PHYSICS AND CHEMISTRY OF SOLID STATE

V. 24, No. 4 (2023) pp. 699-706

Section: Chemistry

DOI: 10.15330/pcss.24.4.699-706

ФІЗИКА І ХІМІЯ ТВЕРДОГО ТІЛА Т. 24, № 4 (2023) С. 699-706

Хімічні науки

UDC 544.344, 536.7

ISSN 1729-4428

Mykola Moroz¹, Pavlo Demchenko², Fiseha Tesfaye^{3, 4}, Myroslava Prokhorenko⁵, Serhiy Prokhorenko⁵, Oleksandr Reshetnyak²

Experimental investigation and thermodynamic assessment of phase equilibria in the GaTe-AgGa₅Te₈-Te system below 600 K

¹National University of Water and Environmental Engineering, Rivne, Ukraine, <u>m.v.moroz@nuwm.edu.ua</u> ²Ivan Franko National University of Lviv, Lviv, Ukraine ³Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland ⁴Metso Outotec Finland Oy, Espoo, Finland ⁵Lviv Polytechnic National University, Lviv, Ukraine

Equilibrium T-x space of the Ag-Ga-Te system in the GaTe-AgGa5Te₈-Te part was divided below 600 K into three-phase regions Ga2Te5-AgGa5Te8-Te, Ga2Te3-AgGa5Te8-Ga2Te5, Ga7Te10-AgGa5Te8-Ga2Te3, Ga3Te4-AgGa₅Te₈-Ga₇Te₁₀, and GaTe-AgGa₅Te₈-Ga₃Te₄ by the electromotive force (EMF) method. To accomplish data, the following electrochemical accurate experimental cells (ECs) were assembled: (-) IE | NE | SSE | $R{Ag^+}$ | PE | IE (+), where IE is the inert electrode (graphite powder), NE is the negative electrode (silver powder), SSE is the solid-state electrolyte (glassy Ag₃GeS₃Br), PE is the positive electrode, R{Ag⁺} is the region of PE that contact with SSE. At the stage of cell preparation, PE is a nonequilibrium phase mixture of the well-mixed powdered compounds Ag2Te, GaTe, Ga2Te3, and tellurium, taken in ratios corresponding to two or three different points in each of the mentioned regions. The equilibrium set of phases was formed in the R{Ag⁺} region at 600 K for 48 h with the participation of the Ag⁺ ions. Silver cations, displaced for thermodynamic reasons from the NE to the PE of the ECs, acted as catalysts, i.e., small nucleation centers of equilibrium phases. Thus, the same electrochemical cell was used both for the synthesis of an equilibrium set of phases in the R{Ag⁺} region and subsequent EMF measurements. The spatial position of the established three-phase regions relative to the silver point was used to assign the overall potential-determining reactions of synthesis of the ternary AgGa₅Te₈ and binary Ga₂Te₅, Ga₇Te₁₀, Ga₃Te₄ compounds. For the first time, the values of the standard thermodynamic functions (Gibbs energies, enthalpies, and entropies) of these compounds were determined based on the temperature dependencies of the EMF of the ECs.

Keywords: Ag-containing compounds, Thermoelectric materials; Thermodynamic properties, Phase equilibria, Gibbs energy, EMF method.

Received 16 August 2023; Accepted 06 December 2023.

Introduction

Phase equilibria in the Ag–Ga–Te system have been investigated by several authors [1–6], using different experimental methods. In particular, Guittard et al. [1] divided the phase space of the Ag–Ga–Te system in the temperature range of 273–1000 K into 9 regions with the participation of binary and ternary compounds. In the binary systems Ag–Te, Ag–Ga, and Ga–Te, the temperature ranges for existence of the compounds

Ag₂Te, Ag_{1.9}Te, Ag₅Te₃; phases of variable composition ζ , δ ; compounds GaTe, Ga₂Te₃, Ga₂Te₅, have been established. Devision of the concentration space of the Ag–Ga–Te system was carried out with the participation of the mentioned binary compounds, phases of mixed composition, and ternary compounds of the quasi-binary system Ag₂Te–Ga₂Te₃: Ag₉GaTe₆, AgGaTe₂, and a phase Ag_xGa_{(4-x)/3} \square (2-2x)/3Te₂ which is a solid solution for 0.63 < *x* < 0.75 [3].

In Ref. [2] Deiseroth et al. synthesized the Ga₇Te₁₀

compound at 1020 K and determined its crystal structure. According to Ref. [4], there are four intermediate compounds in the Ga–Te system. The GaTe and Ga₂Te₃ compounds melt congruently at 1108 K and 1071 K, respectively; Ga₃Te₄ decomposes at 1057 K by the peritectic reaction on liquid L and compound Ga₂Te₃; high-temperature modification of the Ga₂Te₅ forms by a eutectoid reaction at 681 K and decomposes by peritectic scheme at 757 K.

