PHYSICS AND CHEMISTRY OF SOLID STATE

V. 24, No. 4 (2023) pp. 610-615

Section: Chemistry

DOI: 10.15330/pcss.24.4.610-615

ФІЗИКА І ХІМІЯ ТВЕРДОГО ТІЛА Т. 24, № 4 (2023) С. 610-615

Хімічні науки

УДК: 546.882

ISSN 1729-4428

L. Ромака¹, Ю. Стадник¹, В.В. Ромака², А. Зелінський¹, П. Клизуб¹, А. Горинь¹ Діаграма фазових рівноваг системи Y-Cu-Sb при 870 К

¹Львівський національний університет ім. І.Франка, Львів, Україна, <u>lyubov.romaka@gmail.com</u> ²Інститут дослідження твердого тіла ім. Лейбніца, Дрезден, Німеччина, <u>vromaka@gmail.com</u>

Взаємодія компонентів у потрійній системі Y-Cu-Sb досліджена методами рентгенівського, мікроструктурного аналізів та енергодисперсійної рентгенівської спектроскопії в повному концентраційному інтервалі за температури 870 К. За умов дослідження система характеризується існуванням трьох тернарних сполук: Y₃Cu₂₂Sb₉ (структурний тип Dy₃Cu_{20+x}Sb_{11-x}, просторова група *F*-43*m*, (структурний тип HfCuSi₂, просторова група *P*4/*nmm*, *a* = 0.42580(1), *c* = 0.98932(3) нм). Розчинність купруму в бінарній сполуці YSb (структурний тип NaCl) сягає 8 ат. %.

Ключові слова: інтерметаліди, потрійна система, фазові рівноваги, кристалічна структура.

Плдано до редакції 21.05.2023; прийнято до друку 31.10. 2023.

Вступ

Основою для пошуку нових матеріалів є елементів дослідження хімічної взаємодії багатокомпонентних системах. Рідкісноземельні метали (R=Y, La-Sm, Gd-Er) з купрумом і стибієм утворюють сполуки R₃Cu₃Sb₄ зі структурою типу Ү₃Аи₃Sb₄ (просторова група *I*-43*d*) [1], який € похідним від структурного типу Th₃P₄ [2]. Як і фази пів-Гейслера RNiSb (структурний тип MgAgAs, просторова група F-43m) [3, 4], сполуки R₃Cu₃Sb₄ характеризуються напівпровідниковими властивостями [1, 5, 6]. На відміну від фаз пів-Гейслера RNiSb кристалічна структура сполук R₃Cu₃Sb₄ є більш складною, що забезпечує низьку теплопровідність цих фаз. Відомо, що на поведінку електротранспортних властивостей напівпровідникових сполук значний вплив мають як методи синтезу, так і присутність домішкових фаз. Тому при дослідженні взаємодії компонентів у відповідних системах можна отримати важливу інформацію про умови утворення, температурну і концентраційну стабільність, мікроструктуру i кристалічну структуру вихідних тернарних сполук, як основи для пошуку нових напівпровідникових

матеріалів. Діаграми фазових рівноваг потрійних систем R-Cu-Sb побудовані для R=Ce, Nd, Ho, Tm [7-9]. Для інших рідкісноземельних елементів досліджували окремі тернарні сполуки [7].

Метою роботи є експериментальне дослідження взаємодії компонентів у системі Y-Cu-Sb і побудова діаграми фазових рівноваг за температури 870 К.

I. Методики дослідження

Для побудови діаграми фазових рівноваг системи Y-Cu-Sb сплави синтезували методом електродугового сплавляння шихти металів (вміст основаного компонента не менше 99.9 мас. %) в атмосфері аргону (губчатий титан використовували в якості геттеру). Для кращої гомогенізації зразки переплавляли двічі. Втрати Sb в ході плавлення компенсували надлишком стибію 2-3 ваг. %. Гомогенізуюче відпалювання сплавів проводили у вакуумованих кварцевих ампулах за температури 870 К впродовж 700 год з подальшим гартуванням у холодній воді.

