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Some convolution-type identities involving polygonal numbers and Horadam numbers are de-

rived. The method of proof is to properly relate the generating functions to each other. Additionally,

we prove a general non-convolutional result involving these number families and discuss some of

the consequences.
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1 Introduction and motivation

The nth polygonal (or figurate) number of order (or rank) r is given by [4]

P
(r)
n =

(r − 2)n2 − (r − 4)n

2
= n + (r − 2)

(

n

2

)

, n ≥ 0, r ≥ 2.

The order r can be interpreted as the number of sides of a regular polygon represented as dots

in the plane. We have P
(r)
0 = 0, P

(r)
1 = 1, and P

(r)
2 = r for all r ≥ 2. Many of the sequences

from the polygonal family are indexed in the The On-Line Encyclopedia of Integer Sequences

(OEIS) [17], the first few terms of which are given in the table below.

r Formula Name 0 1 2 3 4 5 6 7 8 9 10
OEIS

number

3 n(n+1)
2 triangular 0 1 3 6 10 15 21 28 36 45 55 A000217

4 n2 square 0 1 4 9 16 25 36 49 64 81 100 A000290

5 n(3n−1)
2 pentagonal 0 1 5 12 22 35 51 70 92 117 145 A000326

6 n(2n − 1) hexagonal 0 1 6 15 28 45 66 91 120 153 190 A000384

7 n(5n−2)
2 heptogonal 0 1 7 18 34 55 81 112 148 189 235 A000566
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The triangular numbers P
(3)
n will be denoted by Tn. One immediately observes the follow-

ing relations n + 2Tn−1 = P
(4)
n , n + 3Tn−1 = P

(5)
n , and in general P

(r)
n = n + (r − 2)Tn−1. The

last equation shows that every polygonal number can be expressed in terms of a triangular

number. Also, for positive integers n and m, we have the identity

P
(r)
n+m+1 = n + m + 1 + (r − 2)nm + (r − 2)(Tn + Tm),

where we have used the identity Tn+m = Tn + Tm + nm.

Polygonal numbers satisfy the following recurrence relation [4]:

P
(r)
n+2 = 2P

(r)
n+1 − P

(r)
n + r − 2. (1)

In [3] some summation formulas for polygonal numbers are derived. For some other inter-

esting properties of P
(r)
n we refer the reader to [2, 9, 11, 15, 18].

Recall that the general Horadam sequence {wn} = {wn(a, b; p, q)} is a second order linear

recurrence

wn = pwn−1 − qwn−2, n ≥ 2,

with nonzero constant p, q and initial values w0 = a, w1 = b. The sequence {wn} can be

extended to negative subscripts according to

w−n = −
1

q
(pw−n+1 − w−n+2), n ≥ 1.

This important sequence is named after Alwyn Horadam, who studied their properties in

the mid-sixties of the last century [12–14]. The Horadam sequence became a popular research

object due to its obvious connections to many famous number sequences, for instance, the Fi-

bonacci sequence Fn = wn(0, 1; 1,−1), the sequence of Lucas numbers Ln = wn(2, 1; 1,−1), the

Pell sequence Pn = wn(0, 1; 2,−1), the Jacobsthal sequence Jn = wn(0, 1; 1,−2), the Mersenne

sequence Mn = wn(0, 1; 3, 2).

The Binet formula of {wn} in the non-degenerated case, p2 − 4q > 0, is

wn = Aαn + Bβn, (2)

where

A =
b − aβ

α − β
, B =

aα − b

α − β
, α =

p +
√

p2 − 4q

2
, β =

p −
√

p2 − 4q

2
;

so that α + β = p, α − β =
√

p2 − 4q, and αβ = q.

Two special cases of the Horadam sequence are the Lucas sequences of the first kind,

{un(p, q)} = {wn(0, 1; p, q)}, and of the second kind, {vn(p, q)} = {wn(2, p; p, q)}. It follows

from (2) that

un =
αn − βn

α − β
, vn = αn + βn .