The Ag₂Te-Ga₂Te₃ cross-section of the Ag-Ga-Te system is characterized by three intermediate compounds: Ag₉GaTe₆, AgGaTe₂, and AgGa₅Te₈ [3,5,6]. According to Ref. [5], the orthorhombic compound AgGa₅Te₈ was obtained by cooling the melt of the calculated amounts of Ag₂Te, Ga₂Te₃, and Te to 873 K, followed by annealing for 1 week. The minimum temperature of the of existence of this compound in the equilibrium T-x space of the Ag-Ga-Te system is unknown. Based on the a dimensionless figure of merit parameter $ZT = (S^2 \sigma)T/k$ (where S is the Seebeck coefficient, σ is the electrical conductivity, k is the thermal conductivity, and T is the absolute temperature), ternary compounds of the Ag-Ga-Te system belong to class of the thermoelectric materials [3.5–8].

The effect of replacing part of the gallium cations of the compound p-Ag₉GaTe₆ according to the scheme Ag₉Ga_{1- δ}*M*_{δ}Te₆ (*M* = Cd, Zn, Mg, Nb; δ = 0.05) on the *ZT* values is given in Ref. [6]. In the case of Cd doping, the thermoelectric figure of merit parameter was achieved $ZT \approx 0.6$ at 600 K. Such method of increasing the ZT value is ineffective in the case of a thermodynamically unbalanced state of the doping component in the crystal lattice of the compound. The action of such external factors as changes in temperature, pressure, radiation, etc. will contribute to the migration of impurities at the grain boundary, which will lead to a decrease in the ZT value of the sample over time. It is possible to avoid a decrease in the ZT value during the operation of a doped thermocouple by producing it in the form of an equilibrium solid solution based on a quaternary compound. As an example, for doping of the Ag₉GaTe₆, AgGaTe₂, and AgGa₅Te₈, it is possible to use quaternary compounds of the Ag₂Te-Ga₂Te₃-AgBr region. This region is part of the Ag-Ga-Te-AgBr system, where the formation of quaternary Ag₃Ga₂Te₄Br, compounds Ag₃Ga₁₀Te₁₆Br, and Ag₂₇Ga₂Te₁₂Br₉ is possible at the intersection points of the cross-sections AgGa₅Te₈–AgBr, AgGaTe₂–AgBr, Ag₉GaTe₆-AgBr with the tie-line Ga₂Te₃-Ag₃TeBr. There are no any previous reports on quaternary compounds of mentioned composition. The thermodynamic conditions for the formation of quaternary phases likely correspond to the temperature values T < 600 K, where there are kinetic obstacles to such a process. Kinetic obstacles to the synthesis of phases from pure substances and binary compounds can be overcome with the participation of a catalyst – Ag^+ ions, as small centers of nucleation of equilibrium phases [9,10]. In order to establish the conditions for the existence of quaternary compounds in the Ag₂Te-Ga₂Te₃-AgBr system, information on compounds in the GaTe-Te part of the Ga–Te system at T < 600 K is required.

The purpose of this work was to establish the phase equilibria of the GaTe–AgGa₅Te₈–Te system at T < 600 K

and to determine the standard thermodynamic properties of compounds by the electromotive force (EMF) method.

I. Experimental

The high-purity substances Ag (>99.9 wt.%) and Ga, Te (>99.99 wt.%) were used to synthesize the binary and ternary compounds. Evacuated melts of the Ag₂Te, GaTe, and Ga₂Te₃ compounds, cooled to room temperature, were crushed to a particle size of $\sim 1.10^{-6}$ m for preparation of the positive electrodes (PE) of electrochemical cells (ECs). Melts of the Ga7Te10, AgGaTe2, and AgGa5Te8 compounds cooled to a temperature of 630 K were annealed for 2 weeks, followed by cooling to room temperature with the furnace turned off. The phase composition of the synthesized compounds was analyzed by an X-ray diffraction (XRD) technique. The STOE STADI P diffractometer equipped with a linear position-sensitive detector PSD, in a Guinier geometry (transmission mode, $CuK\alpha_1$ radiation, a bent Ge(111) monochromator, and $2\theta/\omega$ scan mode) was used for these investigations. The following software programs STOE WinXPOW [11], PowderCell [12], FullProf [13], and databases [14,15] were applied to analyze the obtained results.

The modified EMF method [16] was used both to establish the phase equilibria in the GaTe–AgGa₅Te₈–Te region below 600 K and to determine the thermodynamic parameters of compounds. For these measurements, a certain number of ECs were assembled:

(-) IE | NE | SSE | R{Ag⁺} | PE | IE (+),

where IE is the inert electrode (graphite powder), NE is the negative electrode (silver powder), SSE is the solidstate electrolyte (glassy Ag_3GeS_3Br), $R{Ag^+}$ is the region of PE that contacts with SSE. At the stage of cell preparation, PE is the nonequilibrium phase mixture of the well-mixed powdered binary compounds Ag_2Te , GaTe, Ga_2Te_3 , and pure substance tellurium. Compositions of these mixtures covered the entire concentration space of the GaTe-AgGa₅Te₈-Te system. An equilibrium set of phases was formed in the $R{Ag^+}$ region at 600 K for 48 h. The Ag⁺ ions, displaced for thermodynamic reasons from the NE to the PE electrodes of the ECs, acted as catalysts, i.e., small nucleation centers of equilibrium phases [9,10].