Фазовий склад синтезованих зразків визначали на основі аналізу експериментально отриманих дифрактограм (дифрактометр ДРОН-4.0, FeK_a-

випромінювання) методом порівняння 3 теоретичними дифрактограмами чистих компонентів, бінарних сполук і відомих тернарних антимонідів (програма PowderCell [10]). Метол енергодисперсійної рентгенівської спектроскопії (ЕДРС) (електронний мікроскопом TESCAN VEGA 3 LMU, оснащений рентгенівським аналізатором з енергодисперсійною спектроскопією) використовували для контролю хімічного складу синтезованих зразків і визначення точного вмісту компонентів у фазах. Для кожної фази в кожному зразку виконували щонайменше п'ять вимірювань. Структурні розрахунки проводили з використанням програм WinCSD [11] i FullProf Suite [12].

Температурні межі існування тернарних сполук досліджували методом диференціального термічного аналізу (ДТА, синхронний термоаналізатор LINSEIS STA PT 1600). Зразки нагрівали в атмосфері аргону до 900°С (1170 К) зі швидкістю 10°С/хв.

II. Результати експерименту

Для дослідження потрійної системи Y-Cu-Sb відомості про діаграми стану подвійних систем У-Си, Y-Sb i Cu-Sb, які обмежують систему Y-Cu-Sb, використані з праць [13, 14]. За температури дослідження в системі Cu-Sb підтверджено утворення сполук Cu₃Sb (структурний тип BiF₃) і Cu₂Sb (структурний тип Cu₂Sb). Область гомогенності бінарної сполуки Cu₃Sb, яка визначена за результатами локального спектрального аналізу, обмежується складами Си_{78.11}Sb_{21.89} і Си_{67.45}Sb_{32.55}. У системі Y-Sb утворюються три бінарні сполуки: Y₃Sb (структурний тип Ti₃P), Y₅Sb₃ (структурний тип Mn₅Si₃), YSb (структурний тип NaCl). Сполука Y₄Sb₃ (структурний тип Th₃P₄) існує за високих температур (вище 1660 К) [13], високотемпературна модифікація сполуки Y₅Sb₃ зі структурою типу Yb₅Sb₃ отримана за температури 1538 К [15]. Існування сполук Y₃Sb, Y₅Sb₃ i YSb в системі Y-Sb за температури 870 К підтверджено нами в ході дослідження системи Y-Ni-Sb [4]. Система Y-Си характеризується утворенням п'яти сполук: УСи5 (структурний тип CaCu₅), Y_{0.8}Cu_{5.4} (структурний тип Тb_{0.78}Cu_{5.44}), YCu₂ (структурний тип KHg₂), YCu (структурний тип CsCl) і Y2Cu7 з невідомою структурою. У ході дослідження підтверджено утворення бінарних сполук згідно літературних відомостей, за винятком фази Y2Cu7. За умов нашого дослідження зразок відповідного складу містив у рівновазі сполуки YCu₅ і YCu₂.

Діаграма фазових рівноваг системи Y-Cu-Sb побудована при 870 К за результатами рентгенівського фазового, мікроструктурного та рентгеноспектрального аналізів виготовлених зразків (рис. 1). Для підтвердження хімічного та фазового складу зразків використано мікроструктурний та рентгеноспектральний аналізи. Фазовий склад окремих сплавів системи Y-Cu-Sb за результатами рентгенофазового та рентгеноспектрального аналізів наведено в табл. 1. Фотографії мікроструктур для деяких зразків зображено на рис. 2. За температури 870 К у системі Y-Cu-Sb підтверджено утворення трьох тернарних сполук [1, 16, 17], кристалографічні характеристики яких подані в табл. 2.

Рис. 1. Ізотермічний переріз діаграми стану системи Y–Cu–Sb при 870 К.

Відомості про сполуку YCuSb₂ та її належність до структурного типу HfCuSi₂ наведено в праці [16]. Автори [18] розглядають структуру сполуки YCuSb₂ як дефектну зі структурою типу CaBe₂Ge₂. Розрахунок кристалічної структури сполуки YCuSb₂ підтвердив її належність до структурного типу HfCuSi₂ (просторова група *P4/nmm*, $R_{\text{Bragg}} = 0.0387$, $R_{\text{f}} = 0.0258$) (рис. 3). Розраховані координати атомів у структурі YCuSb₂ приведені в табл. 3. Згідно виконаних розрахунків і даних ЕДРС (Y_{26.25}Cu_{24.21}Sb_{49.54}) сполука YCuSb₂ за умов дослідження реалізується при стехіометричному складі.

