Phi: T X \times T Y \rightarrow$ $T Z$ be its \mathbb{T}-extension. If X is a discrete object in \mathcal{C}, then $\Phi(a, b)=T \varphi(a \otimes b)$ for any elements $a \in T X$ and $b \in T Y$.

Proof. Our assumptions on the category \mathcal{C} guarantee that the product $X \times Y$ is a discrete object of \mathcal{C} and hence $\varphi: X \times Y \rightarrow Z$ is a morphism of the category \mathcal{C}. So, it is legal to consider the morphism $T \varphi: T(X \times Y) \rightarrow T Z$. We claim that the binary operation

$$
\Psi: T X \times T Y \rightarrow T Z, \quad \Psi(a, b)=T \varphi(a \otimes b)
$$

is a \mathbb{T}-extension of φ.

1. The first item of Definition 2.1 follows Proposition 3.1(1) and the naturality of the transformation $\eta: \operatorname{Id} \rightarrow T$:

$$
\Psi\left(\eta_{X}(x), \eta_{Y}(y)\right)=T \varphi\left(\eta_{X}(x) \otimes \eta_{Y}(y)\right)=T \varphi \circ \eta_{X \times Y}(x, y)=\eta_{Z} \circ \varphi(x, y)
$$

2. For every $b \in T Y$ the morphism

$$
\Psi^{b}=T \varphi \circ \otimes^{b}=T \varphi \circ \mu \circ T T i^{b}
$$

is a morphism of the free \mathbb{T}-algebras $T X$ and $T Z$.
3. For every $x \in X$ we see that

$$
\Psi_{\eta(x)}(b)=T \varphi\left(\otimes^{b}(\eta(x))\right)=T \varphi \circ \mu \circ T T i^{b} \circ \eta(x)=T \varphi \circ \mu \circ \eta \circ T i^{b}(x)=T \varphi \circ T i^{b}(x)
$$

is a morphism of the free \mathbb{T}-algebras $T Y$ and $T Z$.
Thus Ψ is a \mathbb{T}-extension of the binary operation φ. By the Uniqueness Theorem $1(1), \Psi$ coincides with Φ and hence $\Phi(a, b)=\Psi(a, b)=T \varphi(a \otimes b)$.

4 The topological center of \mathbb{T}-extended operation

Definition 2.1 guarantees that for a binary operation $\varphi: X \times Y \rightarrow Z$ in \mathcal{C} any \mathbb{T} extension $\Phi: T X \times T Y \rightarrow T Z$ of φ is a right-topological operation, whose topological center Λ_{φ} contains the subset $\eta_{X}(X)$. In this section we shall find conditions on the functor T and the space X guaranteeing that the topological center Λ_{Φ} is dense in $T X$.

We shall say that the functor T is continuous, if for each compact Hausdorff space K, that belongs to the category \mathcal{C}, and any object Z of \mathcal{C} the map $T: \operatorname{Mor}(K, Z) \rightarrow \operatorname{Mor}(T K, T Z)$, $T: f \mapsto T f$, is continuous with respect to the compact-open topology on the spaces of morphisms (which are continuous maps).

Theorem 3. Let $\varphi: X \times Y \rightarrow Z$ be a binary operation in \mathcal{C} and $\Phi: X \times Y \rightarrow Z$ be its \mathbb{T}-extension. If the object X is finite and discrete in $\mathcal{C}, T X$ is locally compact and Hausdorff, and the functor T is continuous, then the operation Φ is continuous.