The experiments were performed in a resistance furnace described in Ref. [17]. A fluoroplastic base with a hole with a diameter of 2 mm was used to assemble the ECs. The powder components of ECs were pressed at pressure 10⁸ Pa into the hole under a load of (2.0 ± 0.1) tons to a density of $\rho = (0.93\pm0.02)\cdot\rho_0$, where ρ_0 is the experimentally determined density of cast samples. The assembled cells were placed in a quartz tube with nozzles for the purging of argon gas. The argon gas had a direction from the NE to PE of ECs at the rate of $(10.0\pm0.2) \text{ cm}^3 \cdot \text{min}^{-1}$. The temperature of ECs was maintained by an electronic thermostat with ±0.5 K accuracy. The EMF (*E*) values of the cells (accuracy ±0.3 mV) were determined by a Picotest M3500A digital voltmeter with an input impedance of >10¹² Ohms. The reproducibility of the EMF versus temperature dependences (E(T)) of ECs in heating-cooling cycles was a criterion for completing the formation of the equilibrium set of phases in the R{Ag⁺} region.

II. Results and discussion

The AgGa₅Te₈ compound was not obtained by cooling the melt to 630 K followed by annealing for 2 weeks. The diffraction pattern of powder sample is shown in Fig. 1.

The presence of the Ag_xGa_{0.67}Te phase (structure type (ST) ZnS, space group (SG) *F*-43*m*) and minor impurities of non-identified phase have been established by the XRD method. The refined unit-cell parameter a = 0.59786(5) nm is greater than $a \sim 0.587 \div 0.590$ nm for Ga_{0.67}Te, thus indicated the formation of solid solution. Such a metastable, for kinetic reasons, combination of the mentioned phases was confirmed by an attempt to

implement the reaction $AgGaTe_2+2Ga_2Te_3=AgGa_5Te_8$. For this reason, a well-mixed mixture of the $AgGaTe_2$ and $2Ga_2Te_3$ compounds was evacuated, kept for 2 weeks at 630 K and cooled to room temperature. According to the XRD results, the orthorhombic $AgGa_5Te_8$ compound also was not obtained, Fig. 2. The sample contained characteristic peaks of the phases $Ag_xGa_{0.67}Te$ (ST ZnS, SG *F*-43*m*), AgGaTe₂ (ST CuFeS₂, SG *I*-42*d*), and the pure Te (ST Se, SG *P*3₁21).

Thus, results of the XRD shown that the orthorhombic $AgGa_5Te_8$ compound decomposes at a certain value of the temperature in the range of 630–873 K. The existence of the $AgGa_5Te_8$ compounds in two temperature ranges was also established by the results of triangulation of the concentration space of the $GaTe-AgGa_5Te_8$ –Te system by the EMF method and calculation of the thermodynamic properties of compounds. Other examples of the existence of silver-based ternary and quaternary compounds in two temperature ranges are presented in Ref. [18–21].

The division of the concentration space of the Ag-

Fig. 1. X-ray powder diffraction pattern of the sample with nominal composition AgGa₅Te₈, obtained by cooling the melt to 630 K. Compositions of the sample and identified phase (with structure type and space group indicated) are shown in the upper right corner.

Fig. 2. X-ray powder diffraction pattern of the sample with nominal composition AgGa₅Te₈, obtained by solidstate synthesis mixture of the AgGaTe₂ and 2Ga₂Te₃ compounds. Compositions of the sample and identified phases (with structure type and space group indicated) are shown in the upper right corner.

Ga–Te system in the GaTe–AgGa₅Te₈–Te part below 600 K into separate three-phase regions is shown in Fig. 3. The following basic rules of the EMF method [22–25] were used for this triangulation:

1) within a specific phase region, the EMF value of the cell does not depend on the phase composition of the PE;

2) ECs with PE of different phase regions are characterized by different EMF values at T = const, Table. 1;

3) the three-phase region further away from the figurative point of Ag is characterized by a higher EMF value at a specific temperature.

Fig. 3. Division of the concentration space of the GaTe–AgGa₅Te₈–Te system at T<600 K. Red dots indicate compositions of the PE of ECs and EMF (mV) values of the ECs at 400.4 K.

T Measured values of temperature (*T*) and EMF (*E*) of thea ECs with PE of different phase regions at pressure **b** $P=10^5$ Pa. Standard *uncertainties u* are u(T) = 0.5 K, **1** $u(P) = 10^4$ Pa and u(E) = 0.3 mV

u(1) 10 1 a, and $u(2)$ 0.5 mV.						
<i>T</i> /K	Phase regions			Phase regions		
	(I)	(II)	<i>T</i> /K	(III)	(IV)	
	E _(I) /mV	E _(II) /		E(III)/	$E_{(IV)}/$	
		mV		mV	mV	
400.4	270.2	293.0	350.3	251.5	246.8	
405.4	271.0	293.5	355.3	252.0	247.3	
410.4	271.7	294.1	360.3	252.7	247.8	
415.4	272.4	294.7	365.4	253.3	248.4	
420.3	273.2	295.2	370.4	254.0	249.0	
425.3	274.0	295.9	375.4	254.6	249.5	
430.3	274.7	296.5	380.4	255.2	250.0	
435.2	275.5	297.2	385.4	255.8	250.5	
440.2	276.2	297.7	390.4	256.3	251.0	
445.2	277.1	298.3	395.4	256.8	251.5	
450.1	277.7	298.7	400.4	257.2	252.0	
455.1	278.5	299.3	405.4	257.7	252.5	