Розчинність третього компонента в бінарних сполуках систем Cu-Sb і Y-Cu за умов дослідження є незначною (до ~1.5 ат. %). В системі Y-Sb бінарна сполука YSb (стр. тип NaCl) розчиняє до ~8 ат. % Cu, що підтверджується результатами ЕДРС аналізу (Y_{46.18}Cu_{8.03}Sb_{45.79}). Періоди гратки змінюються від a = 0.6184(2) (для YSb) до a = 0.6192(2) нм (для зразка Y₄₅Cu₁₀Sb₄₅). Помітної розчинності купруму в інших бінарних сполуках системи Y-Sb не спостерігалось.

Для сполук Y₃Cu₂₂Sb₉ i Y₃Cu₃Sb₄ виконано дослідження з використанням диференціального термічного аналізу (ДТА), які підтвердили обмежений температурний інтервал існування сполук (рис. 4)

Температурні переходи (режим нагрівання) за температур 1064 К для фази Y₃Cu₂₂Sb₉ (температурний перехід при 923 К відповідає температурі плавлення домішкової фази Cu₃Sb) і 968 К для фази Y₃Cu₃Sb₄ свідчать про розпад обох сполук вище зазначених температур. Зміни маси досліджених зразків у ході вимірювання практично немає.

Таблиця 1.

Номінальний			Періоди гратки, нм			Дані ЕДРС, ат. <u></u> %		
склад/склад за	Фаза	Стр. тип	a	h	C	Y	Cu	Sh
ЕДРС, ат. %			ü	U	c	•	Cu	50
$Y_{40}Cu_{40}Sb_{20}$	YSb	NaCl	0.6189(3)					
	YCu ₂	KHg ₂	0.4309(4)	0.6893(3)	0.7307(4)			
$Y_{65}Cu_{15}Sb_{20}$	YCu	CsCl	0.3472(3)					
	Y ₅ Sb ₃	Mn ₅ Si ₃	0.8882(3)		0.6287(3)			
	Y ₃ Sb	Ti ₃ P	1.2363(5)		0.6178(3)		100.0	
$Y_{35}Cu_{45}Sb_{20}$	YCu _x Sb	NaCl	0.61891(3)			45.15	8.38	46.47
$Y_{37.47}Cu_{45.50}Sb_{17.03}$	YCu ₂	KHg ₂	0.4308(3)	0.6893(4)	0.7307(4)	34.66	64.64	0.70
	YCu ₅	CaCu ₅	0.4989(4)		0.4099(4)	16.54	83.46	
$Y_{40}Cu_{40}Sb_{20}$	YCu ₂	KHg ₂	0.4308(3)	0.6892(4)	0.7307(3)	34.66	64.65	0.69
Y37.47Cu45.50Sb17.03	YCu _x Sb	NaCl	0.6190(3)			47.68	5.02	47.30
	YCu ₅	CaCu ₅	0.4988(4)		0.4097(4)	16.44	83.56	
Y ₂₀ Cu ₅₅ Sb ₂₅	YCu _x Sb	NaCl	0.6190(3)			46.18	8.04	45.78
$Y_{21.22}Cu_{55.28}Sb_{23.50}$	Y ₃ Cu ₂₂ Sb ₉	Dy ₃ Cu ₂₂ Sb ₉	1.6614(7)			8.76	65.42	25.82
	(Cu)	Cu	0.3632(3)				100.0	
Y ₁₀ Cu ₅₅ Sb ₃₅	Y ₃ Cu ₂₂ Sb ₉	Dy ₃ Cu ₂₂ Sb ₉	1.6613(7)					
	Cu ₃ Sb	BiF ₃	0.5967(3)					
	YCuSb ₂	HfCuSi ₂	0.4259(3)		0.9936(4)			
$Y_{20}Cu_{40}Sb_{40}$	$Y_3Cu_{22}Sb_9$	Dy ₃ Cu ₂₂ Sb ₉	1.6614(5)			9.19	63.75	27.06
Y19.93Cu41.99Sb38.08	Y ₃ Cu ₃ Sb ₄	Y ₃ Au ₃ Sb ₄	0.9536(3)			30.05	30.26	39.69
	YCuSb ₂	HfCuSi ₂	0.4260(2)		0.9936(4)	27.11	24.62	48.27
$Y_{48}Cu_{12}Sb_{40}$	YCu _x Sb	NaCl	0.6189(3)			48.61	2.93	48.46
Y47.65Cu11.25Sb41.10	YCu ₂	KHg ₂	0.43091(3)	0.6891(4)	0.7307(4)	33.48	65.26	1.26
Y ₅₅ Cu ₅ Sb ₄₀	Y_5Sb_3	Mn ₅ Si ₃	0.8881(3)		0.6288(3)	61.46	0.36	38.18
Y _{55.42} Cu _{3.43} Sb _{41.15}	YCu _x Sb	NaCl	0.6187(3)			49.02	2.25	48.73
	YCu ₂	KHg ₂	0.4309(3)	0.6891(3)	0.7308(5)	33.57	66.05	0.38
Y ₁₅ Cu ₃₅ Sb ₅₀	YCuSb ₂	HfCuSi ₂	0.4260(3)		0.9941(3)			
	Cu ₃ Sb	BiF ₃	0.5968(3)					
	(Sb)	As	0.4308(2)		1.1256(4)			

