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APPLICATION OF THE SPECTRAL THEORY AND PERTURBATION THEORY TO
THE STUDY OF ORNSTEIN-UHLENBECK PROCESSES

The theoretical bases of this paper are the theory of spectral analysis and the theory of sin-
gular and regular perturbations. We obtain an approximate price of Ornstein-Uhlenbeck double
barrier options with multidimensional stochastic diffusion as expansion in eigenfunctions using
infinitesimal generators of a (I 4+ r + 1)-dimensional diffusion in Hilbert spaces. The theorem of
accuracy estimation of options prices approximation is established. We also obtain explicit formu-
las for derivatives price based on the expansion in eigenfunctions and eigenvalues of self-adjoint
operators using boundary value problems for singular and regular perturbations.
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INTRODUCTION

In 1956 McKean H.P. constructed a spectral presentation for general one-dimensional dif-
fusion [1]. Since then, spectral theory has become an important instrument for the analysis
of financial diffusion models, as investigation of expansion in eigenfunctions of linear opera-
tors. Many problems concerning derivatives estimation are solved using methods of spectral
theory; as a result it is widely used in financial mathematics.

Spectral theory has been extensively applied by many scientists, namely, to forecast call op-
tion price [2], to find interest rates on securities [3] and model volatility of financial assets. Both
spectral theory and stochastic volatility models have become an indispensable tool in mathe-
matics of finance [4], due to the fact that prices of double barrier options are subjected to the
Brownian motion and are correlated with volatility [5]. Therefore, it is employed in an investi-
gation of stochastic volatility, in particular the asset volatility, which is the basis of controlled
and nonlocal diffusion [6]. Applying methods of spectral theory, theories of singular and reg-
ular perturbations, we can obtain approximate price of Ornstein-Uhlenbeck double barrier
options with multidimensional volatility, as expansion in eigenfunctions using infinitesimal
generators of a (I + m + 1)-dimensional diffusion, ! > 1,7 > 1,1 € N, r € N, i.e. the diffusion
depends on one local variable, /-dimensional fast variable and n-dimensional slow variable.
This paper develops the following researches [7-9], in [9] it is considered the case | = 1 and
m = 1.

The purpose of the article is to elaborate algorithms for evaluating approximate price of
double barrier options and to find explicit formulas for derivatives estimation as expansion in
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eigenfunctions and eigenvalues of self-adjoint operators using boundary problems for singular
and regular perturbations. The theorem of accuracy estimation of options prices approxima-
tion is established.

1 RESULTS

Let (Q,F,P) be the probability space that supports a correlated Brownian motion
(WX, Wh, .., WY, W= . W?#) and an exponential random variable ¢ ~ exp(1), which is in-
dependent of (W*, W¥i, ... WY W= ... W?). We will assume that the economy with
(I +r+ 1) factors is described by the homogeneous time and continuous Markov process
X=(XY1,...,Y1,Z4,...,Z,), which is defined in some state space E = I X R! x R", where
(Yy,..., YZ)GRZ, (Zy1,...,Zy) €R’, I is the interval at R with points e; and e, such that —oo <
e1 < ep < 0. We assume that X has the beginning at E and instantly disappears once X goes
beyond I. In particular, the dynamics of X with physical measure PP is as follows:

X, — (thylt;- . .,Ylt,th,...,Zrt), T > t,
P =
A, T <t

T =1inf{t >0: X; ¢ I}, where (X, Y1,...,Y},Z4,...,Z;) are set

(dX; =0 (Xe)dt+a(Xe) f Ve, Yie, Zugs - -, Zot) AWE,
dYye = La; (Ye) dt + = (i) AW, =11,
dZi; = 8ic; (Ziy) dt + \/6;g:i (Zi) AW/, i=1,r,
d(W*, WYi), = Pxydt, i=1,1,
d(W*, W?), = px.,dt, i=1,r,
d(wyj,WZi)t — py]‘zidt’ j=1Li=1r,
d(WYi, W¥r), = py].ysdt, i=11Ls=1,1,
d(W?, W), = p,...dt, i=1nk=1,r,
(X, Y1,....Y,Z4,...,2y) = (%, y1,---, Y1,21,---,2¢) €E,

\

where pyy. = 0,j # 1, pzz, = 0,1 # k, pxy;, Pxz;, Py,z meet the conditions ||pxy].| <1, lpxz| <1,
|P}/jzi| < 1, and correlation matrices of the form

1 px]/j pxzi
Pij 1 pyjzf
Pzx Pz, 1

semipositively defined, that is 1 + 20xy,0xz,0y,2 — pxy].2 — Oxz — Pijiz >0,j=1,1i=1,r.
Process X may represent many economic phenomena and processes.

