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We extend the construction of the space G(X) of inclusion hyperspaces to non-compact
spaces, prove the supercompactness of G(X) for any T1-space X, study the algebraic structure
of G(X), and define some important subspaces of G(X).

Â. Ãàâðèëêèâ. Ïðîñòðàíñòâà ãèïåðïðîñòðàíñòâ âêëþ÷åíèÿ íàä íåêîìïàêòíûìè ïðîñò-
ðàíñòâàìè // Ìàòåìàòè÷íi Ñòóäi¨. � 2007. � Ò.28, �1. � C.92�110.

Ìû ðàñïðîñòðàíÿåì êîíñòðóêöèþ ïðîñòðàíñòâà G(X) ãèïåðïðîñòðàíñòâ âêëþ÷åíèÿ íà
íåêîìïàêòíûå ãèïåðïðîcòðàíñòâà, äîêàçûâàåì ñóïåðêîìïàêòíîñòü G(X) äëÿ ïðîèçâîëü-
íîãî T1-ïðîñòðàíñòâà X, èçó÷àåì àëãåáðàè÷åñêóþ ñòðóêòóðó G(X), è îïðåäåëÿåì íåêîòî-
ðûå âàæíûå ïîäïðîñòðàíñòâà G(X).

The aim of this paper is to extend the construction of the space G(X) of inclusion
hyperspaces beyond the class of compact Hausdorff spaces, in which this construction is
well-studied, see [12]. In a sense, this paper can be considered as a continuation of the work
of E. Moiseev [11]. However our motivation came from the topological algebra where the
obtained results will be applied, see [6], [1]. In this paper, given an arbitrary topological
space X, we shall define the space G(X) of inclusion hyperspaces on X and shall show that
G(X) is a supercompact T1-space. Using the relation of G(X) to the Wallman extension we
show that the space G(X) is Hausdorff if and only if X is normal (in which case G(X) can
be identified with G(βX)). By another method this equivalence was established also by E.
Moiseev [11]. Also we introduce and study some important subspaces in G(X): the space
Fil(X) of filters, Nk(X) of k-linked systems, λk(X) of maximal k-linked systems.

Some preliminary information on hyperspaces. For a topological space X by exp(X)
we denote the hyperspace of all non-empty closed subsets of X endowed with the Vietoris
topology generated by the base consisting of the sets

〈U1, . . . , Un〉 = {C ∈ exp(X) : C ⊂
n⋃

i=1

Ui and ∀i ≤ n C ∩ Ui 6= ∅}

where U1, . . . , Un run over open subsets of X, n ∈ N.
Let us recall some known properties of the Vietoris topology. For a T1-space X the

hyperspace exp(X) is Hausdorff if and only if X is regular, see [5, �IV.3]. The normality of
a T1-space X is equivalent to the (complete) regularity of exp(X) while the compactness
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of X is equivalent to the normality (and compactness) of exp(X), see [4, 2.7.20, 3.12.26].
The Vietoris topology on the hyperspace exp(N) of the discrete space N is well-known in
the Descriptive Set Theory as the Ellentuck topology. It is not normal, see [9, 19.D] or [4,
3.12.26]. Consequently the double hyperspace exp2(N) = exp(exp(N)) is not a regular space.
In the sequel writing C ⊂

cl
X we mean that C is a closed subset of a topological space X.

Inclusion hyperspaces. In this section we study inclusion hyperspaces on topological
spaces and obtain a characterization theorem helping to recognize inclusion hyperspaces.

Definition 1. A subfamily A ⊂ exp X is called monotone if A 3 A ⊂ B ⊂
cl

X implies

B ∈ A. Closed monotone subfamilies A ⊂ exp X are referred to as inclusion hyperspaces
on X.

Inclusion hyperspaces often appear as closures of monotone families in exp X.

Proposition 1. The closure clexp X(A) of any monotone subset A ⊂ exp X in exp X is an
inclusion hyperspace on X.

Proof. We have to prove that a closed subset B ⊂ X belongs to clexp X(A) provided it
contains a subset A ∈ clexp X(A). Let 〈W1, . . . ,Wm〉 be a basic neighborhood of the point
B ∈ exp X. Then B ⊂ W1 ∪ . . . ∪ Wm. Consider the sets Wi meeting the set A and write
them as Wl1 , . . . ,Wlk . Then A ∈ 〈Wl1 , . . . ,Wlk〉. Since A is a cluster point of the set A in
exp(X), there is A′ ∈ A ∩ 〈Wl1 , . . . ,Wlk〉. The monotonicity of A 3 A′ implies A′ ∪ B ∈
A ∩ 〈W1, . . . ,Wn〉 witnessing that B is a cluster point of A in exp X.

This proposition implies that each non-empty family B of non-empty subsets of a topologi-
cal space generates the inclusion hyperspace ↑B = cl

exp(X)
{F ⊂

cl
X : ∃B ∈ B B ⊂ F}.

A family B of subsets of X is called a base of an inclusion hyperspace F if B ⊂ F and
F = ↑B.

The following characterization theorem allows us to define inclusion hyperspaces without
appealing to the Vietoris topology.

Theorem 1 (Characterization Theorem). A family A of non-empty closed subsets of
a topological space X is an inclusion hyperspace if and only if A satisfies the condition: a
closed subset F ⊂ X belongs to A provided each neighborhood U ⊂ X of F contains a set
A ∈ A.

Proof. Assume that A is an inclusion hyperspace in X. We have to prove that a closed
subset F ⊂ X belongs to A provided each neighborhood U of F ⊂ X contains a set A ∈ A.
For this it suffices to check that F is a cluster point of the set A in the hyperspace exp X.
For each basic neighborhood 〈U1, . . . , Un〉 of F in the space exp X the union U1 ∪ . . . ∪ Un,
being a neighborhood of F in X, contains some set A ∈ A according to our hypothesis. Then
the closed set F ∪ A belongs to A ∩ 〈U1, . . . , Un〉 and hence F is a cluster points of A.

Now assume that a family A of closed non-empty subsets of a topological space X
satisfies the condition: a closed subset F ⊂ X belongs to A provided each neighborhood U
of F contains a set A ∈ A. Let us show that A is an inclusion hyperspace.

At first, remark that the above condition implies that the family A 3 A is monotone.
So it remains to check that A is closed in exp X. Indeed, let F ⊂

cl
X be a cluster point of

A in exp X. If U ⊃ F is open, then 〈U〉 is a neighborhood of F in exp X containing some
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point A ∈ A. Then A ⊂ U and our condition guarantees that F ∈ A. Thus the set A is an
inclusion hyperspace, being a closed monotone family in exp(X).

Let us note that Proposition 1 can be deduced from the Characterization Theorem 1.

Remark 1. Since each subset of a discrete space is closed-and-open, in the discrete case the
characterizing theorem 1 can be written in a simpler form: a family A of non-empty subsets
of a discrete topological space X is an inclusion hyperspace if and only if A is monotone.

The space G(X) and its topologization. By G(X) we denote the set of all inclusion
hyperspaces on a topological space X. Since the elements A ∈ G(X) are closed subsets
of the hyperspace exp X, the set G(X) can be identified with a subspace of the double
hyperspace exp2(X) and endowed with the subspace topology. Such an approach works well
for compact spaces X. Moreover, in this case the subspace topology on G(X) is generated
by the sub-base consisting of the sets U+ = {A ∈ G(X) : ∃A ∈ A A ⊂ U } and U− = {A ∈
G(X) : ∀A ∈ A A ∩ U 6= ∅ }, where U runs over all open subsets of X. For non-compact
X the Vietoris topology of the double hyperspace exp2(X) has rather bad properties (for
example, it is not regular even for the space exp2(N) ).

So we topologize the space G(X) directly (without appealing to the double hyperspace)
endowing G(X) with the topology generated by the subbase consisting of the sets U+ and
U− where U runs over the topology of the space X. This topology on G(X) has rather good
properties.

Theorem 2. G(X) is a supercompact T1-space for any topological space X.

We recall that a space X is supercompact if any its cover by elements of a suitable
sub-base has a binary subcover. Sub-bases with that property are called binary.