Proof. Since the space X is discrete, the condition (2) of Definition 2.1 implies that the map $\Phi_{\eta}: X \times T Y \rightarrow T Z, \Phi_{\eta}:(x, b) \mapsto \Phi(\eta(x), b)$, is continuous. Since X is finite, the induced map

$$
\Phi_{\eta}^{(\cdot)}: T Y \rightarrow \operatorname{Mor}(X, T Z), \quad \Phi_{\eta}^{(\cdot)}: b \mapsto \Phi_{\eta}^{b}
$$

where $\Phi_{\eta}^{b}: x \mapsto \Phi(\eta(x), b)$, is continuous. By the continuity of the functor T, the map $T: \operatorname{Mor}(X, T Z) \rightarrow \operatorname{Mor}\left(T X, T^{2} Z\right), T: f \mapsto T f$, is continuous and so is the composition $T \circ \Phi_{\eta}^{(\cdot)}: T Y \rightarrow \operatorname{Mor}\left(T X, T^{2} Z\right)$. Since $T X$ is locally compact and Hausdorff, we can apply [9, 3.4.8] and conclude that the map

$$
T \Phi_{\eta}^{(\cdot)}: T X \times T Y \rightarrow T^{2} Z, \quad T \Phi_{\eta}^{(\cdot)}:(a, b) \mapsto T \Phi_{\eta}^{b}(a)
$$

is continuous and so is the composition $\Psi=\mu \circ T \Phi_{\eta}^{(\cdot)}: T X \times T Y \rightarrow T Z$. Using the Uniqueness Theorem 1(1), we can prove that $\Psi=\Phi$ and hence the binary operation Φ is continuous.

Let X be an object of the category \mathcal{C}. We say that an element $a \in F X$ has discrete (finite) support, if there is a morphism $f: D \rightarrow X$ from a discrete (and finite) object D of the category \mathcal{C} such that $a \in F f(F D)$. By $T_{d} X$ (resp. $T_{f} X$) we denote the set of all elements $a \in T X$ that have discrete (finite) support. It is clear that $T_{f} X \subset T_{d} X \subset T X$.

Theorem 4. Let $\varphi: X \times Y \rightarrow Z$ be a binary operation and $\Phi: T X \times T Y \rightarrow T Z$ be a \mathbb{T}-extension of φ. If the functor T is continuous, and for every finite discrete object D of \mathcal{C} the space $T D$ is locally compact and Hausdorff, then the topological center Λ_{Φ} of the binary operation Φ contains the subspace $T_{f} X$ of $T X$. If $T_{f} X$ is dense in $T X$, then the topological center Λ_{Φ} of Φ is dense in $T X$.

Proof. We need to prove that for every $a \in T_{f} X$ the left shift $\Phi_{a}: T Y \rightarrow T Z, \Phi_{a}: b \mapsto$ $\Phi(a, b)$, is continuous. Since $a \in T_{f} X$, there is a finite discrete object D of the category \mathcal{C} and a morphism $f: D \rightarrow X$ such that $a \in F f(F D)$. Fix an element $d \in F D$ such that $a=F f(d)$.

Consider the binary operations

$$
\psi: D \times Y \rightarrow Z, \psi:(x, y) \mapsto \varphi(f(x), y)
$$

and

$$
\Psi: T D \times T Y \rightarrow T Z, \Psi:(a, b) \mapsto \Phi(F f(a), b)
$$

It can be shown that Ψ is a \mathbb{T}-extension of ψ.
By Theorem 3, the binary operation Ψ is continuous. Consequently, the left shift Ψ_{d} : $T Y \rightarrow T Z, \Psi_{d}: b \mapsto \Psi(d, b)$, is continuous. Since $\Psi_{d}=\Phi_{a}$, the left shift Φ_{a} is continuous too and hence $a \in \Lambda_{\Phi}$.

5 The associativity of \mathbb{T}-Extensions

In this section we investigate the associativity of the \mathbb{T}-extensions. We recall that a binary operation $\varphi: X \times X \rightarrow X$ is associative, if $\varphi(\varphi(x, y), z)=\varphi(x, \varphi(y, z))$ for any $x, y, z \in X$. In this case we say that X is a semigroup.

A subset A of a set X endowed with a binary operation $\varphi: X \times X \rightarrow X$ is called a subsemigroup of X, if $\varphi(A \times A) \subset A$ and $\varphi(\varphi(x, y), z)=\varphi(x, \varphi(y, z))$ for all $x, y, z \in A$.