The spatial position of three-phase regions Ga_2Te_5 -AgGa₅Te₈-Te (I), Ga_2Te_3 -AgGa₅Te₈-Ga₂Te₅ (II), Ga₇Te₁₀-AgGa₅Te₈-Ga₂Te₃ (III), and Ga₃Te₄-AgGa₅Te₈-Ga₇Te₁₀ (IV) relative to the silver point was used to establish the overall potential-determining reactions:

$$2Ag + 5Ga_2Te_5 = 2AgGa_5Te_8 + 9Te, \qquad (R1)$$

$$4Ag + 9Ga_2Te_3 + Ga_2Te_5 = 4AgGa_5Te_8,$$
 (R2)

$$Ag + 6Ga_2Te_3 = AgGa_5Te_8 + Ga_7Te_{10}, \qquad (R3)$$

$$Ag + 2Ga_7Te_{10} = AgGa_5Te_8 + 3Ga_3Te_4.$$
(R4)

Reactions (R1)–(R4) were carried out in the PE of ECs, the phase mixtures correspond to phase regions (I)–(IV), respectively. According to reactions (R1)–(R4), the ratios of binary compounds and pure tellurium for the assemble the PE of ECs were established. In particular, the compounds $AgGa_5Te_8$, Ga_2Te_5 , Ga_7Te_{10} , and Ga_3Te_4 are present in the PE compositions in the following ratios of mixtures of the binary compounds and the simple substance Te: $0.5Ag_2Te + 2.5Ga_2Te_3$, $Ga_2Te_3 + 2Te$, $GaTe + 3Ga_2Te_3$, and $GaTe + Ga_2Te_3$, respectively.

Processing of the *E* versus *T* experimental dependences was performed by the least squares method [26,27] and presented in the form of Eq. (1):

$$E = a + bT \pm k_{St} \sqrt{\left(\frac{u_E^2}{n} + u_b^2 (T - \bar{T})^2\right)},$$
 (1)

where *a* and *b* are coefficients of linear equation, k_{St} is the Student's parameter [28], *n* is the number of experimental pairs E_i and T_i , u_E^2 and u_b^2 are the statistical dispersions of the *E* and *b* quantities, respectively.

Listed in the Table 1 the experimental values of E and T were used to calculate the coefficients and statistical dispersions of Eq. (1) in the phase regions (I)–(IV). The results of calculations are listed in the Table 2.

The Gibbs energies $(\Delta_r G)$, enthalpies $(\Delta_r H)$, and entropies $(\Delta_r S)$ of the reactions (R1)–(R4) were calculated by the following thermodynamic equations:

$$\Delta_{\rm r}G = -n\,{\rm F}\,E,\tag{2}$$

$$\Delta_{\rm r} H = -n \, \mathrm{F} \left[E - \left(dE/dT \right) T \right], \tag{3}$$

$$\Delta_{\rm r}S = n \, {\rm F} \, (dE/dT). \tag{4}$$

where *n* is the number of electrons involved in the reactions (R1)–(R4), F is the Faraday's constant, and *E* is the EMF of the ECs.

The values of the thermodynamic functions of reactions (R1)–(R4) in the standard state (T = 298 K and $P = 10^5$ Pa) were calculated according to Eqs. (2)–(4) and are listed in the Table 3.

The Gibbs energies of reactions (R1) and (R2) are related to the Gibbs energies of compounds by Eqs. (5) and (6):

$$\Delta_{\mathrm{r(R1)}}G^{\circ} = 2\Delta_{\mathrm{f}}G^{\circ}_{\mathrm{AgGa_5Te_8}} - 5\Delta_{\mathrm{f}}G^{\circ}_{\mathrm{Ga_2Te_5}},\tag{5}$$

$$\Delta_{\rm r(R2)}G^{\circ} = 4\Delta_{\rm f}G^{\circ}_{\rm AgGa_5Te_8} - 9\Delta_{\rm f}G^{\circ}_{\rm Ga_2Te_3} - \Delta_{\rm f}G^{\circ}_{\rm Ga_2Te_5}.$$
 (6)

By solving the system of equations (5) and (6) we obtained:

$$\Delta_{\rm f}G^{\circ}_{\rm Ga_2Te_5} = \frac{\Delta_{\rm r(R2)}G^{\circ} - 2\Delta_{\rm r(R1)}G^{\circ}}{9} + \Delta_{\rm f}G^{\circ}_{\rm Ga_2Te_3}. \tag{7}$$

Equations for determining the enthalpy of formation and entropy of the Ga_2Te_5 compound were obtained in a

The coefficients and statistical dispersions of <i>E</i> versus <i>T</i> dependencies of the ECs.				
Phase regions	$E = a + bT \pm k_{St} \sqrt{\left(\frac{u_E^2}{n} + u_b^2(T - \overline{T})^2\right)}$			
(I)	$E = 209.34 + 151.97 \times 10^{-3}T \pm 2.179 \sqrt{\left(\frac{2.37 \times 10^{-3}}{12} + 6.72 \times 10^{-7}(T - 427.78)^2\right)}$			
(II)	$E = 245.88 + 117.57 \times 10^{-3}T \pm 2.179 \sqrt{\left(\frac{6.63 \times 10^{-3}}{12} + 1.88 \times 10^{-6}(T - 427.78)^2\right)}$			
(III)	$E = 211.32 + 114.97 \times 10^{-3}T \pm 2.179 \sqrt{\left(\frac{2.00 \times 10^{-2}}{12} + 5.56 \times 10^{-6}(T - 377.88)^2\right)}$			
(IV)	$E = 210.42 + 103.93 \times 10^{-3}T \pm 2.179 \sqrt{\left(\frac{2.54 \times 10^{-3}}{12} + 7.07 \times 10^{-7}(T - 377.88)^2\right)}$			

Table 2.