For example, the reserve size, the index price and reliable short-term interest rates, etc.
Even more broadly, X is an external factor that characterizes the value of any of the above-
mentioned processes. Physical measure IP of process X is understood as the process X, which
has an instant drift v (X;) and stochastic volatility a (X;) f (Yit, ..., Y, Z1t, - - -, Znt) > 0, which
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contains both components: local a (X;) and nonlocal f (Yi,..., Yy, Zit, ..., Znt). Note that
infinitesimal generators for Y; and Z; have the form
g _ 1 (1,5 2 5 L 2 2
Sy = g 5:3]' (vj) Oy, + i (yj) Oy, |, L7, =i 28i (2i) Oz, +ci(2:) 0 |, Vi,
and are characterized by the measures 81—] and J;, respectively. Thus, Y7,...,Y;and Zy,...,Z,

have an internal time scale ¢; > 0 and % > 0. We consider ¢; << 1 and J; << 1, so that the
internal time scale Y;is small, and the internal time scale Z; is large. Consequently, Y, j= 1,1,

are fast variables, and Z;, i = 1,1, are slow variables. Note that S% and S‘;"i have the form

£ =142 (x) 9%, + b (x)9x —k(x), x € (e1,€2), ¢k (x) =0,
for all x € I, are always self-adjoint in the Hilbert space H = LZ(I,m), where I € R is the
interval with the points e; and e, and m is the diffusion density rate. Note,

Dom (£) = {f € L>(I,m) : f,0xf € ACioc (I), &f € L*(I,m), BCsone; and e},
where ACj, (I) is the space of functions which are absolutely continuous on each compact
subinterval I (see [9]). The boundary conditions for e; and e; are applied on the output, input,
and regular bounds.

We will evaluate the derivatives with payoff at time t > 0, which may depend on the tra-
jectory of X. In particular, we will consider the forms of payoff: Payoff = H (X)L (), where
T is a random moment of time during which there is a failure to make a payment of pre-
mium. Since we are interested in the derivatives estimation, we must determine the dynamics
(X,Y1,...,Y1,Z4,...,Z;) under the evaluation of the degree of neutral risk, which we denote
as IP. We have the following dynamics

dXt = (b (Xt) —a (Xt) f (Yltr .. '/Yltr th, ce rZ}’i’) Q (Ylt/ ce rYltr th, .. .,Zyt)) dt
“+a (Xt) f (Ylt/ ooy Ylt/ th, ey Zrt) thx’

dY; = <£ljoc]- (Yir) = =B (%), (Ylt,...,Ylt,th,...,Zrt)) dt -+ J=p; (Vi) W/,

dZiy = (6ici (Zit) = V6i&i (Zit) T Vats - - Yit, Zag, -, Zyt) ) At + \/6i8i (Zi) AW,

A(W, W, = pry dt, =1

d<Wx, Wzi>t — szlvdt/ i= 1,7’,

d (WY, W) = 0y,zdt, j i=1r,

d (WY, W¥s) = Oy, dt, i=11, s=1,1,

d (W%, W), = p,z,dt, i=1n, k=1,n,

(X(), Yl,...,Yl,Zl,...,Zro) = (x,yl,...yl,zl,...,zr) € E,

where Oyiys = 0,j #5,0z2 =0,i #k and

U(Xt) —b(Xt) 4
(Xt> f (Ylt/ .. -lYlt/ th/ . . -/Znt>

thx = thx + (ﬂ (@) (Yltr~ . ~/Ylt/ th,. . .,Zrt)) dt,

dVVty’ = thy] + A] (Ylt/ .. -/Ylt/ th, .o -;Zrt) dt,
AWi = dWE 4+ T; (Yig, -, Yo, Zag, -, Zye) dit.

We establish such conditions so that the system (1) has the only strong solution.
Random time T is the time of the derivative asset. In our case, default can occur in one of
two ways:
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1) when X fall outside the interval I,
2) at random time T, which is managed by the risk level h(X;) > 0.

This can be expressed as follows

T=T ATy
T =inft>0: thél
T, =inft>0: fo s)ds >e(X,Y1,...,Y1,24,...,Zy) , € ~exp(1).

Note that the random variable ¢ is independent of (X, Y1,...,Y}, Z1,...,Zy).

To track 1, we use the process indicator Dy = I;>q, where D = ©;, t > 0, is a filter
generated by D and F = §;, t > 0 is filter generator (W*, WY1, ... WY W=, .., W*). We
use the filtering G = &;,t > 0, where &; = §;\/ ©;. Note that (X,Y3,...,Y],Z4,...,Z,) are
applied to G and 7 is a stopping time (7t < t € &; forall t > 0).