Proof. Firstly we prove that G(X) is a T1-space. Let F ,U ∈ G(X), F 6= U . Without loss
of generality we can assume that there is F ∈ F\U . Since F /∈ U , the Characterization
Theorem 1 yields a neighborhood V ⊃ F containing no set G ∈ U . Therefore U /∈ V + and
F ∈ V +.

On the other hand, for any G ∈ U the set G does not lie in F , i.e., G ∩ (X\F ) 6= ∅ and
U ∈ (X\F )−. From F ∩ (X\F ) = ∅ it follows that F /∈ (X\F )−.

Now let us show that G(X) is a supercompact space. Let G(X) be the union of some
sets from the canonical subbase G(X) =

⋃
i∈I U−

i ∪
⋃

j∈J V +
j .

If X = Ui for some i ∈ I or X = Vj for some j ∈ J , then U−
i = G(X) or V +

j = G(X)
and we are done. So from now on, we assume that X 6= Ui and X 6= Vj for all i ∈ I, j ∈ J .

If I = ∅, then we get a cover G(X) =
⋃

j∈J V +
j . Taking into account that Vj 6= X for

every j we conclude that {X} ∈ G(X), {X} /∈
⋃

j∈J V +
j which is a contradiction. Thus

X = Vj for some j and G(X) = V +
j .

So, we assume that I 6= ∅. Consider the family F ′ = {F ∈ exp(X) : F ⊃ X\Ui for
some i ∈ I} and its closure F = clexp X F ′, which is an inclusion hyperspace according to
Proposition 1.

It follows from X \ Ui ∈ F that F /∈ U−
i for all i ∈ I. Hence, F ∈ V +

j0
for some j0 ∈ J ,

which means that there is F ′ ∈ F with F ′ ⊂ Vj0 . Since

F ′ ∈ cl
exp X

{F ⊂ X : F ⊃ X\Ui for some i} ∩ 〈Vj0〉,
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there exists F ′′ ∈ 〈Vj0〉 with F ′′ ∈ F ′. Therefore for some i ∈ I we get X\Ui ⊂ F ′′ ⊂ Vj0

and thus Ui∪Vj0 = X. Let us show that U−
i ∪V +

j0
= G(X). If F /∈ V +

j0
, then for every F ∈ F

the set F is not contained in Vj and thus F ∩ (X\Vj) 6= ∅. On the other hand, X\Vj ⊂ Ui

implies F ∩ Ui 6= ∅ and F ∈ U−
i .

We recall that a topological space X is a T4-space if any disjoint closed subsets of X
have disjoint open neighborhoods.

Proposition 2. If X is a T4-space, then G(X) is a T2-space.

Proof. Let F0,F1 ∈ G(X), F0 6= F1. Without loss of generality we can assume that there
is F0 ∈ F0\F1. According to the Characterization Theorem 1, there is a neighborhood W of
the set F0 containing no set from the inclusion hyperspace F1. Since X is a T4-space, for the
neighborhood W of the set F0 there is a neighborhood W0 ⊃ F0 such that cl W0 ⊂ W and
thus F0 ∈ W+

0 . Let W1 = X\ cl W0. Then W0 ∩W1 = ∅. We claim that F1 ∈ W−
1 . Indeed,

in the opposite case there is F ∈ F1 such that F ∩W1 = ∅. Thus F ⊂ cl W0 ⊂ W and we
obtain a contradiction with the choice of the neighborhood W .

Let us show that W+
0 ∩W−

1 = ∅. If F ∈ W+
0 , then there is F ∈ F such that F ⊂ W0

and hence F ∩ (X\W0) = ∅. Therefore F ∩W1 = ∅ and F /∈ W−
1 .

In Section �Relation to the Wallman extension� using the Wallman extension we partially
reverse Proposition 2 and prove that for a T1-space X the T2-axiom of G(X) is equivalent
to the T4-axiom of X.

Canonical embedding of X into G(X). For a point x of a topological space X consider
the monotone family iX(x) = ↑x = cl

exp X
{F ⊂

cl
X : x ∈ F}, which is an inclusion hyperspace

according to Proposition 1. In such a way we define a map iX : X → G(X), iX : x 7→ ↑x.

Proposition 3. For a topological space X the following conditions are equivalent:
1) X is a T1-space; 2) iX : X → G(X) is injective and continuous; 3) iX : X → G(X) is a
topological embedding.

Proof. (1) ⇒ (3) Assume that X is a T1-space. First we prove that iX(x) = {F ∈ exp(X) :
x ∈ F} for every x ∈ X. This will follow as soon as we check that the family ↑x = {F ∈
exp(X) : x ∈ F} is closed in exp(X). Indeed, for every F ∈ exp(X) \ ↑x the set 〈X \ {x}〉
is an open neighborhood of F missing the set ↑x.

The formula iX(x) = ↑x implies that i−1
X (V +) = V = i−1

X (V −) for every open set V ⊂ X.
This equality can be used to prove that the map iX : X → G(X) is a topological embedding.

The implication (3) ⇒ (2) is trivial while (2) ⇒ (1) follows from Theorem 2 and the fact
that a topological space is T1 if it admits an injective continuous map into a T1-space.

Let us present simple examples of spaces X for which iX is not a topological embedding.

Example 1. Consider the topological space X = {a, b, c} with the topology τ = {∅, X, {b},
{a, b}, {b, c}}. It satisfies the Axiom T0 but not T1. Then: iX(a) =

{
{a}, {a, c}, {a, b, c}

}
,

iX(b) =
{
{a, b, c}

}
, iX(c) =

{
{c}, {a, c}, {a, b, c}

}
, i−1

X ({a, b}+) = {a}, � is not open in X.
Thus the map iX : X → G(X) is injective and discontinuous.
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Example 2. Consider the connected two-point space X = {a, b} with the topology τ =
{∅, {a}, {a, b}}. Then: iX(a) = clexp X{{a, b}} = {{b}, {a, b}}, iX(b) = clexp X{{b}, {a, b}} =
{{b}, {a, b}}. This example yields a T0-space X for which the map iX : X → G(X) is
continuous but not injective.

Example 3. The topological sum of the spaces considered in the preceding two examples
yields a T0-space X for which the map iX : X → G(X) is discontinuous and non-injective.

Relation to the Wallman extension. In this section we show that for a T1-space X the
space G(X) contains the Wallman extension ωX of X, which will allow us to use the known
information on Wallman extensions to study the spaces G(X). At first let us recall some
definitions.

Definition 2. A family F of closed subsets of a topological space X is called a filter of closed
subsets if the following conditions hold: F1) ∅ /∈ F ; F2) if F1, F2 ∈ F , then F1 ∩ F2 ∈ F ;
F3) if F ∈ F and F ⊂ F ′ ⊂

cl
X, then F ′ ∈ F . A filter of closed subsets F on X is called a

closed filter on X if F is a closed subset in exp X.

Thus closed filters on X are inclusion hyperspaces closed under taking finite intersections.

Definition 3. A filter of closed subsets of X which is maximal with respect to the inclusion
relation is called an ultrafilter of closed subsets.

Proposition 4. Each ultrafilter of closed subsets on a T1-space X is a closed filter and thus
belongs to G(X).

Proof. Let U be an ultrafilter of closed subsets on X. To see that U is an inclusion hyperspa-
ce, we shall apply the Characterization Theorem 1. Let F ⊂ X be a closed set whose any
neighborhood contains a set from U . We should prove that F ∈ U . If it is not so, then the
maximality of U would yield a subset A ∈ U missing the set F . Its complement X \A would
be a neighborhood of F containing no subset from U , which contradicts the choice of F .

Definition 4. The set ωX of all ultrafilters of closed subsets with the topology generated
by the base {U+ | U ⊂

op
X} is called the Wallman extension of the space X.

Proposition 4 allows us to think of the Wallman extension ωX as a subspace of the space
G(X).

Proposition 5. If X is a T1-space, then the Wallman extension ωX is a subspace of the
space G(X).