Table 3.

The values of standard thermodynamic properties of the reactions (R1)–(R4). Uncertainties for $\Lambda_{-}G^{\circ}$ $\Lambda_{-}H^{\circ}$ and $\Lambda_{-}S^{\circ}$ are standard uncertainties

$\Delta_{r} \sigma$ $\Delta_{r} \sigma$ $\Delta_{r} \sigma$ $\Delta_{r} \sigma$ are standard uncertainties.					
Reactions	$-\Delta_{\rm r}G^{\circ}$	$-\Delta_{\rm r} H^{\circ}$	$\Delta_{ m r}S^{\circ}$		
	kJ m	J (mol K) ⁻¹			
(R1)	49.14 ± 0.05	40.40 ± 0.15	29.33 ± 0.34		
(R2)	108.42 ± 0.15	94.90 ± 0.49	45.38 ± 1.15		
(R3)	23.70 ± 0.04	20.39 ± 0.19	11.09 ± 0.50		
(R4)	23.29 ± 0.04	20.30 ± 0.15	10.03 ± 0.35		
(== .)					

similar way:

$$\Delta_{\rm f} H_{\rm Ga_2Te_5}^{\circ} = \frac{\Delta_{\rm r(R2)} H^{\circ} - 2\Delta_{\rm r(R1)} H^{\circ}}{9} + \Delta_{\rm f} H_{\rm Ga_2Te_3}^{\circ}, \qquad (8)$$

$$S_{\text{Ga}_2\text{Te}_5}^{\circ} = \frac{\Delta_{r(\text{R}_2)}S^{\circ} - 2\Delta_{r(\text{R}_1)}S^{\circ}}{9} + 2S_{\text{Te}}^{\circ} + S_{\text{Ga}_2\text{Te}_3}^{\circ}.$$
 (9)

The corresponding reactions to determine the standard thermodynamic properties $\Delta_f G^{\circ}$, $\Delta_f H^{\circ}$, and S° of the AgGa₅Te₈, Ga₇Te₁₀, and Ga₃Te₄ compounds were written in a similar way using reactions (R2)-(R4) with the corresponding stoichiometric numbers.

For the first time, the standard thermodynamic quantities for compounds of the GaTe-AgGa5Te8-Te system were determined using Eqs. (7)-(9) and thermodynamic data of pure substances (Ag, Ga, Te) and the binary compound Ga2Te3 [29]. The results of calculations are listed in the Table. 4.

The temperature dependences of the Gibbs energies of the formation of compounds of the GaTe-AgGa₅Te₈-Te system are described by Eqs. (10)–(13):

$$\Delta_{\rm f} G_{\rm Ga_2Te_5} / (\rm kJ \ mol^{-1}) = -(276.5 \pm 4.6) + (18.1 \pm 0.3) \times 10^{-3} T / \rm K, \tag{10}$$

$$\Delta_{\rm f} G_{\rm AgGa_eTe_o} / (\rm kJ \ mol^{-1}) = -(711.3 \pm 8.8) + (30.9 \pm 0.4) \times 10^{-3} T / \rm K, \tag{11}$$

$$\Delta_{\rm f} G_{\rm Ga_7 Te_{10}} / (\rm kJ \ mol^{-1}) = -(958.4 \pm 11.7) + (58.6 \pm 0.7) \times 10^{-3} T / \rm K, \tag{12}$$

$$\Delta_{\rm f} G_{\rm Ga_3Te_4} / (\rm kJ \ mol^{-1}) = -(408.6 \pm 7.9) + (25.4 \pm 0.4) \times 10^{-3} T / \rm K.$$
(13)

The obtained $\Delta_f G^{\circ}_{Ga_2Te_5}$, $\Delta_f G^{\circ}_{AgGa_5Te_8}$, $\Delta_f G^{\circ}_{Ga_7Te_{10}}$, and $\Delta_{f} G_{Ga_{3}Te_{4}}^{\circ}$ values do not deny the hypothetical reactions of the synthesis of compounds under standard conditions:

$$Ga_2Te_3 + 2Te = Ga_2Te_5, \tag{R5}$$

$$Ag_2Te + 5Ga_2Te_3 = 2AgGa_5Te_8, \tag{R6}$$

$$GaTe + 3Ga_2Te_3 = Ga_7Te_{10}, \tag{R7}$$

$$GaTe + Ga_2Te_3 = Ga_3Te_4.$$
(R8)