Lemma 5.1. Let $\varphi: X \times X \rightarrow X$ be an associative operation in \mathcal{C} and $\Phi: T X \times T X \rightarrow T X$ be its \mathbb{T}-extension.

1. for any morphisms $f_{A}: A \rightarrow X, f_{B}: B \rightarrow X$ from discrete objects A, B in \mathcal{C}, the map $\varphi_{A B}=\varphi\left(f_{A} \times f_{B}\right): A \times B \rightarrow X$ is a morphism of \mathcal{C} such that $\Phi\left(T f_{A}(a), T f_{B}(b)\right)=$ $T \varphi_{A B}(a \otimes b)$ for all $a \in T A$ and $b \in T B$;
2. $\Phi\left(T_{d} X \times T_{d} X\right) \subset T_{d} X$ and $\Phi\left(T_{f} X \times T_{f} X\right) \subset T_{f} X$;
3. $\Phi((a, b), c)=\Phi(a, \Phi(b, c))$ for any $a, b, c \in T_{d} X$.

Proof. 1. Let $f_{A}: A \rightarrow X, f_{B}: B \rightarrow X$ be morphisms from discrete objects A, B of \mathcal{C} and $\varphi_{A B}=\varphi\left(f_{A} \times f_{B}\right): A \times B \rightarrow X$. By our assumption on the category \mathcal{C}, the product $A \times B$ is a discrete object in \mathcal{C} and hence $\varphi_{A B}$ is a morphism in \mathcal{C}. Consider the binary operation $\Phi_{A B}: T A \times T B \rightarrow T X$ defined by $\Phi_{A B}(a, b)=\Phi\left(T f_{A}(a), T f_{B}(b)\right)$. The following diagram

implies that $\Phi_{A B}$ is a \mathbb{T}-extension of $\varphi_{A B}$. By Theorem 2,

$$
\Phi\left(T f_{A}(a), T f_{B}(b)\right)=\Phi_{A B}(a, b)=T \varphi_{A B}(a \otimes b)
$$

for all $a \in T A$ and $b \in T B$.
2. Given elements $a, b \in T_{d} X$, we need to show that the element $\Phi(a, b) \in T X$ has discrete support. Find discrete objects A, B in \mathcal{C} and morphisms $f_{A}: A \rightarrow X, f_{B}: B \rightarrow X$ such that $a \in F f_{A}(F A)$ and $b \in f_{B}(F B)$. Fix elements $\tilde{a} \in F A, \tilde{b} \in F B$ such that $a=F f_{A}(\tilde{a})$ and $b=F f_{B}(\tilde{b})$. Our assumption on the category \mathcal{C} guarantees that $A \times B$ is a discrete object in \mathcal{C}.

Consider the binary operations $\psi: A \times B \rightarrow X$ and $\Psi: F A \times F B \rightarrow F Z$ defined by the formulas $\psi=\varphi \circ\left(f_{A} \times f_{B}\right)$ and $\Psi=\Phi \circ\left(T f_{A} \times T f_{B}\right)$. Let $\tilde{c}=\tilde{a} \otimes \tilde{b} \in T(A \times B)$. By the first statement, $\Phi(a, b)=T \psi(\tilde{a} \otimes \tilde{b})=T \psi(\tilde{c}) \in T \psi(A \times B)$, witnessing that the element $\Phi(a, b)$ has discrete support and hence belongs to $T_{d} X$.

By analogy, we can prove that $\Phi\left(T_{f} X \times T_{f} X\right) \subset T_{f} X$.
3. Given any points $a, b, c \in T_{d} X$, we need to check the equality

$$
\Phi(\Phi(a, b), c)=\Phi(a, \Phi(b, c))
$$

Find discrete objects A, B, C in \mathcal{C} and morphisms $f_{A}: A \rightarrow X, f_{B}: B \rightarrow X, f_{C}: C \rightarrow X$ such that $a \in T f_{A}(T A), b \in T f_{B}(T B)$ and $c \in T f_{C}(T C)$. Fix elements $\tilde{a} \in T A, \tilde{b} \in T B$, and $\tilde{c} \in T C$ such that $a=T f_{A}(\tilde{a}), b=T f_{B}(\tilde{b})$ and $c=T f_{C}(\tilde{c})$.