Фазовий склад і дані ЕДРС окремих зразків системи Y-Cu-Sb

Рис. 2. Фотографії мікроструктур сплавів Y48Cu12Sb40 (a), Y35Cu45Sb20 (б), Y20Cu55Sb25 (в), Y50Cu20Sb30 (г).

Таблиця 2.

Кристалографічні характеристики тернарних сполук системи Y-Cu-Sb

Сполуки	Структурний тип	Просторова	Періоди гратки, нм		
		група	а	b	С
Y ₃ Cu ₂₂ Sb ₉	$Dy_3Cu_{20+x}Sb_{11-x}$	<i>F</i> -43 <i>m</i>			
Y ₃ Cu ₃ Sb ₄	Y ₃ Au ₃ Sb ₄	I-43d			
YCuSb ₂	HfCuSi ₂	P4/nmm	8		8

Рис. 3. Спостережувана (кружки), розрахована (лінія) і різницева (внизу рисунка) дифрактограми сплаву Y₂₅Cu₂₅Sb_{50.}

Таблиця 3.

Координати та ізотропні параметри коливання атомів у структурі YCuSb₂

Атом	ПСТ	x/a	y/b	z/c	$B_{i_{30}}$ ·10 ² (нм ²)
Y	2c	1/4	1/4	0.2462(2)	0.83(3)
Cu	2b	3/4	1/4	1/2	0.92(1)
Sb1	2c	1/4	1/4	0.6626(1)	0.41(3)
Sb2	2a	3/4	1/4	0	0.52(4)

Рис. 4. Графіки ДТА для сполук Y₃Cu₂₂Sb₉ (a) і Y₃Cu₃Sb₄ (б).

Аналіз дослідженої системи Y–Cu–Sb, літературних відомостей вивчених систем R-Cu-Sb (R = Ce, Nd, Ho, Tm) та окремих тернарних сполук засвідчує, що антимоніди RCuSb₂ (стр. тип HfCuSi₂) утворюються зі всіма рідкісноземельними металами, натомість сполуки R₃Cu₃Sb₄ (стр. тип Y₃Au₃Sb₄) з Tm, Уb і Lu не реалізуються. Для R = Tm, Lu характерним є утворення сполук RCu_3Sb_2 зі структурою типу TmCu_3Sb_2. Особливістю систем R-Cu-Sb є відсутність сполук еквіатомного складу, за винятком сполук RCuSb з Eu i Yb зі структурою типу ZrBeSi [19, 20].