A.F. Horadam [12] has shown that

w−n =
(ap − b)un − aqun−1

(bun − aqun−1)qn
wn , u−n = −

un

qn
, v−n =

vn

qn
.

Now, we prove a result conjugate to (2), for later use.

Lemma 1. For any integer n,

Aαn − Bβn =
wn+1 − qwn−1
√

p2 − 4q
. (3)
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Proof. Let Q = Aαn − Bβn. Then

αQ = Aαn+1 − Bqβn−1 , βQ = Aqαn−1 − Bβn+1 .

Subtraction of the second of the above formulas from the first one, taking (2) into consideration

gives (3).

The goal of this article is to derive convolution-type identities involving polygonal num-

bers and Horadam numbers. For the most part, the method of proof is to properly relate the

generating functions to each other. This idea has been applied successfully to similar problems

in [1, 5–8]. Additionally, we prove a general non-convolutional result involving these number

families and discuss some of the consequences.

2 Convolutions: the linear case

In this section, we deal with sums involving polygonal numbers and Horadam numbers.

First we give the partial sum of the polygonal numbers, required in the sequel.

Lemma 2. Let n and r be integers such that n ≥ 0 and r ≥ 2. Then

n

∑
k=0

P
(r)
k zk =

z − zn+1
(

P
(r)
n+1 − zP

(r)
n

)

(1 − z)2
+ (r − 2)

z2 (1 − zn)

(1 − z)3
. (4)

Proof. Multiply through the recurrence relation (see (1))

P
(r)
k+2 = 2P

(r)
k+1 − P

(r)
k + r − 2

by zk and sum each term over k to obtain

n

∑
k=0

P
(r)
k+2zk = 2

n

∑
k=0

P
(r)
k+1zk −

n

∑
k=0

P
(r)
k zk + (r − 2)

1 − zn+1

1 − z
, (5)

in which, by shifting the index, we have

n

∑
k=0

P
(r)
k+2zk =

1

z2

n

∑
k=0

P
(r)
k zk −

1

z
+ zn−1P

(r)
n+1 + znP

(r)
n+2 and

n

∑
k=0

P
(r)
k+1zk =

1

z

n

∑
k=0

P
(r)
k zk + znP

(r)
n+1 .

Using the above formulas in (5) gives the stated identity.

Theorem 1. For each n ≥ 0 and x ∈ C, we have
n

∑
k=0

(

(3 − px)P
(r)
n+2−k + (qx2 − 3)P

(r)
n+1−k + P

(r)
n−k

)

xkwk

= aP
(r)
n+3 + (b − ap)xP

(r)
n+2 − xn+2wn+2 + (px − r)xn+1wn+1.

Proof. It is known from [13, 16], that the generating function of the Horadam sequence is

W1(z) =
∞

∑
n=0

wnzn =
a + (b − ap)z

1 − pz + qz2
. (6)

Dropping terms proportional to zn in (4), in the limit as n approaches infinity, we find the

generating function of polygonal numbers (see also [4]) as follows

G(z) =
∞

∑
n=0

P
(r)
n zn =

(r − 3)z2 + z

(1 − z)3
.
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From (6) we obtain

a + (b − ap)xz

W1(xz)
= 1 − pxz + qx2z2.

Hence,
a + (b − ap)xz

W1(xz)
+ (px − 3)z − (qx2 − 3)z2 − z3 = (1 − z)3.

This gives

a + (b − ap)xz +
(

(px − 3)z − (qx2 − 3)z2 − z3
)

W1(xz)

W1(xz)
=

(r − 3)z2 + z

G(z)

or, equivalently,

aG(z) + (b − ap)xzG(z) − zW1(xz)− (r − 3)z2W1(xz)

= (3 − px)zW1(xz)G(z) + (qx2 − 3)z2W1(xz)G(z) + z3W1(xz)G(z).

Now, it is easy (but lengthy) to expand both sides of the equation in power series in z using

Cauchy’s rule for the multiplication of two power series

∞

∑
n=0

anzn ·
∞

∑
n=0

bnzn =
∞

∑
n=0

n

∑
k=0

akbn−k zn.