Consider the morphisms $\varphi_{A B}=\varphi\left(f_{A} \times f_{B}\right): A \times B \rightarrow X, \varphi_{B C}=\varphi\left(f_{B} \times f_{C}\right): B \times C \rightarrow X$
and $\varphi_{A B C}=\varphi\left(\varphi_{A B} \times f_{C}\right)=\varphi\left(f_{A} \times \varphi_{B C}\right): A \times B \times C \rightarrow X$. Consider the following diagram:

In this diagram the central square is commutative because of the associativity of the tensor product \otimes. By the item (1) all four margin squares also are commutative. Now we see that

$$
\begin{aligned}
& \Phi(\Phi(a, b), c))=\Phi\left(\Phi\left(T f_{A}(\tilde{a}), T f_{B}(\tilde{b})\right), T f_{C}(\tilde{c})\right)= \\
& \Phi\left(T \varphi_{A B}(\tilde{a} \otimes \tilde{b}), T f_{C}(\tilde{c})\right)=T \varphi_{A B C}((\tilde{a} \otimes \tilde{b}) \otimes \tilde{c})=T \varphi_{A B C}(\tilde{a} \otimes(\tilde{b} \otimes \tilde{c}))= \\
& \Phi\left(T f_{A}(\tilde{a}), T \varphi_{B C}(\tilde{a} \otimes \tilde{b})\right)=\Phi\left(T f_{A}(\tilde{a}), \Phi\left(T f_{B}(\tilde{b}), T f_{C}(\tilde{c})\right)\right)=\Phi(a, \Phi(b, c)) .
\end{aligned}
$$

Combining Lemma 5.1 with Theorem 4, we get the main result of this paper:
Theorem 5. Assume that the monadic functor T is continuous and for each finite discrete space F in \mathcal{C} the space TF is Hausdorff and locally compact. Let $\varphi: X \times X \rightarrow X$ be an associative binary operation in \mathcal{C} and $\Phi: X \times X \rightarrow X$ be its \mathbb{T}-extension. If the set $T_{f} X$ of elements with finite support is dense in $T X$, then the operation Φ is associative.

Proof. By Theorem 4, the set $T_{f} X$ lies in the topological center Λ_{Φ} of the operation Φ and by Lemma 5.1, $T_{f} X$ is a subsemigroup of $(T X, \Phi)$. Now the associativity of Φ follows from the following general fact.

Proposition 5.1. A right topological operation $\cdot: X \times X \rightarrow X$ on a Hausdorff space X is associative, if its topological center contains a dense subsemigroup S of X.

Proof. Assume conversely that $(x y) z \neq x(y z)$ for some points $x, y, z \in X$. Since X is Hausdorff, the points $(x y) z$ and $x(y z)$ have disjoint open neighborhoods $O((x y) z)$ and $O(x(y z))$ in X. Since the right shifts in X are continuous, there are open neighborhoods $O(x y)$ and $O(x)$ of the points $x y$ and x such that $O(x y) \cdot z \subset O((x y) z)$ and $O(x) \cdot(y z) \subset O(x(y z))$. We can assume that $O(x)$ is so small that $O(x) \cdot y \subset O(x y)$. Take any point $a \in O(x) \cap S$. It follows that $a(y z) \in O(x(y z))$ and $a y \in O(x y)$. Since the left shift $l_{a}: \beta S \rightarrow \beta S$, $l_{a}: y \mapsto a y$, is continuous, the points $y z$ and y have open neighborhoods $O(y z)$ and $O(y)$ such that $a \cdot O(y z) \subset O(x(y z))$ and $a \cdot O(y) \subset O(x y)$. We can assume that the neighborhood $O(y)$ is so small that $O(y) \cdot z \subset O(y z)$. Choose a point $b \in O(y) \cap S$ and observe that $b z \in O(y) \cdot z \subset O(y z), a b \in a \cdot O(y) \subset O(x y)$, and thus $(a b) z \in O(x y) \cdot z \subset O((x y) z)$. The continuity of the left shifts l_{b} and $l_{a b}$ allows us to find an open neighborhood $O(z) \subset \beta S$ of
z such that $b \cdot O(z) \subset O(y z)$ and $a b \cdot O(z) \subset O((x y) z)$. Finally take any point $c \in S \cap O(z)$. Then $(a b) c \in a b \cdot O(z) \subset O((x y) z)$ and $a(b c) \subset a \cdot O(y z) \subset O(x(y z))$ belong to disjoint sets, which is not possible as $(a b) c=a(b c)$.