The calculated Gibbs energies values of the reaction $\Delta_{r(R5)}G^{\circ} = -1.2 \text{ kJ mol}^{-1},$ (R5)-(R8) $\Delta_{r(R6)}G^{\circ} = -19.6 \text{ kJ mol}^{-1}, \ \Delta_{r(R7)}G^{\circ} = -9.3 \text{ kJ mol}^{-1},$ and $\Delta_{r(R8)}G^{\circ} = -9.2 \text{ kJ mol}^{-1}$ are negative. Thus,

		1 1 1			
Phases	$-\Delta_{ m f}G^{\circ}$	$-\Delta_{ m f} H^{\circ}$	S°	[Dof]	
	kJ mol ⁻¹		J (mol K) ⁻¹	[Kel.]	
Ag	0	0	42.677	[29]	
Ga	0	0	40.828	[29]	
Te	0	0	49.497	[29]	
Ga ₂ Te ₃	269.892	274.889	213.384	[29]	
Ga ₂ Te ₅	271.1 ± 3.4	276.5 ± 4.6	310.9 ± 4.5	Present study	
AgGa ₅ Te ₈	702.1 ± 7.8	711.3 ± 8.8	611.9 ± 7.6	Present study	
Ga7Te10	940.9 ± 10.9	958.4 ± 11.7	722.2 ± 8.8	Present study	
Ga ₃ Te ₄	401.0 ± 5.9	408.6 ± 7.9	295.1 ± 4.7	Present study	

The values of standard (T=298 K and $P=10^5$ Pa) thermodynamic properties of compounds of the GaTe–AgGa₅Te₈– Te system. Uncertainties for $\Delta_f G^\circ$, $\Delta_f H^\circ$, and S° are standard uncertainties.

presented in the Table 4 values of the thermodynamic functions of compounds do not contradict the thermodynamics laws.

Conclusions

The phase space of the GaTe-AgGa₅Te₈-Te system below 600 K is characterized by the following compounds: GaTe, Ga₃Te₄, Ga₇Te₁₀, Ga₂Te₃, Ga₂Te₅, and AgGa₅Te₈. The two-phase tie-lines connecting the AgGa₅Te₈ with binary compounds and tellurium divide the GaTe-AgGa₅Te₈-Te system into five separate threephase regions. Based on the division, the compositions of the positive electrodes of the electrochemical cells were established. For the first time, the values of the standard thermodynamic functions (Gibbs energies, enthalpies, and entropies) of the AgGa₅Te₈, Ga₂Te₅, Ga₇Te₁₀, and Ga₃Te₄ compounds were determined by the EMF method. The obtained values of the Gibbs energies of the formation of compounds do not contradict the thermodynamics laws. Based on the results of X-ray phase analysis and EMF measurements of the electrochemical cells, it was concluded that the AgGa5Te8 compound exists in two temperature ranges.

Acknowledgement

The present work was financed partially by the grant of the Ministry of Education and Science of Ukraine No 0123U101857 "Physico-chemistry of functional nanomaterials for electrochemical systems", international projects: #HX-010123 from "Materials Phases Data System, Viznau, Switzerland" and the Simons Foundation (Award Number: 1037973).

Moroz Mykola – Doctor of Chemical Sciences, Professor, Head of the Department of Chemistry and Physics of National University of Water and Environmental Engineering;

Demchenko Pavlo – Ph. D. in Chemistry, Leading Researcher of the Department of Inorganic Chemistry of Ivan Franko Lviv National University of Lviv;

Tesfaye Fiseha – Doctor of Technical Sciences, Senior Researcher at the Laboratory of Molecular Science and Engineering, Åbo Akademi University, Finland;

Prokhorenko Myroslava – Ph. D. in Physical and Mathematical Sciences, Associate Professor of the Department of Cartography and Geospatial Modeling of the Lviv Polytechnic National University;

Prokhorenko Serhiy – Doctor of Technical Sciences, Professor of the Department of Information and Measurement Technologies of the Lviv Polytechnic National University;

Reshetnyak Oleksandr – Doctor of Chemical Sciences, Professor, Head of the Department of Physical and Colloidal Chemistry of Ivan Franko National University of Lviv.

- [1] M. Guittard, J. Rivet, F. Alapini, et al., *Description du système ternaire Ag-Ga-Te*, J. Common Met., 170, 373 (1991); <u>https://doi.org/10.1016/0022-5088(91)90339-6</u>.
- [2] H.J. Deiseroth, H.-D. Müller, *Crystal structures of heptagallium decatelluride*, *Ga*₇*Te*₁₀ *and heptaindium decatelluride*, *In*₇*Te*₁₀, Z. Für Krist.-Cryst. Mater., 210, 57 (1995); <u>https://doi.org/10.1524/zkri.1995.210.1.57</u>.
- [3] C. Julien, I. Ivanov, A. Khelfa, et al., *Characterization of the ternary compounds* AgGaTe₂ and AgGa₅Te₈, J. Mater. Sci., 31, 3315 (1996); <u>https://doi.org/10.1007/BF00354684</u>.
- [4] R. Blachnik, E. Klose, Experimental investigation and thermodynamic calculation of excess enthalpies in the Ga-In-Te system, J. Alloys Compd., 305, 144 (2000); <u>https://doi.org/10.1016/S0925-8388(00)00695-2</u>.
- [5] A. Charoenphakdee, K. Kurosaki, H. Muta, M. Uno, S. Yamanaka, *Thermal Conductivity of the Ternary Compounds: AgMTe₂ and AgM₅Te₈ (M=Ga or In), Mater. Trans., 50, 1603 (2009); <u>https://doi.org/10.2320/matertrans.E-M2009810</u>.*
- [6] S. Lin, W. Li, Z. Bu, B. Shan, Y. Pei, *Thermoelectric p-Type Ag₉GaTe₆ with an Intrinsically Low Lattice Thermal Conductivity*, ACS Appl. Energy Mater., 3, 1892 (2020); <u>https://doi.org/10.1021/acsaem.9b02330</u>.
- [7] W. Liu, J. Hu, S. Zhang, M. Deng, C.-G. Han, Y. Liu, New trends, strategies and opportunities in thermoelectric materials: A perspective, Mater. Today Phys., 1, 50 (2017); <u>https://doi.org/10.1016/j.mtphys.2017.06.001</u>.