The identity follows upon comparing the coefficients of zn and straightforwardly manipu-

lating the relations. We leave the details to the interested reader.

Corollary 1. Let Fn be the n-th Fibonacci number. Then the following identity holds true

n

∑
k=1

(

(3 − x)P
(r)
n+2−k − (3 + x2)P

(r)
n+1−k + P

(r)
n−k

)

Fkxk = xP
(r)
n+2− xn+2Fn+2 + (x − r)Fn+1xn+1.

Setting x = ±1 and r = 2, simplifying and using some well-known facts about Fibonacci

numbers we can rediscover the following summation identities:

n

∑
k=1

kFn−k = Fn+3 − n − 2,

n

∑
k=1

(−1)kkFn−k = 2Fn − Ln − (−1)n(n − 2).

Similarly, with x = ±1 and r = 3 we can derive the following triangular-Fibonacci formulas

n

∑
k=1

TkFn−k = Fn+5 − Tn+2 − 2,

n

∑
k=1

(−1)kTkFn−k = 4Fn−1 − Fn+2 − (−1)n(Tn+2 − 4n).

Still another example is

n

∑
k=1

k2Fn−k = 5Fn+2 + 3Fn+1 − (n + 2)2 − 4.



Special formulas involving polygonal numbers and Horadam numbers 211

3 Convolutions: the quadratic case

In this section, using the same idea, we prove a convolution-type identity with squared

Horadam numbers and polygonal numbers. To do so, we need the generating function W2(z)

of the sequence {w2
n}n≥0. It is known from [13, 16], that

W2(z) =
∞

∑
k=0

w2
kzk =

A + Bz + Cz2

1 − Dz + Ez2 − Fz3

with A = a2, B = b2 − a2(p2 − q), C = q(b − ap)2, D = p2 − q, E = q(p2 − q), F = q3.

This yields to the next theorem.

Theorem 2. For each n ≥ 0 and x ∈ C, we have

n

∑
k=0

xkw2
k

(

(3 − Dx)P
(r)
n+2−k + (Ex2 − 3)P

(r)
n+1−k + (1 − Fx3)P

(r)
n−k

)

= AP
(r)
n+3 + BxP

(r)
n+2 + Cx2P

(r)
n+1 − xn+2w2

n+2 + (Dx − r)xn+1w2
n+1.

Proof. Relating the generating functions as in the previous proof results in the following func-

tional equation

A + Bz + Cz2 +
(

(Dx − 3)z − (Ex2 − 3)z2 + (Fx3 − 1)z3
)

W2(xz)

W2(xz)
=

(r − 3)z2 + z

G(z)

or, equivalently,

AG(z) + BxzG(z) + Cx2z2G(z)− zW2(xz)− (r − 3)z2W2(xz)

= (3 − Dx)zW2(xz)G(z) + (Ex2 − 3)z2W2(xz)G(z) + (1 − Fx3)z3W2(xz)G(z).

The rest of the proof is as before and is an application of Cauchy’s multiplication rule.

Corollary 2. If Fn is the n-th Fibonacci number, then we have for each n ≥ 0 and x ∈ C :

n

∑
k=1

xkF2
k

(

(3 − 2x)P
(r)
n+2−k − (3 + 2x2)P

(r)
n+1−k + (1 + x3)P

(r)
n−k

)

= xP
(r)
n+2 − x2P

(r)
n+1 − xn+2F2

n+2 + (2x − r)xn+1F2
n+1.