6 T-EXTENSION FOR SOME CONCRETE MONADIC FUNCTORS

In this section we consider some examples of monadic functors in topological categories. Let Tych denote the category of Tychonov spaces and their continuous maps and Comp be the full subcategory of the category Tych, consisting of compact Hausdorff spaces.

Discrete objects in the category Tych are discrete topological spaces, while discrete objects in the category Comp are finite discrete spaces.

Consider the functor β : Tych \rightarrow Comp, assigning to each Tychonov space X its Stone-Čech compactification and to a continuous map $f: X \rightarrow Y$ between Tychonov spaces its continuous extension $\beta f: \beta X \rightarrow \beta Y$. The functor β can be completed to a monad $\mathbb{T}_{\beta}=(\beta, \eta, \mu)$, where $\eta: X \rightarrow \beta X$ is the canonical embedding and $\mu: \beta(\beta X) \rightarrow \beta X$ is the identity map. A pair (X, ξ) is a \mathbb{T}_{β}-algebra if and only if X is a compact space and $\xi: \beta X \rightarrow X$ is the identity map.

Combining Theorems 1,5 , we get the following well-known corollary.
Corollary 6.1. Each binary right-topological operation $\varphi: X \times Y \rightarrow Z$ in Tych with discrete X can be extended to a right-topological operation $\Phi: \beta X \times \beta Y \rightarrow \beta Z$, containing X in its topological center Λ_{Φ}. If $X=Y=Z$ and the operation φ is associative, then so is the operation Φ.

Now let $\mathbb{T}=(T, \eta, \mu)$ be a monad in the category Comp. Taking the composition of the functors $\beta:$ Tych $\rightarrow \mathbf{C o m p}$ and $T: \operatorname{Comp} \rightarrow \mathbf{C o m p}$, we obtain a monadic functor $T \beta:$ Tych \rightarrow Comp.

Theorem 6. Each binary right-topological operation $\varphi: X \times Y \rightarrow Z$ in the category Tych with discrete X can be extended to a right-topological operation $\Phi: T \beta X \times T \beta Y \rightarrow T \beta Z$ that contain the set $\eta(X) \subset T \beta X$ in its topological center Λ_{Φ}. If the functor T is continuous, then the set $T_{f} X$ of elements $a \in T \beta X$ with finite support is dense in $T \beta X$ and lies in the topological center Λ_{Φ} of the operation Φ. Moreover, if $X=Y=Z$ and the operation φ is associative, the so is the operation Φ.

Proof. By Theorem 1, the binary operation φ has a unique \mathbb{T}-extension $\Phi: T X \times T Y \rightarrow T Z$. By Definition 2.1, the set $\eta(X) \subset T \beta X$ lies in the topological center Λ_{φ} of φ.