Experimental investigation and thermodynamic assessment of phase equilibria in the GaTe-AgGa₅Te₈-Te system ...

- [8] Y. Shi, C. Sturm, H. Kleinke, *Chalcogenides as thermoelectric materials*, J. Solid State Chem., 270, 273 (2019); https://doi.org/10.1016/j.jssc.2018.10.049.
- [9] M.V. Moroz, P.Yu. Demchenko, M.V. Prokhorenko, O.V. Reshetnyak, *Thermodynamic Properties of Saturated Solid Solutions of the Phases Ag₂PbGeS₄, Ag_{0.5}Pb_{1.75}GeS₄ and Ag_{6.72}Pb_{0.16}Ge_{0.84}S_{5.20} of the Ag-Pb-Ge-S System Determined by EMF Method, J. Phase Equilibria Diffus., 38, 426 (2017); <u>https://doi.org/10.1007/s11669-017-0563-6</u>.*
- [10] M.V. Moroz, M.V. Prokhorenko, O.V. Reshetnyak, P.Yu. Demchenko, *Electrochemical determination of thermodynamic properties of saturated solid solutions of Hg2GeSe3, Hg2GeSe4, Ag2Hg3GeSe6, and Ag1.4Hg1.3GeSe6 compounds in the Ag-Hg-Ge-Se system*, J. Solid State Electrochem., 21, 833 (2017); https://doi.org/10.1007/s10008-016-3424-z.
- [11] Diffractom. Stoe WinXPOW, version 3.03 (Stoe Cie GmbH, Darmstadt, 2010).
- [12] W. Kraus, G. Nolze, POWDER CELL a Program for the Representation and Manipulation of Crystal Structures and Calculation of the Resulting X-Ray Powder Patterns, J. Appl. Crystallogr., 29(3), 301 (1996); https://doi.org/10.1107/S0021889895014920.
- [13] J. Rodriguez-Carvajal, *Recent Developments of the Program FULLPROF*. IUCr Commission on Powder Diffraction Newsletter, 26, 12 (2001).
- [14] R.T. Downs, M. Hall-Wallace, *The American Mineralogist Crystal Structure Database*. Am. Mineral., 88(1), 247 (2003).
- [15] P. Villars and K. Cenzual, Pearson's Crystal Data: Crystal Structure Database for Inorganic Compounds, Release 2014/15, ASM International: Materials Park. OH, USA, 2014.
- [16] M.V. Moroz, P.Yu. Demchenko, F. Tesfaye, et al., *Thermodynamic properties of selected compounds of the Ag-In–Se system determined by the electromotive force method*, Phys. Chem. Solid State., 23, 575 (2022); <u>https://doi.org/10.15330/pcss.23.3.575-581</u>.
- [17] M. Moroz, F. Tesfaye, P. Demchenko, et al., Non-activation synthesis and thermodynamic properties of ternary compounds of the Ag–Te–Br system, Thermochim. Acta, 698, 178862 (2021); https://doi.org/10.1016/j.tca.2021.178862.
- [18] R. Blachnik, U. Stöter, *The phase diagram AgI-ZnI₂*, Thermochim. Acta, 145, 93 (1989); <u>https://doi.org/10.1016/0040-6031(89)85129-9</u>.
- [19] M. Moroz, F. Tesfaye, P. Demchenko, et al., *Phase Equilibria and Thermodynamics of Selected Compounds in the Ag–Fe–Sn–S System*, J. Electron. Mater., 47, 5433 (2018); <u>https://doi.org/10.1007/s11664-018-6430-3</u>.
- [20] M. Moroz, F. Tesfaye, P. Demchenko, et al., Solid-state electrochemical synthesis and thermodynamic properties of selected compounds in the Ag-Fe-Pb-Se system, Solid State Sci., 107, 106344 (2020); https://doi.org/10.1016/j.solidstatesciences.2020.106344.
- [21] M. Moroz, F. Tesfaye, P. Demchenko, et al., *The Equilibrium Phase Formation and Thermodynamic Properties* of Functional Tellurides in the Ag–Fe–Ge–Te System, Energies, 14, 1314 (2021); https://doi.org/10.3390/en14051314.
- [22] M. Babanly, Y. Yusibov, N. Babanly, The EMF method with solid-state electrolyte in the thermodynamic investigation of ternary copper and silver chalcogenides, in: S. Kara (Ed.), Electromotive Force Meas. Several Syst., InTech, pp. 57–78 (2011); <u>https://doi.org/10.5772/28934</u>.
- [23] G.S. Hasanova, A.I. Aghazade, Y.A. Yusibov, M.B. Babanly, *Thermodynamic properties of the BiTe and Bi*₈Te₉ compounds, Phys. Chem. Solid State., 21, 714 (2020); <u>https://doi.org/10.15330/pcss.21.4.714-719</u>.
- [24] S.Z. Imamaliyeva, I.F. Mehdiyeva, D.B. Taghiyev, M.B. Babanly, *Thermodynamic investigations of the erbium tellurides by EMF method*, Phys. Chem. Solid State. 21, 312 (2020); <u>https://doi.org/10.15330/pcss.21.2.312-318</u>.
- [25] T.M. Alakbarova, E.N. Orujlu, D.M. Babanly, S.Z. Imamaliyeva, M.B. Babanly, Solid-phase equilibria in the GeBi₂Te₄-Bi₂Te₃-Te system and thermodynamic properties of compounds of the GeTe·mBi₂Te₃ homologous series, Phys. Chem. Solid State., 23, 25 (2022); <u>https://doi.org/10.15330/pcss.23.1.25-33</u>.
- [26] N.B. Babanly, E.N. Orujlu, S.Z. Imamaliyeva, Y.A. Yusibov, M.B. Babanly, *Thermodynamic investigation of silver-thallium tellurides by EMF method with solid electrolyte Ag₄RbI₅*, J. Chem. Thermodyn., 128, 78 (2019); <u>https://doi.org/10.1016/j.jct.2018.08.012</u>.
- [27] S.Z. Imamaliyeva, S.S. Musayeva, D.M. Babanly, Y.I. Jafarov, D.B. Taghiyev, M.B. Babanly, *Determination of the thermodynamic functions of bismuth chalcoiodides by EMF method with morpholinium formate as electrolyte*, Thermochim. Acta, 679, 178319 (2019); <u>https://doi.org/10.1016/j.tca.2019.178319</u>.
- [28] F.J. Gravetter, L.B. Wallnau, *Statistics for the behavioral sciences*, 10th edition, Cengage Learning, Australia; United States, 2017.
- [29] I. Barin, Thermochemical Data of Pure Substances (Wiley, 1995).