Proof. The base of the topology on ωX consists of the sets: U+ = {A ∈ ωX : ∃A ∈ A,
A ⊂ U }, where U runs over the family of open subsets of X. Let us prove that the topology
of ωX coincides with the topology induced from G(X). This will follows as soon as we check
that ωX ∩ U− = ωX ∩ U+. Let us show that for every U ∈ ωX ∩ U− there is F ∈ U with
F ⊂ U , i.e., U ∈ ωX ∩ U+. Assume the opposite: F ∩ (X\U) 6= ∅ for every F ∈ U . Then
X\U ∈ U and (X\U) ∩ U = ∅, a contradiction with U ∈ U−.

Let us check that ωX ∩U+ ⊂ ωX ∩U−. Fix any ultrafilter U ∈ ωX ∩U+ and find a set
F ′ ∈ U with F ′ ⊂ U . Then U ∈ U− because each element of U meets the set F ′.
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Therefore for a T1-space X we obtain a chain of inclusions X ⊂ ωX ⊂ G(X).

Corollary 1. For a T1-space X the following conditions are equivalent: 1. X is normal;
2. ωX is Hausdorff; 3. G(X) is Hausdorff.

Proof. The implication (1) ⇒ (3) is proved in Proposition 2, (3) ⇒ (2) follows from the
embedding ωX ⊂ G(X), and (2) ⇒ (1) is proved in Theorem 3.6.22 of [4, c.273-274].

Remark 2. The equivalence of the items (1) and (3) was first established by E. Moiseev [11]
(by a different method).

Inclusion hyperspaces with finite support. In this section we study free inclusion
hyperspaces and hyperspaces having finite support.

An inclusion hyperspace A ∈ G(X) is defined to have finite support in X if A = ↑F for
some finite family F of finite subsets of X. By G•(X) we denote the subspace of G(X) that
consists of the inclusion hyperspaces with finite support in X.

Proposition 6. For a discrete space X the space G•(X) is discrete.

Proof. Let F be an inclusion hyperspace with the minimal finite base {F1, F2, . . . , Fn} of
finite subset. Then the open set O(F) =

⋂n
i=1

(
F+

i ∩
⋂

a∈Fi
((X \ Fi) ∪ {a})−

)
coincides with

the singleton {F}.

Proposition 7. For a T1-space X the set G•(X) is dense in G(X).

Proof. Fix an inclusion hyperspace A ∈ G(X) and a neighborhood O(A) of A in G(X). We
can assume that O(A) is of the basic form O(A) = U+

1 ∩ · · · ∩U+
n ∩ V −

1 ∩ · · · ∩ V −
m for some

open sets U1, . . . , Un and V1, . . . , Vm in X. For every i ≤ n choose a closed set Ai ∈ A such
that Ai ⊂ Ui. Since Ai meets each set Vj, j ≤ m, we may select a finite subset Fi ⊂ Ai

that meets all sets Vj, j ≤ m. Using the T1-axiom of X it can be shown that the family
F = {F ⊂

cl
X : ∃i ≤ n Fi ⊂ F} is an inclusion hyperspace with finite support and F belongs

to the open neighborhood O(A).

Next, we consider so called free inclusion hyperspaces. An inclusion hyperspace F ∈ G(X)
on a non-compact space X is called free if for each compact subset K ⊂ X and any element
F ∈ F there is another element E ∈ F such that E ⊂ F \K. By G◦(X) we shall denote the
subset of G(X) consisting of free inclusion hyperspaces. It is clear that G•(X)∩G◦(X) = ∅
for any T1-space X.

In the simplest case of a countable discrete space X = N free inclusion hyperspaces
(called semifilters) on X = N have been introduced and intensively studied in [2].

Proposition 8. For a locally compact normal space X the set G◦(X) of free inclusion
hyperspaces is closed and nowhere dense in G(X).

Proof. Fix any inclusion hyperspace F ∈ G(X) \ G◦(X). Then there is a closed set F ∈ F
and a compact set K ⊂ X such that F ′ ∩K 6= ∅ for each set F ′ ∈ F with F ′ ⊂ F . Since
X is locally compact, we can find an open neighborhood V ⊂ X of K whose closure V in
X is compact. It follows that F \ V /∈ F . Using Theorem 1 we can find a neighborhood
O(F \ V ) of F \ V that contains no subset F ′ ∈ F . By the normality of X there are open
sets U,W ⊂ X such that F ⊂ U ⊂ U ⊂ W ⊂ W ⊂ O(F \ V ) ∪ V. Consider the open set
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U = U+ ∩ (V ∪ (X \W ))− in G(X). We claim that F ∈ U . Indeed, F ∈ U+ because F ⊂ U
and F ∈ F . Next, assuming that some F ′ ∈ F does not intersect the set V ∪ (X \W ) we
conclude that F ′ ⊂ W \V ⊂ O(F \V ) which is not possible. Thus U is an open neighborhood
of the inclusion hyperspace F in G(X).

We claim that U ∩ G◦(X) = ∅. Assuming the converse we would find a free inclusion
hyperspace E ∈ U . Since E ∈ U+ there is a set E ∈ E with E ⊂ U . Since V is compact and
E is free, there is a set E ′ ∈ E such that E ′ ⊂ E \ V ⊂ U \ V ⊂ W \ V . Then the set E ′ has
empty intersection with V ∪ (X \W ), which contradicts the inclusion E ∈ U .

The subset G◦(X) is nowhere dense in G(X), being closed and disjoint with the dense
subset G•(X).

The inner algebraic structure of G(X). In this section we study the algebraic structure
of the spaces G(X). For every topological space X the space G(X) possesses two binary
operations

∪ : G(X)×G(X) → G(X), ∪ : (F ,U) 7→ F ∪ U ,

∩ : G(X)×G(X) → G(X), ∩ : (F ,U) 7→ F ∩ U ,

and one unary operation⊥: G(X) → G(X), ⊥: F 7→ F⊥ = {E ⊂
cl

X : ∀F ∈ F E∩F 6= ∅}
called the transversality operation.

Let us check that F⊥ indeed is an inclusion hyperspace. It is clear that it is a monotone
family in exp(X). To show that F⊥ is closed in exp(X) take any closed subset E ∈
exp(X) \ F⊥ and find F ∈ F with E ∩ F = ∅. Then 〈X \ F 〉 is an open neighborhood
of E in exp(X) missing the set F⊥. The same argument shows that for every family
F ⊂ exp(X) the transversal family F⊥ = {E ⊂

cl
X : ∀F ∈ F E ∩ F 6= ∅} is an inclusion

hyperspace. Moreover, the double transversal F⊥⊥ coincides with the inclusion hyperspace
↑F = clexp(X){E ⊂

cl
X : ∃F ∈ F F ⊂ E} generated by F .

Proposition 9. For any non-empty family F ⊂ exp(X) we get F⊥⊥ = ↑F .

Proof. The inclusion ↑F ⊂ F⊥⊥ follows from the definitions of F⊥, F⊥⊥, and the closedness
of F⊥⊥ in exp(X).

Assuming that ↑F 6= F⊥⊥, find a set F ∈ (F⊥)⊥ \ ↑F . The non-inclusion F /∈ ↑F
combined with Theorem 1 implies the existence of a neighborhood U of the set F containing
no set E ∈ F . It follows that (X \ U) ∈ F⊥. Since F ∈ (F⊥)⊥, we obtain F ∩ (X \ U) 6= ∅,
which is a contradiction.

Some basic properties of the transversality map are presented in

Proposition 10. Let F ,U ∈ G(X) be inclusion hyperspaces and U ⊂ X be an open subset.
Then: 1. (F⊥)⊥ = F ; 2. F ∈ U+ if and only if F⊥ ∈ U−; 3. (F ∪ U)⊥ = F⊥ ∩ U⊥;
4. (F ∩ U)⊥ = F⊥ ∪ U⊥.

Proof. 1. The equality (F⊥)⊥ = F follows from the equalities F⊥⊥ = ↑F = F .
2. If F ∈ U+ then F ⊂ U for some F ∈ F and then each set E ∈ F⊥ meets both F and

U , which means that F⊥ ∈ U−. If F /∈ U+, then each element F ∈ F meets the set X \ U
which yields X \ U ∈ F⊥ and hence F⊥ /∈ U−.