Now assume that the functor T is continuous. First we show that the set $T_{f} X$ is dense in $T \beta X$. Fix any point $a \in F \beta X$ and an open neighborhood $U \subset T \beta X$ of a. Then $[a, U]=\{f \in \operatorname{Mor}(F \beta X, F \beta X): f(a) \in U\}$ is an open neighborhood of the identity map id : $F \beta X \rightarrow F \beta X$ in the function space $\operatorname{Mor}(F \beta X, F \beta X)$ endowed with the compact-open topology. The continuity of the functor T yields a neighborhood $\mathcal{U}\left(\mathrm{id}_{\beta X}\right)$ of the identity map $\operatorname{id}_{\beta X} \in \operatorname{Mor}(\beta X, \beta X)$ such that $T f \in[a, U]$ for any $f \in \mathcal{U}\left(\operatorname{id}_{\beta X}\right)$. It follows from the definition of the compact-open topology, that there is an open cover \mathcal{U} of βX such that a map $f: \beta X \rightarrow \beta X$ belongs to $\mathcal{U}\left(\operatorname{id}_{\beta X}\right)$, if f is \mathcal{U}-near to $\operatorname{id}_{\beta X}$ in the sense that for every
$x \in \beta X$ there is a set $U \in \mathcal{U}$ with $\{x, f(x)\} \subset U$. Since βX is compact, we can assume that the cover \mathcal{U} is finite. Since X is discrete, the space βX has covering dimension zero [9, 7.1.17]. So, we can assume that the finite cover \mathcal{U} is disjoint. For every $U \in \mathcal{U}$ choose an element $x_{U} \in U \cap X$. Those elements compose a finite discrete subspace $A=\left\{x_{U}: U \in \mathcal{U}\right\}$ of X. Let $i: A \rightarrow X$ be the identity embedding and $f: X \rightarrow A$ be the map defined by $f^{-1}\left(x_{U}\right)=U$ for $U \in \mathcal{U}$. It follows that $i \circ f \in \mathcal{U}\left(\operatorname{id}_{\beta X}\right)$ and thus $T(i \circ f) \in[a, U]$ and $T i \circ T f(a) \in U$. Now we see that $b=T f(a) \in T A$ and $c=T i(b) \in T_{f} X \cap U$, so $T_{f} X$ is dense in βX.

By Theorem 4, the set $T_{f} X$ lies in the topological center Λ_{Φ} of Φ.
Now assume that the operation φ is associative. By Lemma 5.1, $T_{f} X$ is a subsemigroup of (X, Φ). Since $T_{f} X$ is dense and lies in the topological center Λ_{Φ}, we may derive the associativity of Φ from Proposition 5.1.

Problem 1. Given a discrete semigroup X investigate the algebraic and topological properties of the compact right-topological semigroup $T \beta X$ for some concrete continuous monadic functors T : Comp \rightarrow Comp.

This problem was addressed in [10], [11] for the monadic functor G of inclusion hyperspaces, in [2]-[5] for the functor of superextension λ, in [1], [12], [15] for the functor P of probability measures and in [6], [7], [8], [18] for the hyperspace functor exp.

In [19] it was shown that for each continuous monadic functor $T:$ Comp \rightarrow Comp any continuous (associative) operation $\varphi: X \times Y \rightarrow Z$ in Comp extends to a continuous (associative) operation $\Phi: T X \times T X \rightarrow T X$.

Problem 2. For which monads $\mathbb{T}=(T, \eta, \mu)$ in the category Comp each right-topological (associative) binary operation $\varphi: X \times Y \rightarrow Z$ in Comp extends to a right-topological (associative) binary operation $\Phi: T X \times T Y \rightarrow T Z$? Are all such monads power monads?