We proceed with some summation formulas, which can be derived from the corollary for

different values of r:
n

∑
k=1

kF2
n−k = F2

n −
1 − (−1)n

2
,

n

∑
k=1

k2F2
n−k = 2F2

n+1 − 3F2
n − n − (−1)n2. (7)

n

∑
k=1

TkF2
n−k = Fn−1Fn+2 −

2n + 1

4
− (−1)n 3

4
. (8)

The Lucas version of (7) and (8) are

n

∑
k=1

kL2
n−k = L2n +

4n − 3 − (−1)n

2
,

n

∑
k=1

k2L2
n−k = L2n+1 + L2n−1 + 2n2 − 3n,

n

∑
k=1

TkL2
n−k = L2n+1 +

4n2 − 2n − 3 − (−1)n

4
.
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4 A non-convolutional result

Lemma 3. For integers s and t, let the function f (z) be defined by f (z) =
zs

(1 − z)t
. Let m be

an integer. Then

f (αmz) + f (βmz) =

zs
t

∑
k=0

(−1)kqmk(t
k)vm(s−k)z

k

(1 − vmz + qmz2)t
,

f (αmz)− f (βmz)
√

p2 − 4q
=

zs
t

∑
k=0

(−1)kqmk(t
k)um(s−k)z

k

(1 − vmz + qmz2)t
.

Proof. Straightforward algebraic manipulation, utilizing the binomial theorem and the basic

properties of the Lucas sequences.

Lemma 4. Let h(z) have the representation h(z) =
n

∑
k=c

YkzXk for certain sequences {Xk}, {Yk}

and integers c and n. Let m and i be any integers. Then

n

∑
k=c

wmXk+iYkzXk =
wi

2

(

h(αmz) + h(βmz)
)

+
wi+1 − qwi−1

2
√

p2 − 4q

(

h(αmz)− h(βmz)
)

. (9)

Proof. Since

Aαih(αmz) =
n

∑
k=c

YkAαmXk+izXk , Bβih(βmz) =
n

∑
k=c

YkBβmXk+izXk ,

we have, using the Binet formula (2),

n

∑
k=c

YkwmXk+iz
Xk = Aαih(αmz) + Bβih(βmz) . (10)

Denote the right-hand side of (10) by R. Then

R = (wi − Bβi)h(αmz) + Bβih(βmz) = wih(α
mz)− Bβi

(

h(αmz)− h(βmz)
)

. (11)

On the other hand,

R = Aαih(αmz) + (wi − Aαi)h(βmz) = wih(βmz) + Aαi
(

h(αmz)− h(βmz)
)

. (12)

Addition of (11) and (12) produces

2R = wi

(

h(αmz) + h(βmz)
)

+
(

Aαi − Bβi
)

(

h(αmz)− h(βmz)
)

= wi

(

h(αmz) + h(βmz)
)

+
wi+1 − qwi−1
√

p2 − 4q

(

h(αmz)− h(βmz)
)

, by (3) .

Thus,

R =
wi

2

(

h(αmz) + h(βmz)
)

+
wi+1 − qwi−1

2
√

p2 − 4q

(

h(αmz)− h(βmz)
)

,

and using this in (10), we obtain the identity of the theorem.
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Theorem 3. Let m, i be any integers and dm(x) = 1 − vmx + qmx2. Let n and r be integers such

that n ≥ 0 and r ≥ 2. Then

n

∑
k=0

wmk+iP
(r)
k xk =

wi

2

(

xσ1({vm})− P
(r)
n+1xn+1σ2({vm}) + P

(r)
n xn+2σ3({vm})

d2
m(x)

+
(r − 2)x2σ4({vm})− (r − 2)xn+2σ5({vm})

d3
m(x)

)

+
(wi+1 − qwi−1)

2

(

xσ1({um})− P
(r)
n+1xn+1σ2({um}) + P

(r)
n xn+2σ3({um})

d2
m(x)

+
(r − 2)x2σ4({um})

d3
m(x)

−
(r − 2)xn+2σ5({um})

d3
m(x)

)

,

where

σ1({sm}) = sm − 2qms0x + qmsmx2, σ2({sm}) = sm(n+1) − 2qmsmnx + q2msm(n−1)x
2,

σ3({sm}) = sm(n+2) − 2qmsm(n+1)x + q2msmnx2,

σ4({sm}) = s2m − 3qmsmx + 3q2ms0x2 − q3ms−mx3,

σ5({sm}) = sm(n+2) − 3qmsm(n+1)x + 3q2msmnx2 − q3msm(n−1)x
3.