3. The equality (F∪U)⊥ = F⊥∩U⊥ easily follows from the definition of the transversality
operation.
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4. The preceding items imply F ∩ U = F⊥⊥ ∩ U⊥⊥ = (F⊥ ∪ U⊥)⊥. Applying to this
equality the transversality operation we get (F ∩ U)⊥ = (F⊥ ∪ U⊥)⊥⊥ = F⊥ ∪ U⊥.

We apply this proposition to prove

Theorem 3. The operations ∪,∩ and ⊥ on G(X) are continuous.

Proof. 1. The continuity of the transversality map follows from Proposition 10(2).
2. To see that the operation ∪ : G(X)×G(X) → G(X) is continuous, take any open set

U ⊂ X and note that {(F ,U) ∈ G(X)×G(X) : F ∪ U ∈ U+} = U+ ×G(X) ∪G(X)× U+

and {(F ,U) ∈ G(X)×G(X) : F ∪ U ∈ U−} = U− × U−.
3. The continuity of the operation ∩ can be derived from the continuity of ∪ and ⊥ with

help of Proposition 10(4).

The preceding propositions imply that for every topological space X the space G(X)
carries the structure of a symmetric lattice.

Definition 5. A symmetric lattice is a complete distributive lattice (L,∨,∧) endowed with
an additional unary operation ⊥: L → L, ⊥: x 7→ x⊥, that is an involutive anti-isomorphism
in the sense that

• x⊥⊥ = x for all x ∈ L;

• (x ∨ y)⊥ = x⊥ ∧ y⊥;

• (x ∧ y)⊥ = x⊥ ∨ y⊥.

The notion of a symmetric lattice was introduced in [2, �4.2].
For a discrete space X the set G(X) of all inclusion hyperspaces on X is a subset of the

double power-set P(P(X)) (which is a complete distributive lattice) and is closed under the
operations of union and intersection (of arbitrary families of inclusion hyperspaces).

Since each inclusion hyperspace is a union of filters and each filter is an intersection of
ultrafilters, we obtain the following proposition showing that the lattice G(X) is a rather
natural object.

Proposition 11. For a discrete space X the lattice G(X) coincides with the smallest
complete sublattice of P(P(X)) containing all ultrafilters.

Characterizing inclusion hyperspaces with finite supports. In this section we shall
give a dual characterization of inclusion hyperspaces with finite support. This characteri-
zation will be essentially used in [6] for describing the topological center of the semigroup
G(X) over a discrete semigroup X.

Theorem 4. An inclusion hyperspace F on a T1-space X has finite support if and only if
both F and F⊥ have bases consisting of finite sets.

Proof. The �only if� part easily follows from the definition of an inclusion hyperspace with
finite support. To prove the �if� part, assume that F and F⊥ have bases of finite subsets.
We shall say that a subset F ⊂ X is F-minimal if F ∈ F but no proper subset E ⊂ F
belongs to F . Since F has a base consisting of finite sets, the family M of F -minimal sets
contains only finite sets and is a base for F . To show that F has finite support it suffices to
check that the family M is finite.
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Assume conversely that M is infinite. If M is uncountable, then by the ∆-Lemma [8],
there is an uncountable subfamily A ⊂ B and a set A0 such that A∩A′ = A0 for any distinct
elements A, A′ ∈ A. The F -minimality of each set A ∈ A implies that A0 /∈ F and thus
X \ A0 ∈ F⊥. Since F⊥ has a base consisting of finite sets, there is a finite subset E ∈ F⊥

with E ⊂ X \ A0. Taking into account that the family {A \ A0 : A ∈ A} is disjoint and
each set A ∈ A meets the finite set E = E \A0, we arrive to an absurd conclusion that the
family A is finite.

So it remains to consider the case of countable family M. In this case the set M =
⋃
M

is countable and thus admits a well-ordering ≤ such that for every x ∈
⋃
M the initial

interval ↓x = {y ∈ M : y ≤ x} is finite. Consider the family of finite sets ↓M = {B ∩ ↓x :
B ∈M, x ∈ M}. Endowed with the inclusion partial order, this family forms a tree T with
finite branches whose maximal elements are sets from the family M.

Let us show that each element A ∈ ↓M of this tree has at most finitely many immediate
successors in the tree T . If A is a maximal element of the tree T , then A has no successors.
So we assume that A is not a maximal element and hence A is a proper subset of some
B ∈ M. The F -minimality of B implies that A /∈ F and hence X \ A ∈ F⊥. Since F⊥ has
a base of finite sets, there is a finite set E ∈ F⊥ with E ⊂ X \ A and maximal element
e = max E. Now take any immediate successor S ∈ ↓M of A in T . Find a set B ∈ M and
a point b ∈ B such that S = B ∩ ↓b. Being an immediate successor of A, the set S is equal
to A ∪ {b}. Taking into account that (B \ A) ∩ E = B ∩ (E \ A) = B ∩ E 6= ∅ we see that
b = min B \ A ≤ max E = e and hence S = A ∪ {b} ⊂ ↓e. Since the initial interval ↓e is
finite as well as its power-set, the family of all immediate successors of A in the tree T is
finite. Therefore T is a tree with finite branches and finite immediate successors of each its
element. By the K�onig Lemma [8], the tree T = ↓M is finite and so is the setM of maximal
elements of T .

Some important subspaces of G(X). The space G(X) of inclusion hyperspaces contains
many interesting subspaces. In Section we have already met one of such subspaces, the
Wallman extension ωX of X. In this section we shall consider some other subspaces of
G(X).

Let X be a topological space and k ≥ 2 be a natural number. An inclusion hyperspace
A ∈ G(X) is defined to be

• k-linked if ∩F 6= ∅ for any subfamily F ⊂ A with |F| ≤ k;

• centered if ∩F 6= ∅ for any finite subfamily F ⊂ A;
• a filter if A1 ∩ A2 ∈ A for all sets A1, A2 ∈ A.
By Nk(X), N<ω(X), and Fil(X) we denote the subsets of G(X) consisting of k-linked,

centered, and filter inclusion hyperspaces, respectively. It is clear that

Fil(X) ⊂ N<ω(X) ⊂ Nk(X) ⊂ N2(X) ⊂ G(X).

Now we show that for a normal space X all these sets are closed in G(X).

Proposition 12. For a normal space X the set of filters Fil(X) is closed in G(X).

Proof. Take any inclusion hyperspace A ∈ G(X) \ Fil(X). Since A /∈ Fil(X), there are
two sets A1, A2 ∈ A with A1 ∩ A2 /∈ A. Since A is monotone and closed in exp X, there
is a neighborhood U ⊂ X of A1 ∩ A2 such that A /∈ U+. By the normality of X find a
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neighborhood W of A1∩A2 such that W ⊂ U and observe that A ∈ G(X)\U+ ⊂ (X \W )−.
Using the normality of X once more, find two open sets U1 3 A1 and U2 ⊃ A2 such that
U1 ∩ U2 ⊂ W .

We claim that U+
1 ∩U+

2 ∩ (X \W )− is a neighborhood of A in G(X) that misses the set
Fil(X). Indeed, assuming that U+

1 ∩ U+
2 ∩ (X \ W )− contains some filter F , find two sets

F1, F2 ∈ Fil(X) with F1 ⊂ U1, F2 ⊂ U2. Then F 3 F1 ∩ F2 ⊂ U1 ∩ U2 ⊂ W . On the other
hand, F ⊂ (X \W )− implies that F1 ∩ F2 6⊂ W which is a contradiction.

Proposition 13. For a normal space X the spaces Nk(X) are closed in G(X) for all k ≥ 2.

Proof. We first prove by induction that for the sets F1, . . . , Fk with empty intersection
F1 ∩ . . . ∩ Fk there exist open sets V1 ⊃ F1, . . . , Vk ⊃ Fk such that V1 ∩ . . . ∩ Vk is empty
too. For n = 2 this follows from the definition of a normal space. Assuming that for n = k
the proposition has been proved we shall show that it is true also for n = k + 1. Let
F1 ∩ . . . ∩ Fk+1 = ∅. For the sets F1 ∩ . . . ∩ Fk and Fk+1 choose neighborhoods U0 and
Uk+1 such that U0 ⊃ F1 ∩ . . . ∩ Fk, Uk+1 ⊃ Fk+1 and U0 ∩ Uk+1 = ∅. Denote by Gi the set
Fi \ U0, i = 1, . . . k. We have G1 ∩ . . . ∩ Gk = ∅ and so can use the inductive assumption
to select neighborhoods Vi ⊃ Gi such that V1 ∩ · · · ∩ Vk = ∅. Put Ui = Vi ∪ U0. We
obtain that Ui ⊃ Fi and U1 ∩ . . . ∩ Uk ∩ Uk+1 = ((V1 ∪ U0) ∩ . . . ∩ (Vk ∪ U0)) ∩ Uk+1 =
((V1 ∩ . . . ∩ Vk) ∪ U0) ∩ Uk+1 = U0 ∩ Uk+1 = ∅.