We will evaluate the derivative asset of some payoff (payment) using the neutral pricing
risk and Markovian chain X, the price u&d' (t,x,y1,-..Y1,21,-..,2+) of some derivative assets at
the initial moment of time has the form

_ - t
usl(s (tr X, ylr .. 'yllzlr oo /ZT’) — ]Ex,y1,...yl,zl,...,zr |:exp <_ /O r (XS) ds) H(Xt]If>T):| ’

where € = (eq,...,¢),8 = (61,...,6;),and (x,y1,...Yy;,21,...,2,) € E is a starting point of
the_ process (X,Y1,...,Y;,Z1,...,Z). Using the Feynmann-Kac formulas, we can show that
U’ (t,x,y1,---Y1,21,- - ., 2r) satisfies the following Cauchy problem (see [9])

(—0; +£E'y)ug' =0, (y1,---y1,z21,.--,2r) €EE, t e RT, (2)

u'/(O,x,yl,...yl,zl,...,zr) = H(x), (3)
where the operator £%%" has the form

) /

SE,W:
7; = 1VE

1
- 21]+£2]+Z mt31]+z\fimh+25 My;,
i ]

Sy = 2B (1) B, 0y (1), =T,
£y = ﬁj(yj)(pxyja (x) f (1, ---y1,21,- -, %) Ox — Aj(Y1, - - - Y1, 21, - - .,z,))ay],,
L= %az () F2 (Y1, Y121, -, 20) 0oy
+0(x)—a(x)Q 1, yvz1,--,20) f1,-- - Y1,21,- ., 2r)) Ox —k (X)),
Msij = oxz,B; (V) 8i (2i) 0y .

1i = i (zi) (oxz0 () f(y1,---y,20,- -, 2) O — i (W1, - Y1, 20, - -+, 2¢)) Oz,

1
My = 5812 (2i) 02, +¢i (2:) 0z k(x) =7 (x)+h(x), Lo= 53%/,»
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We assume that the diffusion with the infinitesimal generator S%(j has an invariant distribu-
tion IT with density

. 2 Yj 20(1‘(9) .
) = g,

Besides the initial condition (3), the function u&° ' (t,x,y1,---Y1,21,--.,2) must meet bound-
ary conditions at the points e; and e; of the interval I. The boundary conditions at points ¢;
and e, belong to the domain £5%" and will depend on the nature of process X on the points
of I and are classified as natural, output, input or regular [10]. The Cauchy problem (2)-(3)
for (f,a1,...,a1,B1,---, Brs M1, -, Ac1, oo, 081, -+, 8 11, - .., ) has no analytical solution.
However, for fixed ¢, the conditions containing € and are arbitrarily deviated in the g-axis,
which causes singular perturbations. For a fixed ¢; condition containing J; are small for some
small ¢’-axis, which causes regular perturbations. Thus, the €-axis and ¢’-axis yields the com-
bined singular-regular perturbation of O(1) of the operator £,.To find the asymptotic solution
of the Cauchy problem (2)—(3), we develop u%" in orders V/Ej and Vo; [11]:

ug,y = Z Z Z Z \/Efl..ve_/’ \/E” e \/grlrujl,...,jn,il,...,il
120 420720 20
where

Y oYY Y e \/‘Tlil---\/griruh,...,jr,il,...,il

050 207,20  j,=0
m>0 my 20 myy,

—hmz YY) Z\/_“ mjlmil~~~\/5/riruj1,...,j,,z‘1,...,ilr V1my, — oo.

i1>0 120 120 jn=>0

The approximate price is calculated
—_ l r
~ Uy + Z; Ve + Z; \/Eual—;.
j= i=

The choice of development in half-integer orders ¢; and ¢; are natural for vl

By conducting an analysis of singular perturbations at the corresponding levels, we obtain
that 15, U, Uy 1 do not depend on yjy, ..., y;. The basic findings of the asymptotic analysis
are given using the following formulas

o1): Y. £0ju§]ﬁ + (=0t +(£2)) ugy =0, gy (0,x,21,...,2,) = H(x), 4)
j=1

@ <\/a) : Sojugj@ + 21]‘145],,@ + (=0t + (£2)) ul NG + Z £1ku1 0 + 2211 =A; jUg0

k# i#]
U (0,%,21,...,2,) =0, 1= 0,...10,1,0,...0 | . (5)
k ]

According to the analysis of regular perturbations we have

(’)(ﬁ) (=0t + (£2))u 1,—5’8211400,, 6,1—;(0,x,21,...,zr):O, i=1,r. (6)




278 BURTNYAK I.V., MALYTSKA H.P.
Operators (£,), Aj, B; and 9, are defined by the formulas
1 2 —
(L) = E(T a* (x) 02, <b (x) —an(x)) ox —k(x), x€(e1,e2),
Aj = —vzja (x) 0xa* (x) 92y — vzjaz (x) 93y — Upja (x) 0xa (x) 0y — Uija (x) Oy,

