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Abstract

The main object of the paper is to reveal connections between Chebyshev polynomi-
als of the first and second kinds and Fibonacci polynomials introduced by Catalan.
This is achieved by relating the respective (ordinary and exponential) generating
functions to each other. As a consequence, we also establish new combinatorial
identities for balancing polynomials and Fibonacci (Lucas) numbers.

1. Introduction

For any integer n ≥ 0, the Chebyshev polynomials {Tn(x)}n≥0 of the first kind are

defined by the second-order recurrence relation [14]

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x), (1)

while the Chebyshev polynomials {Un(x)}n≥0 of the second kind are defined by

U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x)− Un−1(x). (2)

If we denote

α(x) = x+
√
x2 − 1 and β(x) = x−

√
x2 − 1,

then we have

Tn(x) =
αn(x) + βn(x)

2
=

bn/2c∑
k=0

(
n

2k

)
(x2 − 1)kxn−2k,

1Statements and conclusions made in this paper by R. Frontczak are entirely those of the
author. They do not necessarily reflect the views of LBBW.
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Un(x) =
αn+1(x)− βn+1(x)

2
√
x2 − 1

=

bn/2c∑
k=0

(
n+ 1

2k + 1

)
(x2 − 1)kxn−2k.

Fibonacci polynomials are polynomials that can be defined by Fibonacci-like

recursion relations. They were studied in 1883 by E. Catalan and E. Jacobsthal.

For example, Catalan studied the polynomials Fn(x) defined by the recurrence

Fn(x) = xFn−1(x) + Fn−2(x), n ≥ 2,

with F0(x) = 0 and F1(x) = 1. A non-recursive expression for Fn(x) is

Fn(x) =
ρn(x)− σn(x)√

x2 + 4
=

bn−1
2 c∑

k=0

(
n− k − 1

k

)
xn−2k−1, n ≥ 0,

where

ρ(x) =
x+
√
x2 + 4

2
and σ(x) =

x−
√
x2 + 4

2
.

Chebyshev and Fibonacci polynomials play an important role in applied mathemat-

ics. They possess many interesting and unique properties. Excellent sources are the

textbooks [11, 14, 16], among others.

The most recent literature on Chebyshev and Fibonacci polynomials encom-

passes the following articles. Kilic et al. [9] computed various types of power sums

for Chebyshev polynomials and deduced new connections between Chebyshev poly-

nomials and Fibonacci numbers. Kim et al. [10] recently derived new expressions

for sums of finite products of Chebychev and Fibonacci polynomials. In [1], Abd-

Elhammed et al. established new connection formulas between Fibonacci polyno-

mials and Chebyshev polynomials. These formulas are expressed in terms of certain

values of hypergeometric functions. Li and Wenpeng [12], using the definitions and

properties of Chebyshev polynomials, studied the power sum problems involving

Fibonacci polynomials and Lucas polynomials and obtained some interesting di-

visibility properties. Li [13] studied relationships between Chebyshev polynomials,

Fibonacci polynomials, and their derivatives, and got the formula for derivatives of

Chebyshev polynomials being represented by Chebyshev polynomials and Fibonacci

polynomials. Finally, we mention the paper by Flórez, McAnally and Mukherjee

[3] where many identities for generalized Fibonacci polynomials are derived.

The purpose of this paper is to obtain some identities involving Chebyshev poly-

nomials of the first and second kinds and Fibonacci polynomials. We achieve this in

a conventional manner by relating the respective (ordinary and exponential) gener-

ating functions to each other, resulting in a range of interesting functional equations.

Our approach is in the spirit of [5, 6, 7]. Also, using simple connections between

Chebyshev polynomials and balancing polynomials we will be able to incorporate

the later polynomial class into our analysis. Some of the results of this paper were

announced without proofs in [8].
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2. Some Generating Functions

This section contains the generating functions that will be used later in this article.

We state the results without proofs as they can be derived without much efforts.

We recommend the article by Mező [15] for a comprehensive study of generating

functions for second-order recurrence sequences.