Микола Мороз¹, Павло Демченко², Фісеха Тесфає^{3, 4}, Мирослава Прохоренко⁵, Сергій Прохоренко⁵, Олександр Решетняк²

Експериментальні дослідження та термодинамічна оцінка фазових рівноваг системи GaTe–AgGa5Te8–Te нижче 600 К

¹Національний університет водного господарства та природокористування, Рівне, Україна, <u>m.v.moroz@nuwm.edu.ua</u> ²Львівський національний університет імені Івана Франка, Львів, Україна

³Університет Академія Або, Турку, Фінляндія

⁴Метсо Оутотек Фінланд, Еспо, Фінляндія

⁵Національний університет "Львівська політехніка", Львів, Україна

Методом ЕРС здійснено триангуляцію рівноважного за T<600 К T-х простору системи Ag-Ga-Te в частині GaTe-AgGa5Te8-Te на трифазні ділянки Ga2Te5-AgGa5Te8-Te, Ga2Te3-AgGa5Te8-Ga2Te5, Ga7Te10-AgGa₅Te₈-Ga₂Te₃, Ga₃Te₄-AgGa₅Te₈-Ga₇Te₁₀ та GaTe-AgGa₅Te₈-Ga₃Te₄. Для отримання достовірних експериментальних даних виготовляли електрохімічні комірки (ЕХК) структури: (-) IE | NE | SSE | $R{Ag^+}$ | PE | IE (+), де IE – інертний електрод (графіт); NE – негативний електрод EXK; SSE – твердий електроліт (скло Ag₃GeS₃Br); РЕ – позитивний електрод ЕХК виготовлений як нерівноважна фазова суміш добре перемішаних, дрібнодисперсних подвійних сполук А92Te, GaTe, Ga2Te3 та Te, взятих у співвідношеннях, що відповідають двом або трьом різним точкам кожної із зазначених ділянок; R{Ag⁺} – частина PE, що контактує з SSE. Рівноважний набір фаз формувався в R{Ag+} при 600 К впродовж 48 год. за участі каталізатора Ag⁺. Йони аргентуму Ag⁺, що змістилися за термодинамічними причинами з лівого до правого електрода ЕХК, виконували роль малих центрів зародження рівноважних фаз. Таким чином, одна і таж електрохімічна комірка використовувалась як для синтезу рівноважного набору фаз в області R{Ag+} так і наступних ЕРС вимірювань. Просторове положення встановлених ділянок відносно точки аргентуму використано для з'ясування рівнянь потенціаловизначаючих реакцій синтезу потрійної AgGa5Te8 та подвійних Ga2Te5, Ga7Te10, Ga3Te4 сполук. За температурними залежностями EPC комірок вперше розраховано значення термодинамічних функцій зазначених сполук в стандартному стані.

Ключові слова: аргентумвмісні сполуки, термоелектричні матеріали, термодинамічні властивості, фазові рівноваги, енергія Ґіббса, метод ЕРС.