Now prove closedness Nk(X) in G(X). Let F ∈ clGX Nk(X). Assume that F is not k-
linked. Consequently there exist the sets F1, . . . , Fk ∈ F with empty intersection. Choose
neighborhoods U1 ⊃ F1, . . . , Uk ⊃ Fk such that U1 ∩ . . . ∩ Uk = ∅, then F ∈ U+

1 ∩ . . . ∩ U+
k .

Thus there exists A ∈ NkX such that A ∈ U+
1 ∩ . . . ∩ U+

k . Choose sets A1, . . . , Ak ∈ A with
Ai ⊂ Ui for all i ≤ k. Then A1 ∩ . . . ∩Ak ⊂ U1 ∩ . . . ∩ Uk = ∅ contradicting the fact that A
is k-linked.

Since N<ω(X) =
⋂

k≥2 Nk(X) the preceding proposition implies

Corollary 2. For a normal space X the set N<ω(X) of centered inclusion hyperspaces is
closed in G(X).

An inclusion hyperspace A ∈ G(X) is called

• maximal k-linked if A is k-linked and A = B for every k-linked inclusion hyperspace
B ∈ Nk(X) with A ⊂ B;

• an ultrafilter if A is a filter and A = B for every filter B ∈ Fil(X) with A ⊂ B.
By ωX and λk(X) we denote the subsets of G(X) consisting of ultrafilters and maximal

k-linked inclusion hyperspaces. According to Proposition 5, for a T1-space the space ωX
coincides with the Wallman extension of X and for a normal X coincides with the Stone-
�Cech compactification βX of X. The space λ2(X) usually is denoted by λX and is called
the superextension of X, see [10].

Proposition 14. For a normal space X the sets ωX and λX are closed in G(X).

Proof. By Corollary 1 the space G(X) is Hausdorff. Observe that an inclusion hyperspace
A ∈ G(X) is maximal 2-linked if and only if A = A⊥. Consequently λX is closed as the set
of fixed points of the transversality map ⊥: G(X) → G(X) on the Hausdorff space G(X).
The set ωX is closed, being the intersection ω(X) = Fil(X) ∩ λX of two closed sets.
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Remark 3. In light of the preceding proposition it is interesting to remark that for k ≥ 3
the subspaces λk(N) are not closed in G(N), see [7].

It is well known (and easy to show) that each ultrafilter is maximal 2-linked. For maximal
k-linked inclusion hyperspaces with k > 2 the situation is different:

Proposition 15. If a maximal k-linked inclusion hyperspace F is (k + 1)-linked, then it is
an ultrafilter. Consequently, λk(X) ∩Nk+1(X) ⊂ ωX.

Proof. Let A, B ∈ F . It is sufficient to prove that the intersection A∩B is in F . The (k+1)-
linkedness of F implies that for any F1, . . . , Fk−1 ∈ F the set (A ∩ B) ∩ F1 ∩ . . . ∩ Fk−1 =
A ∩B ∩ F1 ∩ . . . ∩ Fk−1 is nonempty. Since F is maximal k-linked system, A ∩B ∈ F .

Thus we obtain the following diagram describing the inclusion relations between the
subspaces NkX, N<ωX, Fil(X), λkX and ωX of G(X) (an arrow A → B means that A is a
subset of B):

Fil(X) - N<ωX - Nk+1X - NkX - N2X - G(X)

6

Nk+1X ∩ λkX
6

�������)

λkX-

ωX

6

- λX

6

For any topological space X we can consider the intersections Fil•(X) = Fil(X) ∩
G•(X), N•

<ω(X) = N<ω(X) ∩ G•(X), N•
k (X) = Nk(X) ∩ G•(X), λ•(X) = λX ∩ G•(X)

of the closed subsets of G(X) with the dense subspace G•(X) of inclusion hyperspaces with
finite support.

The following proposition can be proved by a modification of the argument of the proof
of Proposition 7.

Proposition 16. For any T1-space and every k ≥ 2 the subspace N•
k (X) (resp. N•

<ω(X),
Fil•(X)) is dense in Nk(X) (resp. N<ω(X), Fil(X)).

For a non-compact space X we can also consider the intersections

Fil◦(X) =Fil(X) ∩G◦(X), N◦
<ω(X) = N<ω(X) ∩G◦(X),

N◦
k (X) =Nk(X) ∩G◦(X), λ◦(X) = λX ∩G◦(X), and

ω◦(X) =ωX ∩G◦(X) = ωX \X

of the closed subsets of G(X) with the subspace G◦(X) of free inclusion hyperspaces. The
elements of those sets will be called free filters, free centered inclusion hyperspaces, free
k-linked inclusion hyperspaces, etc.

Combining Propositions 12�14 with Proposition 8 we get

Corollary 3. For a locally compact normal space X the subsets Fil◦(X), N◦
<ω(X), N◦

k (X),
λ◦(X), ω◦(X) are closed in G(X).

In fact, the spaces λX and λ◦(X) are even supercompact, see [10]. We include a short
proof of this important property of λX and λ◦(X) for completeness.

Proposition 17. For any topological space X the superextension λX is supercompact.
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Proof. Taking into account item 2 of Proposition 10 and the equality F = F⊥ holding for
any F ∈ λX we conclude that λX∩U+ = λX∩U− for any open subset U ⊂ X. So it suffices
to show that each cover {U−

α : α ∈ A} of λX has a two-element subcover. We claim that
X = Uα ∪ Uβ for some indices α, β ∈ A. Assuming that it is not so, we get that the family
{X \ Uα : α ∈ A} is 2-linked and hence can be enlarged to a maximal 2-linked inclusion
hyperspace L. It is clear that L /∈

⋃
α∈A U−

α which contradicts the fact that {U−
α : α ∈ A}

is a cover of λX. Hence X = Uα ∪ Uβ for some indices α, β ∈ A. This equality implies that
λ(X) ∈ U−

α ∪ U−
β .

Proposition 18. For any locally compact space X the space λ◦(X) is supercompact.

Proof. We have to prove that each cover {U−
α : α ∈ Ω} of λ◦(X) by sub-basic sets has a

two-element subcover. Let K(X) be the family of open subsets having compact closures in
X.

We claim that X = Uα ∪ Uβ ∪K for some indices α, β ∈ Ω and some subset K ∈ K(X).
Assuming that it is not so, we get that the family {X \ (Uα∪K) : α ∈ Ω, K ∈ K(X)} is free
and 2-linked. Applying the Zorn Lemma we can enlarge this family to a maximal 2-linked
free inclusion hyperspace L. It can be shown that L belongs to λ◦(X) and hence L ∈ U−

α for
some α ∈ Ω. On the other hand, this is not possible because X \ Uα ∈ L.

This contradiction shows that X = Uα ∪ Uβ ∪K for some α, β ∈ Ω and K ∈ K(X). We
claim that λ◦(X) ⊂ U−

α ∪ U−
β . Assuming the converse, we would find a free maximal linked

inclusion hyperspace F /∈ U−
α ∪U−

β , which contains two sets A, B ∈ F such that A∩Uα = ∅
and B ∩ Uβ = ∅. Then A ∩B ⊂ X \ (Uα ∪ Uβ) ⊂ K.

Since the inclusion hyperspace F is free and K has compact closure in X, there are sets
A′, B′ ∈ F such that A′ ⊂ A \ K and B′ ⊂ B \ K. These sets have empty intersection
A′ ∩ B′ ⊂ (A ∩ B) \ K = ∅ which contradicts to the choice of F as a linked inclusion
hyperspace.