Bi = —vjia (x) 0y —vpi, 0z, = 8z1535+m/3m, v = Qipxz; (f), vo=gi{li), Vi=1n,

and norm function is defined by

/X W1,y 5 (yy) dyy, Vi=11,

()12 = / X 1,y (1) 72 (2) dndy
)1 11—/RIX yi,---y) (i) - (yn) dya - dy,

(X)) 1= (X)), (fQ) = fO, <f2> =07
We find solutions of the equations (4)—(6) on the basis of eigenfunctions, eigenvalues of the
operator (£,), each of which meets the corresponding Poisson equation

Lorpr = f* <f2>1’ Lo2g2 = <f2>1 a <f2>1,2,---,5301901 B <f2>l—2,l—1 a <f2>1—1,l’
Lorm = fQ=(fQ)y,..., Lojj= (fQ)j 21— D) j_1jp- - Lot = (fQ) 201 — f )4,

Theorem 1. Assume that we can solve the following equation to find an eigenvalue

—(£2) Yu = Antpn, P € dom ((£2)), )
and also that He ‘H. Then the solution usy has the form

(e 9]

Uy = Z CntpnTh, Cp = (IPn,H) , T, = o tAn
n=1
Proof. Since Usy satisfies the differential equation (4), suppose that occurs (7), the boundary
conditions are fulfilled Ugor 0,%,21,...,24) = H(z1,...,24), T (0,21,...,24) =1, ¢ (A) =1d,
this means

1df - il(wn,f) o VfEH,

this is equivalent to having its eigenfunctions 1, dense self-adjoint operators in H form the
Schauder basis. In fact, the basis can be chosen orthonormal (¢, ¥1,) = 6nm. Also note that
¢ (A) = R, gives the actual representation of the resolvent of the operator

R, f = ig‘:”’f))\lpn, VFEH, Acp(L),

to payoff function H :

(e 9]

WH= Y () o = 3 cutn

n=1 n=1



APPLICATION OF THE SPECTRAL THEORY AND PERTURBATION THEORY ... 279

Theorem 2. Letc,, Py, T, be described using Theorem 1. We define

. . Tk - Tn
]kn = (Ebk/ ]an) 7 uk,n . )\k — A

Then the solution ug 7 of equation (5) has the form
]/

MT]/W - Z Z C”A]k,ﬂlpkuk,n - chAjn,anntTn.
n

n k=#£n

Note that Ui is linear in the parameter group (93, %), aj, 1)

Proof. Let us show that u; g satisfies the differential equation and boundary conditions (5). It
]I
is clear that the boundary conditions for ug (0,x,z1,...,2,) = 0 are executed. To show that
]/
ug i satisfies the differential equation (6), we note that
]/

Aty = ;Cn (Ajpn) Tn = ;;CnAjk,anan/
according to the proof of Theorem 1. Now, using (7) and the following equality
(=0 — M) Uy = Tu, (=0t — Ap) tTy = =Ty,
it is easy to see that
(=01 + (L)) ug iy = Ajug iy = ;cn (Ajpn) T, = ;[kjanjk,nlkan.

0

Theorem 3. Letcy,, ¢, and T,, be defined with Theorem 1, and Uy ,, with Theorem 2. We have
Tk - Tn tTn
5+ .
()\k — An) )\k — An

Bitn = (r, Bidz.¥n) , Bikw .= ($r, Bihn), Vign :=

Then the solution u-— has the form

0, 1’
7= Z Z cnB zk ank ikn — Zcﬂgiﬂ,nlpntT”
i n k#n n

+) ) (9z.,) Bkt Uik — Y (92,¢,)) Binnp,,t T

n k;én n

+ZZC” anl/]k aZA zkn ch znnlpn az/\)

n k#n

Proof. We need to show that U 17 satisfies the differential equation and boundary conditions

(5). We see that the boundary Cond1t10n u==(0,x,21,...,2,) = 0 is executed. To show that

01! (
7 satisfies the differential equation, we note that

6'1‘
Bio- ”00/—ch Bi0z,pu) T +Z (0zcn) (Bitpn) T
+ch B’,bn az,Tn chngzknwan

+ZZ aZzC” Zk?llpk T _chn zknlpk (azl)\ ) 1

I
—_
~
S
~
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where we used
o

IdH = Z (Y, f) Y = ch’l)nr
n=1

n=1

in the second equality using — (£;) ¥, = A, P, and equality
(=0t = A ) Uy = Ty, (=01 — Ap) tTy = =T,

1
(=0t — M) Vi = —tThy, (—at—Ak)EtzTn:—tTn,

one can see that
( at+ <82>) _/ = Bazz ()()/ - ZC” B 82711‘/]”)

Z (azncn Bn¢n Z Bnlpn azn Tn chnlgzk n Pk T
+ Zzazl ¢, zk anan ZZCHBik,nlpk (az,')\n) tTy, i=1,n.
n k

Note that U1 is linear in (vy,0, vi; fQ2, voiT, voi f2).
We have obtained the approximate solution u*®" ~ Ugy + Z}:l \/S_J'”Tjﬁ + Y \/(Tiuﬁ,l_; for
the derivative asset pricing. O
For a more exact result we assume that the Payoff function H(x) and its derivative are

smooth and limited functions. Thus, we restrict our derivative analysis to a smooth and limited
payoff; in this case, the closeness estimates is based on the following theorem.