From (1) and (2) it can be shown that the ordinary generating functions for

Chebyshev polynomials Tn(x), Un(x) and their odd and even indexed companions

are given by

t(z, x) =
∑
n≥0

Tn(x)zn =
1− xz

1− 2xz + z2
, (3)

t1(z, x) =
∑
n≥0

T2n+1(x)zn =
x(1− z)

1− (4x2 − 2)z + z2
, (4)

t2(z, x) =
∑
n≥0

T2n(x)zn =
1− (2x2 − 1)z

1− (4x2 − 2)z + z2
, (5)

and

u(z, x) =
∑
n≥0

Un(x)zn =
1

1− 2xz + z2
, (6)

u1(z, x) =
∑
n≥0

U2n+1(x)zn =
2x

1− (4x2 − 2)z + z2
, (7)

u2(z, x) =
∑
n≥0

U2n(x)zn =
1 + z

1− (4x2 − 2)z + z2
. (8)

In addition, the corresponding exponential generating functions for these poly-

nomial sequences are given by

τ(z, x) =
∑
n≥0

Tn(x)
zn

n!
= exz cosh

(√
x2 − 1 z

)
, (9)

τ1(z, x) =
∑
n≥0

T2n+1(x)
zn

n!

= e(2x
2−1)z(x cosh

(
2x
√
x2 − 1z

)
+
√
x2 − 1 sinh

(
2x
√
x2 − 1z

))
, (10)

τ2(z, x) =
∑
n≥0

T2n(x)
zn

n!
= e(2x

2−1)z cosh
(
2x
√
x2 − 1 z

)
, (11)
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and

ω(z, x) =
∑
n≥0

Un(x)
zn

n!

=
exz√
x2 − 1

(
x sinh

(√
x2 − 1 z

)
+
√
x2 − 1 cosh

(√
x2 − 1 z

))
, (12)

ω1(z, x) =
∑
n≥0

U2n+1(x)
zn

n!

=
e(2x

2−1)z
√
x2 − 1

(
(2x2 − 1) sinh

(
2x
√
x2 − 1 z

)
+ 2x

√
x2 − 1 cosh

(
2x
√
x2 − 1 z

))
, (13)

ω2(z, x) =
∑
n≥0

U2n(x)
zn

n!

=
e(2x

2−1)z
√
x2 − 1

(
x sinh

(
2x
√
x2 − 1 z

)
+
√
x2 − 1 cosh

(
2x
√
x2 − 1 z

))
.

Fibonacci polynomials Fn(x), F2n+1(x) and F2n(x) have the following ordinary

generating functions

f(z, x) =
∑
n≥0

Fn(x)zn =
z

1− xz − z2
, (14)

f1(z, x) =
∑
n≥0

F2n+1(x)zn =
1− z

1− (x2 + 2)z + z2
, (15)

f2(z, x) =
∑
n≥0

F2n(x)zn =
xz

1− (x2 + 2)z + z2
, (16)

while the exponential generating functions are

φ(z, x) =
∑
n≥0

Fn(x)
zn

n!
=

2e
xz
2

√
x2 + 4

sinh
(√x2 + 4

2
z
)
, (17)

φ1(z, x) =
∑
n≥0

F2n+1(x)
zn

n!

=
e

x2+2
2 z

√
x2 + 4

(
x sinh

(x√x2 + 4

2
z
)

+
√
x2 + 4 cosh

(x√x2 + 4

2
z
))

, (18)

φ2(z, x) =
∑
n≥0

F2n(x)
zn

n!
=

2e
x2+2

2 z

√
x2 + 4

sinh
(x√x2 + 4

2
z
)
. (19)
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3. Chebyshev-Fibonacci Polynomial Identities Using Ordinary Generat-
ing Functions

In what follows, we will use the standard convention that
∑n

k=0 ak = 0 for n < 0.

Theorem 1. For n ≥ 1, the following polynomial identities hold:

Fn(x) = Tn−1(x)−
n−2∑
k=1

(
xTn−1−k(x)− 2Tn−2−k(x)

)
Fk(x), (20)

Fn(x) + xFn−1(x) = Un−1(x)−
n−2∑
k=1

(
xUn−1−k(x)− 2Un−2−k(x)

)
Fk(x). (21)

Proof. To prove formula (20), observe that by (3) and (14), we obtain, respectively,

1− xz =
1− xz + t(z, x)(xz − z2)

t(z, x)
, 1− xz =

z + z2f(z, x)

f(z, x)
,

and thus

(1− xz)f(z, x)− zt(z, x) = (2z2 − xz)t(z, x)f(z, x).