Висновки

Діаграма фазових рівноваг потрійної системи Y-Cu-Sb побудована за температури 870 К у повному результатами інтервалі концентрацій за експериментального дослідження взаємодії компонентів. Досліджена система при 870 К характеризується утворенням трьох тернарних сполук Y₃Cu₂₂Sb₉, Y₃Cu₃Sb₄ i YCuSb₂. Ha ochobi бінарної сполуки YSb (стр. тип NaCl) утворюється твердий розчин до вмісту 8 ат. % купруму. Диференціальний термічний аналіз засвілчив, що сполуки Y₃Cu₂₂Sb₉ і Y₃Cu₃Sb₄ стабільні до температур 1064 К і 968 К, відповідно.

Ромака Л. – к.х.н., провідний науковий співробітник Львівського національного університету ім. І. Франка; Стадник Ю. – к.х.н., провідний науковий співробітник Львівського національного університету ім. І. Франка;

Ромака В. – д.т.н., к.х.н., доктор фізики Інституту дослідження твердого тіла ім. Лейбніца м. Дрезден, Німеччина;

Зелінський А. – к.х.н., науковий співробітник Львівського національного університету ім. І. Франка; Клизуб П. – студент хімічного факультету Львівського національного університету ім. І. Франка; Горинь А. – к.х.н., старший науковий співробітник Львівського національного університету ім. І. Франка.

- [1] R.V. Skolozdra, P.S. Salamakha, A.L. Ganzyuk, O.I. Bodak, New intermetallic compounds R₃Cu₃Sb₄ (R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) with semiconducting properties, Inorg. Mater. 29, 26 (1993).
- [2] S. Sportouch, M.G. Kanatzidis, *Th*₃*Co*₃*Sb*₄: a new room temperature magnet, J. Solid State Chem. 162, 158 (2001); https://doi.org/10.1006/jssc.2001.9206.
- [3] V. V. Romaka, L. Romaka, A. Horyn, P. Rogl, Yu. Stadnyk, N. Melnychenko, M. Orlovskyy, V. Krayovskyy, *Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems*, J. Solid State Chem. 239, 145 (2016); <u>https://doi.org/10.1016/j.jssc.2016.04.029</u>.
- [4] V.V. Romaka, L. Romaka, A. Horyn, Yu. Stadnyk, *Experimental and theoretical investigation of the Y-Ni-Sb and Tm-Ni-Sb system*, J. Alloys Compd. 855, 157334 (2021); <u>https://doi.org/10.1016/j.jallcom.2020.157334</u>.
- [5] R. Skolozdra, M. Baran, A. Horyn, A. Szewczyk, Yu. Gorelenko, H. Szymczak, R. Szymczak, Magnetic and transport properties of R₃Cu₃Sb₄ compounds (R=La, Ce, Pr, Nd, and Sm), Acta Phys. Pol. A 102, 429 (2002); <u>https://doi.org/10.12693/AphysPolA.102.429.</u>
- [6] K. Fess, W. Kaefer, Ch. Turner, K. Friemelt, Ch. Kloc, E. Bucher, Magnetic and thermoelectric properties of R₃Cu₃Sb₄ (R=La, Ce, Gd, Er), J. Appl. Phys. 83, 2568 (1998); <u>https://doi.org/10.1063/1.367018.</u>
- [7] O.L. Sologub, P.S. Salamakha, Rare-earth-antimony systems in: K.A. Gschneidner, J.-C.G. Bunzli, V.K. Pecharsky (Eds.), Handbook on the Physics and Chemistry of Rare-Earths, 33, North-Holland, Amsterdam, 2003, pp. 35–146.
- [8] L. Zeng, H. Ning, Isothermal cross-section of the Cu–Ho–Sb phase diagram at 500°C, J. Alloys Compd. 359, 169 (2003); https://doi.org/10.1016/S0925-8388(03)00199-3.
- [9] L.O. Fedyna, A.O. Fedorchuk, V.M. Mykhalichko, Z.M. Zhpyrka, M.F. Fedyna, *Isothermal section of the phase diagram and crystal structures of the compounds in the ternary system Tm–Cu–Sb at 870 K*, Solid St. Sci. 69, 7 (2017); <u>https://doi.org/10.1016/j.solidstatesciences.2017.05.003.</u>
- [10] W. Kraus, G. Nolze, POWDER CELL a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Crystallogr. 29, 301 (1996); https://doi.org/10.1107/S0021889895014920.
- [11] L. Akselrud, Yu. Grin, WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 47, 803 (2014); <u>https://doi.org/10.1107/S1600576714001058.</u>
- [12] T. Roisnel, J. Rodriguez-Carvajal, WinPLOTR: a Windows tool for powder diffraction patterns analysis, Mater. Sci. Forum, 378–381, 118 (2001); <u>https://doi.org/10.4028/www.scientific.net/MSF.378-381.118.</u>
- [13] T.B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio (1990).
- [14] H Okamoto. Desk Handbook: Phase Diagrams for Binary Alloys, Materials Park (OH): ASM (2000).
- [15] Y.A. Mozharivskyj, H.F. Franzen, *High-temperature modification of Y₅Sb₃ and its ternary analogue Y₅Ni_xSb_{3-x}*, J. Alloys Compd. 319, 100 (2001); <u>https://doi.org/10.1016/S0925-8388(00)01463-8</u>.
- [16] O.L. Sologub, K. Hiebl, P. Rogl, H. Noel, O.I. Bodak, On the crystal structure and magnetic properties of the ternary rare earth compounds RETSb₂ with RE= rare earth and T= Ni, Pd, Cu and Au, J. Alloys Compd. 210, 153 (1994); <u>https://doi.org/10.1016/0925-8388(94)90131-7.</u>
- [17] O.L. Fedyna, O.I. Bodak, A.O. Fedorchuk, Y.O. Tokaychuk, M.F. Fedyna, *New ternary antimonides with* $Dy_3Cu_{20+x}Sb_{11-x}$ -type structure, Abstr. 9th Int. Conf. Crystal Chem. Intermet. Compd. 90 (2005).
- [18] X.X. Yang, Y.M. Lu, S.K. Zhou, S.Y. Mao, J.X. Mi, Z.Y. Man, J.T. Zhao, RCu_{1+x}Sb₂ (R= La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Y) phases with defect CaBe₂Ge₂-type structure, Mater. Sci. Forum 475/479, 861 (2005); https://doi.org/10.4028/www.scientific.net/MSF.475-479.861.
- [19] T. Mishra, I. Schellenberg, M. Eul, R. Pöttgen, Structure and properties of EuTSb (T=Cu, Pd, Ag, Pt, Au) and YbIrSb, Z. Kristallogr. Cryst. Mater. 226, 590 (2011); <u>https://doi.org/10.1524/zkri.2011.1387.</u>
- [20] H. Flandorfer, K. Hiebl, C. Godart, P. Rogl, A. Saccone, R. Ferro, *The crystal structure and magnetic properties of YbMSb*, M=Cu, Ag, Au, J. Alloys Compd. 256, 170 (1997); <u>https://doi.org/10.1016/S0925-8388(96)03007-1.</u>