Proof. Write the partial sum of the polygonal numbers (see (4)) as

n

∑
k=0

P
(r)
k xk = h(x) ≡ f1(x)− P

(r)
n+1 f2(x) + P

(r)
n f3(x) + (r − 2) f4(x)− (r − 2) f5(x) ,

where f1(x) = x
(1−x)2 , f2(x) = − xn+1

(1−x)2 , f3(x) = xn+2

(1−x)2 , f4(x) = x2

(1−x)3 , and f5(x) = − xn+2

(1−x)3 .

The identity now follows from (9), with Xk = k and Yk = P
(r)
k , upon application of Lemma 3

to each fk(x).

An interesting special case of Theorem 3 that concerns the Lucas sequences of the first kind

is the following assertion.

Corollary 3. Let m be any integer. Let n and r be integers such that n ≥ 0, r ≥ 2. Then

n

∑
k=0

umkP
(r)
k xk =

x(um − qmumx2)

(1 − vmx + qmx2)2
−

P
(r)
n+1xn+1(um(n+1) − 2qmumnx + q2mum(n−1)x

2)

(1 − vmx + qmx2)2

+
P
(r)
n xn+2(um(n+2) − 2qmum(n+1)x + q2mumnx2)

(1 − vmx + qmx2)2

+
(r − 2)x2(u2m − 3qmumx + q2mumx3)

(1 − vmx + qmx2)3

−
(r − 2)xn+2(um(n+2) − 3qmum(n+1)x + 3q2mumnx2 − q3mum(n−1)x

3)

(1 − vmx + qmx2)3
.

In particular, at r = 2 and m = 1, we have

n

∑
k=1

kukxk =
x(1 − qx2)

(1 − px + qx2)2
−

(n + 1)xn+1(un+1 − 2qunx + q2un−1x2)

(1 − px + qx2)2

+
nxn+2(un+2 − 2qun+1x + q2unx2)

(1 − px + qx2)2
,
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giving the generating function of {nun}n≥0 as

∞

∑
k=1

kukxk =
x(1 − qx2)

(1 − px + qx2)2
.

The Fibonacci version of Corollary 3 is obtained by setting m = 1, p = 1 and q = −1.

Corollary 4. Let n and r be integers such that n ≥ 0 and r ≥ 2. Then

n

∑
k=0

FkP
(r)
k xk =

x(1 + x2)

(1 − x − x2)2
−

P
(r)
n+1xn+1(Fn+1 + 2Fnx + Fn−1x2)

(1 − x − x2)2

+
P
(r)
n xn+2(Fn+2 + 2Fn+1x + Fnx2)

(1 − x − x2)2
+

(r − 2)x2(1 + 3x + x3)

(1 − x − x2)3

−
(r − 2)xn+2(Fn+2 + 3Fn+1x + 3Fnx2 + Fn−1x3)

(1 − x − x2)3
.

By dropping terms proportional to xn from the right hand side of Corollary 4, we find the

generating function of the product of Fibonacci numbers and polygonal numbers:

∞

∑
k=1

FkP
(r)
k xk =

x(1 + x2)

(1 − x − x2)2
+

(r − 2)x2(1 + 3x + x3)

(1 − x − x2)3
.

Setting x = 1 in Corollary 4 gives the partial sum of the product of Fibonacci numbers and

polygonal numbers:

n

∑
k=1

FkP
(r)
k = 12 − 5r − P

(r)
n+1Fn+3 + P

(r)
n Fn+4 + (r − 2)Fn+5 , (13)

while with x = −1 we obtain the alternating partial sum of the product of Fibonacci numbers

and polygonal numbers:

n

∑
k=1

(−1)kFkP
(r)
k = 4 − 3n + (−1)n

(

P
(r)
n+1Fn−3 + P

(r)
n Fn−2 − (r − 2)Fn−4

)

. (14)

The Pell versions of (13) and (14) are

n

∑
k=1

PkP
(r)
k = 2 −

3r

4
−

1

2

(

P
(r)
n+1Pn+1 − P

(r)
n Pn+2 −

r − 2

2
(Pn+1 + Pn+2)

)

,

n

∑
k=1

(−1)kPkP
(r)
k =

(−1)n

2

(

P
(r)
n+1Pn−1 + P

(r)
n Pn −

r − 2

2
(Pn − Pn−1)

)

−
r

4
.