REFERENCES

1. Banakh T., Cencelj M., Hryniv O., Repovs D. Characterizing compact Clifford semigroups that embed into convolution and functor-semigroups, preprint (http://arxiv.org/abs/0811.1026).
2. Banakh T., Gavrylkiv V., Nykyforchyn O. Algebra in superextensions of groups, I: zeros and commutativity, Algebra Discrete Math, 3 (2008), 1-29.
3. Banakh T., Gavrylkiv V. Algebra in superextension of groups, II: cancelativity and centers, Algebra Discrete Math, 4 (2008), 1-14.
4. Banakh T., Gavrylkiv V. Algebra in the superextensions of groups, III: minimal left ideals, Mat. Stud., 31, 2 (2009), 142-148.
5. Banakh T., Gavrylkiv V. Algebra in the superextensions of groups, IV: representation theory, preprint (http://arxiv.org/abs/0811.0796).
6. Banakh T., Hryniv O. Embedding topological semigroups into the hyperspaces over topological groups, Acta Univ. Carolinae, Math. et Phys., 48, 2 (2007), 3-18.
7. Bershadskii S.G. Imbeddability of semigroups in a global supersemigroup over a group, in: Semigroup varieties and semigroups of endomorphisms, Leningrad Gos. Ped. Inst., Leningrad, 1979, 47-49.
8. Bilyeu R.G., Lau A. Representations into the hyperspace of a compact group, Semigroup Forum 13 (1977), 267-270.
9. Engelking R. General Topology, PWN, Warsaw, 1977.
10. Gavrylkiv V. The spaces of inclusion hyperspaces over noncompact spaces, Mat. Stud., 28, 1 (2007), 92-110.
11. Gavrylkiv V. Right-topological semigroup operations on inclusion hyperspaces, Mat. Stud., 29, 1 (2008), 18-34.
12. Heyer H. Probability Measures on Locally Compact Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 94. Springer-Verlag, Berlin-New York, 1977.
13. Hindman N., Strauss D. Algebra in the Stone-Čech compactification, de Gruyter, Berlin, New York, 1998.
14. MacLane S. Categories for working mathematicican, Springer, 1971.
15. Parthasarathy K.R. Probability Measures on Metric Spaces, AMS Bookstore, 2005.
16. Protasov I. Combinatorics of Numbers, VNTL, Lviv, 1997.
17. Teleiko A., Zarichnyi M. Categorical Topology of Compact Hausdofff Spaces, VNTL, Lviv, 1999.
18. Trnkova V. On a representation of commutative semigroups, Semigroup Forum, 10, 3 (1975), 203-214.
19. Zarichnyi M., Teleiko A. Semigroups and monads, in: Algebra and Topology, Lviv Univ. Press, 1996, 84-93 (in Ukrainian).

Ivan Franko National University,
Lviv, Ukraine.
Vasyl Stefanyk Precarpathian National University,
Ivano-Frankivsk, Ukraine.
Received 2.12.2009

Банах Т.О., Гаврилків В.М. Продовження бінарних операчій на функтор-простори // Карпатські математичні публікачії. - 2009. - Т.1, №2. - С. 114-127.

Маючи неперервний монадичний функтор $T: \operatorname{Comp} \rightarrow \mathbf{C o m p}$ в категорії компактів і дискретну топологічну напівгрупу X, ми продовжуємо напівгрупову операцію $\varphi: X \times X \rightarrow$ X до правотопологічної напівгрупової операції $\Phi: T \beta X \times T \beta X \rightarrow T \beta X$, топологічний центр Λ_{Φ} якої містить всюди щільну піднапівгрупу $T_{f} X$, яка складається з елементів $a \in T \beta X$ зі скінченним носієм в X.

Банах Т.О., Гаврилкив В.М. Продолжение бинарных операций на функтор-пространства // Карпатские математические публикачии. - 2009. - Т.1, №2. - С. 114-127.

Пусть $T: \mathbf{C o m p} \rightarrow \mathbf{C o m p}$ - непрерывный монадический функтор в категории компактов и X - дискретная топологическая полугруппа. В работе построено продолжение полугрупповой операции $\varphi: X \times X \rightarrow X$ до правотопологической полугрупповой операции $\Phi: T \beta X \times T \beta X \rightarrow T \beta X$, топологический центр которой содержит всюду плотную подполугруппу $T_{f} X$, содержащую елементы $a \in T \beta X$ с конечным носителем в X.