Theorem 4. For the fixed (t,x,y1, ...,Y1,21,--.,2r) there exists an invariable C such that for
anye; <1, 6; <1 we have

™ — (”00'+ ). \/7”1 I +Z \F”m')

l r
S C (ZSJ‘—FZ(Z‘) .
j=1 i=1

Proof. Before setting the main result of accuracy we formulate such a lemma.

Lemmal. LetJ(y1,...,Y1, 21, -.,2n) grows polynomially. Then for every (y1,...,Y1,21,---,2n),
s < t, there is a positive start C < oo such that for any ¢; < 1, §; < 1, the following inequality
holds

Ey,, vz T Nisr - Yis, Zas, - Zns)|] < C.

Proof. It is enough to consider | (y1, ..., Y1, 21,---,2n) = y;‘ and J (y1, -, Y1,21,---,2n) = zi-‘,
k € IN. For the second one we have the following. Physically IP we understand as

E [‘ZiS‘k] =E [
(1)

Now we define exponential martingales M, ", which connect the dynamics Z; at neutral risk
of measurement IP in its dynamics according to physical measure IP. We have

otk
id;s

k
Z(l)‘ ] <suplE {

108
6;<1

:| < Ci (S,k) < Ci(t,k>, i= 1,1’[.

, t 1 gt dP
MF = exp <—/0D(Y15,...,Y15,Z15,...,Zns)dWle—E/OFf(Yls,...,YZS,le,...,Zns)ds> =

Fi
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| Zs|* can be found as follows
E|[|Zu/] = E ||z m"]

LI Ay 172
=F {\Zis!kexp <§/0 r? (Yluf'--lewzluz---,Zm,)du> <M§2Fl)) ]

s 1/2
< (]E [|Zis|2kexp (/0 2 (Ylu,...,Ylu,Zl,,,,...,Znu)du”)

(by Cauchy-Schwartz)

s 1/2
- (]E {|Zis|2kexp (/0 Fiz (Ylu/- . -rYlu/ Zlur~ . ~/Znu) du)])

(M@5) —is P—martingale)

(o

Consider now the case J (y1, ..., Y1, 21,---,2n) = y}‘. We have

E [t = ||,

Using the above considerations is easy to show that

B [[vil'] =[x u| < (E |v0),

The Lemma 1 is proved. 0

/N
[zs
—
S
N
iy
=
N—
Nl—

(1)
Zi(SiS

i exp(suriuio»f <c

k k
] <sup]E U /e, ] <Cj(k).

i exp@HAjH;)))% <,

Let us return to the proof of the Theorem 4. We start with the definition of the remainder
term R%'

l n l l
oy + Z; VErTy + Z; Vit + Z; g (”z]ﬁ + Z; \/87‘”3]-,@>
j= i= j= j=

1
EOVCNC IS A S » )

k#j j=li=

+ZZfoﬁu1 TR

k#jj=1i=
Functions 1y, U Ug are the only solutions of equations (4)—(6), respectively. Function
uz—]ﬂ, wz—j@ is a solution of the Poisson equation 0 = 20;‘”@@ =1, 1, 1. To characterize u1 1,, 2].1—;

continue the singular analysis of perturbations.

/
0= Sojug'—jl*; + £1ju2—jﬂ + g £1ku17j,1*; + (=0t + £2) ul—jl—;(’) + S)ﬁgi]'uz—j@ + imliul—j@. (8)
)
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Equation (8) is a Poisson equation. In order to determine the solution for (8) 15, in the
17

space L?(IR, ), the centering condition must meet 0 = Loju+ X, j = 1,1. In (8) the condition
of centering is

0= <£1ju2—jl—;> + (=0t + (£2)) u171—; + <9ﬁ31~ju2—j,@> + (My;) uTj,@, )

let us express ”27?'
1

= (_at -+ <£2>) 1 <m11 1/[0 o Z »2()] 2 1/ + ( at + 22) 7
=
!
+Mjttgy + Y 93?31‘]“1].@ + 31]'”1717,