5 Concluding comments

Variants of the above convolutional results including sums with only even and odd sub-

scripted Horadam numbers can also be derived using our approach. All that is needed are the

respective generating functions. The linear case is easy. In the quadratic case, these functions

have been derived in [1].

Lemma 5. The generating functions for squared odd (even) subscripted Horadam numbers

are given by

ω1(z) =
∞

∑
n=0

w2
2n+1zn =

A1 + B1z + C1z2

1 − D0z + E0z2 − F0z3
,
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ω2(z) =
∞

∑
n=0

w2
2nzn =

A2 + B2z + C2z2

1 − D0z + E0z2 − F0z3
,

where A1 = b2, B1 = q(a2 p2q − 2abp3 + 2abpq + 2b2 p2 − 2b2q), C1 = q4(ap − b)2, A2 = a2,

B2 = (aq − bp)2 − a2(p2 − q)(p2 − 3q), C2 = (ap2 − bp − aq)2q2, D0 = (p2 − q)(p2 − 3q),

E0 = q2(p2 − q)(p2 − 3q), F0 = q6.

These functions can be related to G(z) as shown in the main body of the text, producing

additional results of the same type.

Another natural question is, if the above results can be extended to an arbitrary power wk
n

with k ≥ 3. The answer is yes, at least in principle. A.F. Horadam himself derived a formula

for the generating functions for powers of {wn}n≥0 in 1965 [13]. Specifically, he showed that if

Wk(z) =
∞

∑
n=0

wk
nzn, k ≥ 1, then

Wk(z) =

(

b − aβ

α − β

)k k

∑
i=0

(

k

i

)(

aα − b

b − aβ

)i
(

1 − αk−iβiz
)−1

.

However, as was pointed out in [16], the algebraic complexity of Wk(z) increases very

quickly with k. Therefore, the general treatment with k ≥ 3 will become elaborate and is

not pursued further.

On a final note we wish to remark on the very general nature of Lemma 4. The lemma

suggests that any arbitrary function that has a power series representation gives rise to a

Horadam series identity. We give an illustration of Lemma 4, using the harmonic numbers.

The harmonic numbers are defined by Hn =
n

∑
k=1

1
k . These numbers find application in various

areas of number theory and computer science. A standard reference for their basic properties

is the book [10]. The generating function of the harmonic numbers is

h(z) =
∞

∑
k=1

Hkzk = −
ln(1 − z)

1 − z
.

Choosing Xk = k, Yk = Hk, c = 0, and n = ∞ in Lemma 4, we find, after some algebra, the

generating function of the product of harmonic numbers and Horadam numbers with indices

in arithmetic progression, namely,

(1 − vmx+qmx2)
∞

∑
k=0

wmk+iHkxk =
(vmx

2
− 1

) wi

2
ln(1 − vmx + qmx2)

+
umxwi

√

p2 − 4q

4
ln

(

1 − βmx

1 − αmx

)

−
wi+1 − qwi−1

2
√

p2 − 4q

(vmx

2
− 1

)

ln

(

1 − βmx

1 − αmx

)

−
wi+1 − qwi−1

4
umx ln(1 − vmx + qmx2) .
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Адегоке К., Фрончак Р., Гой Т. Деякi формули, якi пов’язують багатокутнi числа i числа Горадама

// Карпатськi матем. публ. — 2021. — Т.13, №1. — C. 207–216.

Встановленi деякi тотожностi типу згортки, що включають багатокутнi числа та числа Го-

радама. Основна iдея доведення полягає у використаннi деяких функцiональних спiввiдно-

шень, отриманих з використанням генератрис обох числових послiдовностей.

Ключовi слова i фрази: послiдовнiсть Горадама, багатокутнi числа, трикутнi числа, послiдов-

нiсть Фiбоначчi, генератриса, рекурентне вiдношення.