L. Romaka¹, Yu. Stadnyk¹, V.V. Romaka², A. Zelinskiy¹, P. Klyzub¹, A. Horyn¹

Phase equilibrium diagram of Y-Cu-Sb system at 870 K

¹Ivan Franko National University of Lviv, Lviv, Ukraine, <u>lyubov.romaka@gmail.com</u> ²Institute for Solid State Research, IFW-Dresden, Dresden, Germany, <u>vromaka@gmail.com</u>

The interaction of the components in the Y-Cu-Sb ternary system was investigated using the methods of X-ray phase analysis, microstructure, and energy-dispersive X-ray spectroscopy in the whole concentration range at 870 K. At the temperature of investigation Y-Cu-Sb system is characterized by the formation of three ternary compounds: $Y_3Cu_{22}Sb_9$ (Dy₃Cu_{20+x}Sb_{11-x} structure type, space group *F*-43*m*, *a* = 1.6614(3) nm), $Y_3Cu_3Sb_4$ (Y₃Au₃Sb₄ structure type, space group *I*-43*d*, *a* = 0.95357(5) nm), YCuSb₂ (HfCuSi₂ structure type, space group *P*4/*nmm*, *a* = 0.42580(1), *c* = 0.98932(3) nm). The solubility of copper in the binary compound YSb (NaCl structure type) extends up to 8 at. %.

Keywords: intermetallics, ternary system, phase equilibria, crystal structure.