j=1
Let us put down similar terms

l
0=y Sojitzy + (L2 = (£2)) gy + Mty — (M) g = Z Sojltzy

j=1
Lo(=_ p 92 lo 7o) _
+ _5‘1 <‘7 _f ) xx+a(f f ) 6,1;
+ [8i (0xz,af0x — I7) 0z, — &i (0xz,a (f) 0x — (I})) 0z] Upy
! 1 2 2
:Zgoj”z_ijL(( Pk < —PFRFOLTF T 9 1))8
j=1
+a(fQ - fQFfO, FfOpF - F mz-z,z-DaX) Uo7
+ |81 (=l = O F (1 F P F o F gy,
ST )% (00 F (D)% (D), ) -
Consider such systems of Poisson equations
Loipr = f2 =01, Loppa=01— 01y ..., Loj@j = ‘_7]272,]'71 - E]{l,jr e

a1 =01 91 1= 0115 Lot = fQ— Q... Lam = fQ_,, 1 — fQ,
Lod1=f— (v Loné= (1~ Hw - Ladi= (o1
Loli=T (), Coli = () 51— ().

Functions ¢;(y1, ---,Y1,21,-+-,2Zu), j(Y1, ---,Y1,21, - - -, Zn) are solutions of the correspond-
ing Poisson equations, the formula holds

Z Lojuzy + Z Loj (“‘1 9% + “Wjax> o + [8i (0xzi08j9x — &) 0z gy = 0.
=

Therefore, the formula holds

1, . .
iy < a gz)]az my]-ax> Uy — & (pxziagjax — g]-) Ozugy +Dj, Vi=11, i=1n. (10)
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D]-(x, z1,...,2n) is a constant that does not depend on y. Substituting (10) in (9) we find ”1 7
knowing u5 5, U1 7/ Uy Uygisa solution (9) with boundary conditions u (0, x, z, Zn) = O
’ i’ it
TakeuWEO, Vk#j k=11
Let us calculate

AN AL | L

0= (—d; + £ o + £&0 “Fy+ F:+ Y F

(- Ju ( 7) R ;eo]]“ruzzf
1 1

Z —I—ZZ\/>R2]~I—25R

F()]' = Sojuﬁlw, F 20]

where

Tv T ko

szl

Z£01”2 ot Z£1]”1 o + (=0t + £2) ug g,
j=

Faji = Lojttg 1,
Fyji = Lojury + Lajiig yy + Maijitg g7,

!
Z Fsji =
j=1

2}301 21""];21] 11'+9ﬁ3l] 10/+9ﬁ11 00/+( 9t + £2) 0,1
j=1 j

e

Ryj = (=0r+ L) uy i + Sijug i + /5] (=0t + L2) uz 5,
e,

RZJZ‘]‘ = (=0 + £2) ”1717 + Sljuz—jﬂ + ?mll-ul—]ﬁ + m?aij”f@

+\F< —0r + £2) ISy +§m11”2 o T Majuy 0/) & im1]”3 g

R31] Myjuig g7 + Myjtig g + Majtiy 37

+\F <m1]u1717 + mzjufj,@ + mgjuT]T;> + € (f)ﬁl] 1 + mzjuz 0,)
Itis easy to see, F()] = Fl] = F31']' = F41']' = F5ij =0.
So we have

( ¢ +££‘S)R£5+Z€]R1]+ZZ< €0 R211+5R3l]>

j=1li=
£,0 ! e
RE’ (lelylr ”.,yl’21,...lzn) - Z€]G1; (x’yll ~~~/ylr21/---rzn)
j=1
—1—22 €jb Gzl] X, Y1, o Y121, 02n), (11)
j=1li=
where
e
G1§‘(x/y1/---,]/l,21,...,Zn) =

— Uy 0,%,y1,---,Y1,21, -+, Zn)
_ \/87]'”37-,@ 0,%,y1,---,Y1,21,---,2n),
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e
Gzi-]- (Y1, Y1, 21, 2Zn) 1= — Uy (0,%,Y1,---,Y1,21, -+, 2Zn)
1
jliay (0,%,y1,- -, Y1,21,--+,2n) -
1

Using the formulas of Feynman-Kats, let us express Rgfﬁ(t, X, Y1, - Y121,
equation (11) with boundary conditions as a mathematical expectation

.,Zn) solving

_/y
R¥(t,x,y1, -+, Y1, 21, -+, 2Zn)

l

t €
Z x]/l ]/l z1,. |: fO k(XS)dSGlljl (thylf/'"lYlt’Z].t/"',Znt>:|
=1

—{- /O e fos k(Xll)duRi§ (S, Xs; YlS/ ey YZS/ le, ey Zns) dS + \/glﬁx,yl, Y1212
— [ k(Xs)ds e
|:€ 0 GZ (Xt/ Ylt/ ceey Ylt! thl ceey Zi’lt)
t A
-+ /O e .[0 k(Xu)duR;]z] (S, XS! Ylsr ey Yls, le, ooy Zns) d5:|
+51Ex,y1, ce Y1212 [ Jok(Xu) duR (S Xs, Yis, -1 Yis, Z1s, -+ -, Zns) ds] .