Maps between spaces of inclusion hyperspaces. It is known that the construction of
the space of inclusion hyperspaces is functorial in the category of compact Hausdorff spaces.
In this section we shall extend this construction onto the category of normal topological
spaces and on this base will show that for a normal space X the space G(X) is canonically
homeomorphic to G(βX) where βX = ωX is the Stone-�Cech compactification of X.

For any function f : X → Y between topological spaces consider the function Gf :
G(X) → G(Y ) assigning to an inclusion hyperspace F ∈ G(X) the inclusion hyperspace

Gf(F) = f(F)⊥⊥ = cl
exp(Y )

(f(F))

where f(F) = {E ⊂
cl

Y : ∃F ∈ F with F ⊂ f−1(E)} ⊂ exp(Y ) (the equality f(F)⊥⊥ = f(F)

in the definition of Gf(F) follows from Proposition 9).
The so-defined function Gf : G(X) → G(Y ) is a lattice homomorphism.

Proposition 19. Let f : X → Y be a function between topological spaces and A,B ∈ G(X)
be two inclusion hyperspaces. Then

1. Gf(A ∪ B) = Gf(A) ∪Gf(B);

2. Gf(A ∩ B) = Gf(A) ∩Gf(B);

3. Gf(A⊥) = Gf(A)⊥ provided f is continuous and Y is a T4-space.
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Proof. 1. The first item follows from the equalities

Gf(A ∪ B) = f(A ∪ B)⊥⊥ =
(
f(A) ∪ f(B)

)⊥⊥
=

=
(
f(A)⊥ ∩ f(B)⊥

)⊥
=

(
f(A)⊥⊥ ∪ f(B)⊥⊥

)
= Gf(A) ∪Gf(B).

2. By analogy we can derive the second item from the equality f(A∩B) = f(A) ∩ f(B)
which can be proved as follows. Given any closed subset E ∈ f(A)∩ f(B) of Y , find A ∈ A
and B ∈ B with A ⊂ f−1(E) and B ⊂ f−1(E). Then A ∪ B ∈ A ∩ B and A ∪ B ⊂ f−1(E),
which means that E ∈ f(A ∩ B). This proves the inclusion f(A) ∩ f(B) ⊂ f(A ∩ B). The
reverse inclusion is trivial.

3. Assume that the function f is continuous and Y is a T4-space Y . We need to check
that Gf(A⊥) = Gf(A)⊥. Since Gf(A)⊥ = f(A)⊥⊥⊥ = f(A)⊥, the inclusion

f(A⊥) = Gf(A⊥) ⊂ Gf(A)⊥ = f(A)⊥

will follow as soon as we check that f(A⊥) ⊂ f(A)⊥. Take any set A ∈ f(A⊥) and find
B ∈ A⊥ with B ⊂ f−1(A). Then for any set C ∈ f(A) we can find a set D ∈ A with
D ⊂ f−1(C). Since B ∈ A⊥, we get that

∅ 6= B ∩D ⊂ f−1(A) ∩ f−1(C) = f−1(A ∩ C)

and hence A ∩ C 6= ∅. We have shown that the set A meets each set C ∈ f(A) and hence
A ∈ f(A)⊥, which proved the desired inclusion f(A⊥) ⊂ f(A)⊥.

To prove the reverse inclusion f(A)⊥ ⊂ f(A⊥) we shall need the continuity of f and the
T4-property of Y . Assuming that f(A)⊥ \ f(A⊥) contains some closed set F ⊂ Y , we can
find an open neighborhood O(F ) ⊂ Y of F , containing no set from the inclusion hyperspace
f(A⊥). By the T4-axiom for Y , the closed set C = Y \O(F ) of Y has a neighborhood O(C)
whose closure E = O(C) lies in Y \ F . By the continuity of f the set f−1(E) is closed in
X. We claim that this set belongs to A = A⊥⊥. Take any set A ∈ A⊥ and observe that the
closure f(A) of its image f(A) in Y belongs to f(A⊥). The choice of O(F ) guarantees that
f(A) intersects C = Y \O(F ) and consequently, f(A) intersects O(C) and E = O(C). Then
A must intersect f−1(E), which means that f−1(E) ∈ A⊥⊥ = A and then E ∈ f(A), which
is impossible because E does not intersect the set F ∈ f(A)⊥.

The following example shows that the T4-property of Y in the third item of Proposition 19
is essential.

Example 4. Consider the identity inclusion f : X → Y of the singleton X = {a} into the
connected three-point space Y = ({a, b, c}, τ) endowed with the topology τ =

{
∅, {a}, {a, b},

{a, c}, {a, b, c}
}
. The inclusion f induces the lattice homomorphism Gf : G(X) → G(Y ). We

claim that Gf(F⊥) 6= Gf(F)⊥ where F =
{
{a}

}
is the unique element of G(X). Observe

that
Gf(F⊥) = Gf(F) = f(F) =

{
{a, b, c}, {b, c}

}
while

Gf(F)⊥ =
{
{a, b, c}, {b, c}

}⊥
=

{
{a, b, c}, {b, c}, {b}, {c}

}
6= Gf(F⊥).

The continuity of the induced map Gf is a delicate question.

Proposition 20. A function f : X → Y between T1-spaces is continuous provided the
function Gf : G(X) → G(Y ) is continuous.
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Proof. Using the embedding iX : X → G(X), iX : x 7→ ↑x, identify X with a subspace of
G(X). By analogy, identify Y with the subspace iY (Y ) of exp(Y ). For every x ∈ X consider
the ultrafilters ↑x = {F ∈ exp(X) : x ∈ F} and ↑f(x) = {F ∈ exp(Y ) : f(x) ∈ F}. It
follows from the definition of the map Gf that Gf(↑x) = ↑f(x). This can be written as
iY ◦ f = Gf ◦ iX . Since the maps iX , iY are embeddings, the continuity of Gf implies the
continuity of the map f .

For normal spaces Y the previous proposition can be reversed.

Proposition 21. If f : X → Y is a continuous function from a topological space X to a
T4-space Y , then the function Gf : G(X) → G(Y ) is continuous.

Proof. It suffices to check that for every open set U ⊂ Y the preimages Gf−1(U+) and
Gf−1(U−) are open in G(X). Fix any inclusion hyperspace F ∈ Gf−1(U+) and let E =
Gf(F). Since E ∈ U+, there is a set E ∈ E with f(F ) ⊂ E ⊂ U for some F ∈ F . Since
Y is a T4-space, we can find an open subset W ⊂ Y such that E ⊂ W ⊂ W ⊂ U . Then
f−1(W )+ is a neighborhood of F in G(X) such that Gf(F ′) ∈ U+ for every F ′ ∈ f−1(W )+.
This witnesses that the set Gf−1(U+) is open in G(X).

To show that Gf−1(U−) is open in G(X), fix any inclusion hyperspace F ∈ Gf−1(U−)
and let E = Gf(F). Since X \ U /∈ E , there is a neighborhood W ⊂ Y of X \ U containing
no closed set E ∈ E , which means that E∩ (Y \W ) 6= ∅ for all E ∈ E . Since Y is a T4-space,
there is an open set V ⊂ Y such that Y \ W ⊂ V ⊂ V ⊂ U . Therefore, E ∈ V −. One
can easily check that F ∈ f−1(V )− and f−1(V )− is an open neighborhood of F lying in
Gf−1(U−) and witnessing that Gf−1(U−) is an open set in G(X).

The following simple example shows that, in general, the continuity of Gf does not follow
from the continuity of f .

Example 5. Consider the identity inclusion f : X → Y of the connected two-point space
X = {a, b} with the topology τX = {∅, {a}, {a, b}

}
into the connected three-point space

Y = {a, b, c} endowed with the topology

τY =
{
∅, {a}, {a, b}, {a, c}, {a, b, c}

}
.

We claim that the embedding f induces a discontinuous function Gf : G(X) → G(Y ).
Observe that the space G(X) consists of two inclusion hyperspaces: A =

{
{a, b}

}
and

B =
{
{b}, {a, b}

}
. Writing down their images in G(Y ), we obtain:

Gf(A) =
{
{b, c}, {a, b, c}} and Gf(B) =

{
{b}, {b, c}, {a, b, c}

}
.