2ij7 ~*3ij’
increase by (y1, ..., Y1, 21,--.,2n) [4]. Thus, according to Lemma 1 we have

+ZZ\/>C2U+Z(SC3Z < (};87'—1-;51') Cy

]_l

We can conclude that the functions <R R}, R} G, ] GZ ].) limited by x and polynomially

’RS(S

and hence

< ‘Rﬁ

_ l n
-
u” = (g + Zl U+ ;5i”6,ﬂ)
j= =

i, ot 2513/2”3 O’+ZZ\/€] 11'+ZZ\F5”_

j=1li=1 j=1li=1

< (;ej—l—;&-) C4+Z iz + /s
+ZZ\/;

j=1li=1

1 n
11’+Z€] 27| S <Zi€j+2%5i>c
j= i=

The accuracy of the result is proved. O

Theorem 4 gives us information on how the approximate price behaves when ¢; — 0 and
0; — 0.

Let X be securities without payment on assets dividends (for example, share, index and
so on). X is very often modelled as a geometric Brownian motion with constant volatility (for
example, Black-Scholes option pricing model). Let us consider X as a geometric Brownian
motion model with multidimensional stochastic volatility. Thus, P-dynamics in X are set

AXy = rXedt+ f (Y1,..., Y1, Za, .., Zn) Xed W}, (X;) = 0.
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We calculate the approximate price of the double barrier option defined on X.
We write operator (£;) and the density associated with ¢ and rate m(x)

1 2 2r
(L) = EU 2292, +1x0y — 1, m(x) = 2xzexp <?lnx> : (12)
For a double barrier option with barrier value L and R, the payoff has the form

H(Xp) st = (Xf —K) T¢sy, I = (L,R),0< L <K<R.

To calculate the value of this parameter, we must first find the eigenvalues of operator (£;)
presented in (12) with boundary conditions

lim ¢, (x) =0, lim ¢, (x) =0.

x—L x—R

Note that we have introduced regular keeling (interrupt process) boundary conditions at
the ends of L and R. The equation — (£) ¥, = Ay, Pn € dom ((£,)), with boundary condi-
tions mentioned above can be found in [11]

Py (x) = Lﬁexp <:—2rlnx> sin <%> , n=1273,...,
In (§) g In (1)

2
"2 (k) 2 ' T2

We write the expressions for operators .A; and B;
A = —193]x8 X axx - 192] axx, Bi = —ﬂlixax - 1901'. (13)

On the basis of (5) we calculate Aj ,, Bix,, and Bik,n- For k # n we obtain

(=14 (1)) kn(4n2 20" + (—12r2 + 4%+ ) In?(}))
A]kn 193]

2(k2 — n2)e*n3(R

( 1+ ( k+" knr
05 | e

2111
2( k—Hl)k
(k — k+n In (%)’

—1+4 (—1)k+”) knrln (§)
(k2 — n2)> 25 ’

Bix, = 01

_ 8 (
Bign = =010 (Yiu) — 8io0"
gnkr (In (L) = (=1)*""In (R) )
Gl = (k2 —n2)@In (K)

2 (<14 (<08 ko () (-t ) 2 2 (<20 4 02) 1 ()

(k2 — n2)2n2(751n (%)

4
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and for k = n we obtain

1 [ 3n?7%v 1 n2m? 1
Apn=—03 [ = (LY 3} -2 (2= 27 ) —9, (=
= (53 (mz (%) ) 52( (%)) P\@
2r — 2
Binn = 91 (F) —Bp,

rv <ln2 (R) — In? (L)) N
T @ (E) e

Y
VRS
<

N
—_
.'3N 3'\)
—
~= :]N
SN—
~__—

+
Qi<
~__—
~_—

—y
Bin,n = —0y0

SR

The calculation of ¢, can be found in [12-14]

Cp= (1/;” (x), (C—Kﬁ) - (Ldy (v +7) — Kby (v)),

log (1)

Dy () : (exp (RY) (wncos(wpR) — sin (wpR) —exp (Lhy) (=1)"wy),

C wi+ 22

nm 1 K 1 R

The approximate option price can be calculating applying Theorems 1-3.
Note that figures are constructed component-wise in each corresponding time scale, simi-
larly to both components in works [9] and [13].

2 CONCLUSIONS

This paper expands methodology of approximate pricing for a wide range of derivative
assets. Derivatives payoffs can be way dependent, and the process underlying it may have a
jump. Jump intensity depends on multidimensionality of volatility. We have developed a gen-
eral theory of pricing derivative options which are generated by diffusion processes, where
diffusion depends on two groups of variables. An algorithm for approximate price calcula-
tion is given. The price accuracy is determined. A developed theory is applied to Ornstein-
Uhlenbeck diffusion operator, which is expanded in eigenfunctions and eigenvalues.