Observe that the open subset {a, b}+ of G(Y ) contains the inclusion hyperspace Gf(B)
but not Gf(A). Assuming the continuity of the function Gf , we would conclude that U =
Gf−1({a, b}+) = {B} is an open set in G(X). But this is not true because the unique
non-trivial open set in G(X) is {a}− = {A}.

Next, we study the natural question if the induced maps between spaces of incluion
hyperpsaces preserve the composition of maps.

Proposition 22. Let f : X → Y and g : Y → Z be two continuous maps between
topological spaces. For any inclusion hyperspace F ∈ G(X) we get
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1. G(g ◦ f)(F) ⊂ (Gg ◦Gf)(F));

2. G(g ◦ f)(F) = (Gg ◦Gf)(F) provided Z is a T4-space.

Proof. 1. The first item will follow from the closedness of (Gg ◦ Gf)(F) = Gg(Gf(F)) as
soon as we check that g ◦ f(F) ⊂ Gg(Gf(F)). Take any closed subset A ∈ g ◦ f(F). Then
g−1(A) ∈ f(F) ⊂ f(F) = Gf(F) and hence A ∈ g(Gf(F)) ⊂ g(Gf(F)) = Gg(Gf(F)).

2. Assuming that Z is a T4-space, we shall prove that (Gg ◦ Gf)(F) ⊂ G(g ◦ f)(F).
Since (Gg ◦ Gf)(F) = g(Gf(F)), it suffices to check that g(Gf(F)) ⊂ G(g ◦ f)(F). Take
any closed set A ∈ g(Gf(F)). Assuming that A /∈ G(g ◦ f)(F) = g ◦ f(F) we may find an
open neighborhood O(A) ⊂ Z of A containing no set from the family g ◦ f(F). Since Z is
a T4-space, the open neighborhood O(A) contains the closure of another open neighborhood
O1(A) of A in Z. For every F ∈ F the closure g(f(F )) belongs to g ◦f(F) and intersects the
closed set Z \O(A) by the choice of O(A). Then g(f(F )) intersects the closed neighborhood
B = Z \O1(A) of Z \O(A). Consequently, g−1(B) meets each set f(F ), F ∈ F . This implies
that g−1(B) ∈ f(F)⊥. Since g−1(A) ∈ Gf(F) = f(F)⊥⊥, we conclude that g−1(A) meets
g−1(B) which is a contradiction (because A ∩B = ∅).

The following example shows that the last item of Proposition 22 is not true without the
T4-assumption.

Example 6. Let X = {a} be a singleton and Y = Z = {a, b, c} be a connected three-point
space endowed with the topology

τ =
{
∅, {a}, {a, b}, {a, c}, {a, b, c}

}
.

Let f : X → Y , f : a 7→ a, be the identity inclusion and g : Y → Z be the map defined by
g(a) = a and g(b) = g(c) = b. Let F =

{
{a}

}
be the unique inclusion hyperspace in G(X).

It is easy to see that
G(g ◦ f)(F) =

{
{b, c}, {a, b, c}

}
,

Gf(F) =
{
{b, c}, {a, b, c}

}
,

Gg(Gf(F)) =
{
{b}, {b, c}, {a, b, c}

}
and hence G(g ◦ f)(F) 6= Gg(Gf(F)).

For continuous maps into T4-spaces the induced maps preserve some important subspaces
of the spaces of inclusion hyperspaces.

Proposition 23. Let f : X → Y be a continuous map from a topological space X to a
T4-space Y . Then

1. Gf(Nk(X)) ⊂ Nk(Y ) for every k ≥ 2;

2. Gf(N<ω(X) ⊂ N<ω(Y );

3. Gf(λ2(X)) ⊂ λ2(Y );

4. Gf(Fil(X)) ⊂ Fil(Y ).

Proof. 1. Fix any k-linked inclusion hyperspace F ∈ Nk(X). Then the family f(F) ⊂ exp(Y )
is k-linked as well. It remains to prove that its closure f(F) = Gf(F) is k-linked. Assuming
the converse, we can find k sets A1, . . . , Ak ∈ f(F) with empty intersection A1 ∩ · · · ∩ Ak.
Repeating the argument of the proof of Proposition 13, we may enlarge each set Ai to an
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open set Ui ⊂ Y so that still U1 ∩ · · · ∩ Uk = ∅. For every i ≤ k the set Ai ∈ f(F)
and consequently, the open neighborhood U+

i of Ai has non-empty intersection with the set
f(F). This allows us to find a closed subset Bi ∈ f(F) ∩ U+

i . Since Bi ⊂ Ui for all i ≤ k,
the intersection B1 ∩ · · · ∩Bk is empty, contradicting to the fact that f(F) is k-linked.

2. The second item follows immediately from the first one.
3. Assume that F ∈ λ2(X) is a maximal linked inclusion hyperspace. Since F⊥ = F ,

we may apply Proposition 19(3) to conclude that Gf(F)⊥ = Gf(F⊥) = Gf(F). The latter
equality witnesses that Gf(F) is a maximal linked inlcusion hyperpsace on Y .

4. Take any filter F ∈ Fil(X) and consider its image Gf(F). Assuming that Gf(F) /∈
Fil(Y ), we may find two sets A1, A2 ∈ Gf(F) with A1 ∩ A2 /∈ Gf(F). Next, find an open
neighborhood U ⊂ Y of A1 ∩ A2 such that U contains no set from Gf(F). Repeating the
proof of Proposition 12 we can use the T4-property of Y to find open neighborhoods U1 and
U2 of the sets A1, A2 such that U1 ∩ U2 ⊂ U . Those neighborhoods induce neighborhoods
U+

1 and U+
2 of A1, A2 in G(Y ) intersecting the set f(F). So we can find a closed set Bi ∈

U+
i ∩ f(F) for i = 1, 2. The filter F contains the preimages f−1(B1) and f−1(B2) and

conseuqntlyconsequently, contains their intersection f−1(B1) ∩ f−1(B2) = f−1(B1 ∩ B2),
which means that B1∩B2 ∈ f(F). Since B1∩B2 ⊂ U1∩U2 ⊂ U we get a contradiction with
the choice of the set U as a neighborhood of A1∩A2 containing no set from f(F) ⊃ f(F).

Next, we search for conditions guaranteeing that the map Gf is injective. We define an
injective continuous map f : X → Y between two topological spaces to be a C∗-embedding
if for any closed disjoint sets A, B ⊂ X their images f(A) and f(B) have disjoint closures
in Y .

Proposition 24. If f : X → Y is a C∗-embedding of a topological space X into a topological
space Y , then the map Gf : G(X) → G(Y ) is injective.

Proof. Fix two distinct inclusion hyperspaces F , E ∈ G(X). Then either F 6⊂ E or E 6⊂ F .
Without loss of generality, F 6⊂ E , which means that F /∈ E for some F ∈ F and there
is a neighborhood O(F ) ⊂ X of F containing no set E ∈ E . Since f is a C∗-embedding,
the sets A = clY (f(F )) and B = clY (f(X \ O(F ))) are disjoint in Y . It follows from the
definition of Gf(F) that A ∈ Gf(F). On the other hand, A /∈ Gf(E) because A has the
neighborhood Y \ B containing no set f(E), E ∈ E (assuming conversely that f(E) ⊂
Y \B ⊂ Y \f(X \O(F )) we would get E ⊂ f−1(Y \f(X \O(F ))) = O(F ) which contradicts
the choice of O(F )).

Proposition 25. If f : X → Y is a map between T1-spaces with dense image f(X) in Y ,
then the image Gf(G(X)) is dense in G(Y ).

Proof. Repeating the proof of Proposition 7 we can show that Gf(G•(X)) is dense in G(Y )
and this implies the density of Gf(GX) in G(Y ).

Corollary 4. If f : X → Y is a C∗-embedding of a space X to a normal space Y with dense
image f(X) in Y , then the induced map Gf : G(X) → G(Y ) is a homeomorphism.