The main advantage of our pricing methodology is that by combining methods of spectral
theory, regular perturbation theory, and singular perturbation theory, we reduce everything
to the solution of the equations to find eigenfunctions and eigenvalues.

REFERENCES

[1] McKean H.P. Elementary solutions for certain parabolic partial differential equations. Trans. Amer. Math. Soc. 1956,
82 (2), 519-548. doi: 10.1090/s0002-9947-1956-0087012-3

[2] Goldstein R.S., Keirstead W. P. On the term structure of interest rates in the presenceof reflecting and absorbing
boundaries. 1997, SSRN eLibrary, 381-395.

[3] Pelsser A. Pricing double barrier options using laplace transforms. Finance Stoch. 2000, 4, 95-104.

[4] Davydov D., Linetsky V. Structuring, pricing and hedging double-barrier step options. ]. Comput. Finance 2001,
5, 55-88.



(5]

6]
(7]

8]

9]

[10]

(11]

[12]
(13]

[14]

APPLICATION OF THE SPECTRAL THEORY AND PERTURBATION THEORY ... 287

Fouque ].-P,, Papanicolaou G., Sircar R. Derivatives in Financial Markets with Stochastic Volatility, Cam-
bridge University Press, 2000.

Gatheral ]. The Volatility Surface: a Practitioner’s Guide. John Wiley and Sons, Inc. 2006.

Mendoza-Arriaga R., Carr P, Linetsky V. Time-changed markov processes in unified credit-equity modeling. Math.
Finance 2010, 20 (4), 527-569. doi: 10.1111/}.1467-9965.2010.00411

Fouque].-P, Jaimungal S., Lorig M. Spectral decomposition of option prices in fast mean-reverting stochastic volatil-
ity models. SIAM J. Financial Math. 2011, 2, 665-691. doi:10.1137/100803614

Lorig M.]. Pricing Derivatives on Multiscale Diffusions: an Eigenfunction Expansion Approach. Math. Finance
2014, 24 (2), 331-363.

Linetsky V. Spectral Methods in Derivatives Pricing. Handbooks in Operations Research and Management
Science. 2007, 15, 223-299. doi: 10.1016/50927-0507(07)15006-4

Carr P, Linetsky V. A jump to default extended CEV model: An application of Bessel processes. Finance Stoch. 2006,
10 (3), 303-330. doi: 10.1007 /s00780-006-0012-6

Borodin A., Salminen P. Handbook of Brownian motion: facts and formulae. Birkhauser, 2002.

Burtnyak I.V., Malytska A.P. Research of Ornstein-Uhlenbeck Process Using the Spectral Analysis Methods. Probl.
Econ. 2014, 2, 49-56. (in Ukrainian)

Fouque J.-P., Papanicolaou G., Sircar R., Solna. K. Singular perturbations in option pricing. SIAM ]J. Appl. Math.
2003, 63, doi:1648-1665. doi:10.1137/50036139902401550

Received 06.11.2017

byprasik 1.B., Maameka I'. T1. 3acmocysants chexmpanoroi meopii ma meopii 36yperv 0o 0ociddceHHs
npoyecie OpHuimetina-Y nenbexa // KapraTcbki MmaTeM. myba. — 2018. — T.10, Ne2. — C. 273-287.

B crarTi BUKOpMCTAHO METOAM CIIeKTPaAbHOI Teopil Ta Teopiil CMHIYASIpHMX i peryaspHUX 36y-
PeHb, 3HalIAeHO HabAVDKeHY LiHy ABobapepHyx ommioHis OpHinTeliHa-YAeHbeKa 3 baraTodpakTop-
HOIO BOAATUABHICTIO, SIK PO3BMHEHHS 32 BAACHMMM (DYHKIIiIMM BUKOPUCTOBYIOUM iHiHiTe3MmMaAbHi
redeparopu (I + n + 1) BumipHoi Andpysii. BcraHOBAEHO TeOpeMy OLIHKM TOUHOCTI HaGAVDKEHHSI LiH
OMIIiOHiB. 3HAMAEHO SIBHI (POPMYAM AASI 3HAXOAKEHHS BApTOCTi AepUBaTHBiB Ha OCHOBi PO3BMHEHHS
3a BAACHMMM (PYHKILISIMM Ta BAACHMMIU 3HAUEHHSIMM CAMOCIIPSDKEHMX ONepaTOpiB 3 BUKOPYUCTaHHIM
KpalfoBMX 3aAa4 AAS CMHTYASIPHUX i peryAsSpHMX 36y peHb.

Kntouosi cnoea i ppasu: crieKTpaabHa TeOPisl, CMHTYASIPHA XBMABOBA TeOpisl, peryAsipHa XBUABOBA
Teopist, Teopist IlITypma-AiyBinas, iHdiHiTe3MMaAbHIIT reHepaTOp, baraTrodpakTopHa AUGY3isL.