Proof. By Theorem 2 and Corollary 1, the spaces G(X) and G(Y ) are Hausdorff compacta.
Now Propositions 21�25 imply that map Gf : G(X) → G(Y ) is continuous, injective, and
has dense image. Finally, the compactness of G(X) implies that Gf is a homeomorphism.
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Applying this corollary to the embedding of a normal space X into its Stone-�Cech
compactification βX we conclude that the space G(X) is canonically homeomorphic to
G(βX). This observation is due to E.Moiseev [11].

Corollary 5. Let X be a normal space and f : X → βX be the embedding of X into the
Stone- �Cech compactification of X. Then the map Gf : G(X) → G(βX) is a homeomorphism.

A similar statement is true for some subspaces of G(X).

Corollary 6. Let X be a normal space and f : X → βX be the embedding of X into the
Stone- �Cech compactification of X. Then the restrictions

Gf |Fil(X) : Fil(X) → Fil(βX), Gf |N<ω(X) : N<ω(X) → N<ω(βX),

Gf |λ(X) : λ(X) → λ(βX), Gf |Nk(X) : Nk(X) → Nk(βX), k ≥ 2,

are homeomorphisms.

Proof. We shall present the detail proofs for the spaces Nk(X) and λ(X). For other spaces
the proofs are analogous.

Since Gf : G(X) → G(βX) is a homeomorphism, to prove that the restriction Gf |Nk(X) :
Nk(X) → Nk(βX) is a homeomorphism, it suffices to check that Gf(Nk(X)) = Nk(βX).
By Proposition 23, Gf(Nk(X)) ⊂ Nk(βX), and by Proposition 13, the spaces Nk(X) and
Nk(βX) are closed in the compact Hausdorff spaces G(X) and G(βX).

Repeating the proof of Proposition 7 we can show that Gf(N•
k (X)) is dense in Nk(βX)

and this implies the density of Gf(Nk(X)) in Nk(βX). This fact combined with the compact-
ness of Gf(Nk(X)) implies the desired equality Gf(Nk(X)) = Nk(βX).

To see that Gf |λ(X) : λ(X) → λ(βX) is a homeomorphism, observe that λ(X) =
N2(X) ∩ N2(X)⊥ where N2(X)⊥ = {F⊥ : F ∈ N2(X)}. By Proposition 19(3), Gf(F⊥) =
Gf(F)⊥ for every F ∈ G(X). Thus we can write Gf(λ(X)) = Gf(N2(X) ∩ N2(X)⊥) =
Gf(N2(X)) ∩Gf(N2(X)⊥) = Gf(N2(X)) ∩Gf(N2(X))⊥ = N2(βX) ∩N2(βX)⊥ = λ(βX).

The structure of G(X) over finite spaces. In this section we present some information of
the space G(X) and its subspaces for a finite space X. In this case the space G(X) is finite.
The problem of calculation the cardinality G(n) of G(X) for a space X of cardinality n is not
trivial and is tightly connected with the classical (and still unsolved) problem of Dedekind
[3] who suggested to determine the number M(n) of all monotone Boolean functions of n
Boolean variable. The function M(n) growths very quickly. Its exact values are known only
for n ≤ 8 and are given in the following table taken from On-Line Encyclopedia of
Integer Sequences 1.

n |M(n)|
1 3
2 6
3 20
4 168
5 7581
6 7828354
7 2414682040998
8 56130437228687557907788

www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=000372
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Observe that for each inclusion hyperspace F ∈ G(X) the characteristic function χF :
P(X) → {0, 1} of F is monotone with respect to the inclusion relation on the power-set
P(X) of X. Moreover, χF(∅) = 0 and χF (X) = 1. Conversely, each monotone function
f : P(X) → {0, 1} with f(∅) = 0 and f(X) = 1 determines an inclusion hyperspace f−1(1).
This observation implies that for a finite set X of size n the size G(n) of the set G(X) equals
M(n)− 2. In such a way we obtain the values of G(n) for n ≤ 8. The cardinalities of other
subsets of G(X) for |X| ≤ 6 are given in the following table:

n G(n) N2(n) λ2(n) N3(n) λ3(n) N4(n) N<ω(n) Fil(n)
1 1 1 1 1 1 1 1 1
2 4 3 2 3 2 3 3 3
3 18 11 4 10 3 10 10 7
4 166 80 12 54 5 53 53 15
5 7579 2645 81 762 20 687 686 31
6 7828352 ? 2646 ? ? ? 43285 63

Some of entries of the table were found by computer calculations. On the other hand, for
Fil(n), N<ω(n), and λ2(n) there are recurrent formulas.

Proposition 26. For any n ∈ N the following formulas hold:

1. Fil(n) = 2n − 1;

2. N<ω(n) =
∑n

k=1 Ck
n(1 + G(n− k)−N<ω(n− k));

3. Nk(n) = N<ω(n) for k ≥ n;

4. Nn−1(n) = 1 + N<ω(n).

5. λ2(n) = 1 + N2(n− 1).

Proof. Let X be a set of cardinality |X| = n.

1. Since for every filter F on X the intersection ∩F is a non-empty subset generating F ,
the number of filters equals the number of non-empty subsets of X, which is equal to 2n−1.

2. It follows that for each centered inclusion hyperspace F on X the intersection ∩F
is not empty. Fix any non-empty subset M = {x1, . . . , xk} of X and look at the centered
families F with ∩F = M . The largest among them is generated by M . All the other are of
the form F = {M ∪A : A ∈ A} where A is an inclusion hyperspace on X \M with ∩A = ∅.
The number of such inclusion hyperspaces A equals G(n−k)−N<ω(n−k). Thus the number
of all inclusion hyperspaces F with ∩F = M is equal to 1 + G(n− k)−N<ω(n− k). Since
the number of k-element subsets of X equals Ck

n, we conclude that N<ω(n) =
∑n

k=1 Ck
n(1 +

G(n− k)−N<ω(n− k)).
3. Assume that for some k ≥ n there exists a k-linked inclusion hyperspace F on set

X, which is not (k + 1)-linked. So, there exist F1, F2, . . . Fk+1 ∈ F with empty intersection
F1 ∩ F2 ∩ . . . ∩ Fk+1. Consequently, X = (X \ F1) ∪ . . . ∪ (X \ Fk+1). Since |X| = n, X =⋃

i∈I X \ Fi for some set I ⊂ {1, . . . , k + 1} of size |I| ≤ n. Then
⋂

i∈I Fi = ∅ contradicting
the k-linkedness of F . Thus each n-linked inclusion hyperspace on X is centered which yields
Nn(n) = N<ω(n).

4. The equality Nn−1(n) = 1 + Nn(n) = 1 + N<ω(n) will follow as soon as we show
that each (n− 1)-linked not n-linked inclusion hyperspace F on X is equal to the inclusion
hyperspace L = {L ⊂ X : |L| ≥ n− 1}. First we check that F ⊂ L. Assuming that F 6⊂ L,
find a subset F ∈ F with |F | ≤ n− 2. Then the inclusion hyperspace F ′ = {F ∩A : A ∈ A}
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on F is (n−2)-linked and hence centered by the preceding item. Consequently, the inclusion
hyperspace F is centered too, contradicting the fact that F is not n-linked. Therefore F ⊂ L,
which means that |F | ≥ n− 1 for all F ∈ F .

Being not n-linked, the inclusion hyperspace F contains subsets F1, F2, . . . Fn ∈ F with
empty intersection F1∩F2∩ . . .∩Fn. It follows from |X \Fi| ≤ 1, i ≤ n, and X = (X \F1)∪
. . . ∪ (X \ Fn) that {X \ Fi : i ≤ n} = {A ⊂ X : |A| = 1}. Then L ⊂ {X,Fi : i ≤ n} ⊂ F
and hence F = L.

5. Fix any point x ∈ X and take any maximal linked inclusion hyperspace L. If L is
not an ultrafilter generated by x, then the family L0 = {A ∈ L : A ⊂ X \ {x}} is a linked
inclusion hyperspace on X \ {x}. The maximality of L implies that L = L0 ∪ {A ⊂ X : x ∈
A, A \ {x} ∈ L⊥0 }. Consequently, the number of maximal linked inclusion hyperspaces is
1 plus the number of linked inclusion hyperspaces on X \ {x} which can be written as
λ(n) = 1 + N2(n− 1).
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