Expanding both sides of the last equation as a power series in z and using the

Cauchy product of two power series, we then obtain∑
n≥0

Fn(x)zn − x
∑
n≥0

Fn(x)zn+1 −
∑
n≥0

Tn(x)zn+1

= 2
∑
n≥0

n∑
k=0

Tn−k(x)Fk(x)zn+2 − x
∑
n≥0

n∑
k=0

Tn−k(x)Fk(x)zn+1

or, equivalently,

F0(x) + F1(x)z +
∑
n≥2

Fn(x)zn − x
∑
n≥2

Fn−1(x)zn − T0(x)z −
∑
n≥2

Tn−1(x)zn

= 2
∑
n≥2

n−2∑
k=0

Tn−2−k(x)Fk(x)zn − x
∑
n≥2

n−1∑
k=0

Tn−1−k(x)Fk(x)zn,

∑
n≥2

(
Fn(x)− xFn−1(x)− Tn−1(x)

)
zn

=
∑
n≥2

(
2

n−2∑
k=0

Tn−2−k(x)Fk(x)− x
n−1∑
k=0

Tn−1−k(x)Fk(x)
)
zn.

Comparing the coefficients on both sides, we have

Fn(x)−xFn−1(x)−Tn−1(x) =

n−2∑
k=0

(
2Tn−2−k(x)−xTn−1−k(x)

)
Fk(x)−xT0(x)Fn−1(x),
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as desired. The proof of (21) is very similar. From (6) and (14) the following

functional equation follows:

1

u(z, x)
=

z

f(z, x)
+ z(2z − x)

or, equivalently,

f(z, x)− zu(z, x) = 2z2f(z, x)u(z, x)− xzf(z, x)u(z, x).

The remainder of the proof is the same as above.

In a similar manner, we use the generating functions (4), (7), (15), and (5), (8),

(16), respectively, to prove four additional relations between odd (even) indexed

Chebyshev and Fibonacci polynomials. These relations are contained in the next

theorem, those proofs we leave to the reader.

Theorem 2. The following identities hold for n ≥ 1

x
(
F2n+1(x)−F2n−1(x)

)
=T2n+1(x)−T2n−1(x)−(3x2 − 4)

n−1∑
k=0

F2k+1(x)T2(n−k)−1(x),

2xF2n+1(x) = U2n+1(x)− U2n−1(x)− (3x2 − 4)

n−1∑
k=0

F2k+1(x)U2(n−k)−1(x).

The even indexed counterparts are given by

F2n(x)− (2x2 − 1)F2n−2(x) = xT2n−2(x)− (3x2 − 4)

n−1∑
k=1

F2k(x)T2(n−k−1)(x),

F2n(x) + F2n−2(x) = xU2n−2(x)− (3x2 − 4)

n−1∑
k=1

F2k(x)U2(n−k−1)(x).

Next, we present a range of Chebyshev-Fibonacci identities with mixed indices.

Theorem 3. For n ≥ 1, we have

xFn(x) + (4x3 − x2 − 3x)Fn−1(x) = T2n−1(x)

−
n−2∑
k=1

(
(4x2 − x− 2)T2(n−k)−1(x)− 2T2(n−k)−3(x)

)
Fk(x),

2xFn(x) + (8x3 − 2x2 − 4x)Fn−1(x) = U2n−1(x)

−
n−2∑
k=1

(
(4x2 − x− 2)U2(n−k)−1(x)− 2U2(n−k)−3(x)

)
Fk(x),

Fn(x) + (2x2 − x− 1)Fn−1(x) = T2n−2(x)

−
n−2∑
k=1

(
(4x2 − x− 2)T2(n−k−1)(x)− 2T2(n−k−2)(x)

)
Fk(x),
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Fn(x) + (4x2 − x− 1)Fn−1(x) = U2n−2(x)

−
n−2∑
k=1

(
(4x2 − x− 2)U2(n−k−1)(x)− 2U2(n−k−2)(x)

)
Fk(x),

F2n+1(x)− (2x2 − 1)F2n−1(x) = T2n(x)− T2n−2(x)

−(3x2 − 4)

n−1∑
k=0

T2(n−k−1)(x)F2k+1(x),

F2n+1(x) + F2n−1(x) = U2n(x)− U2n−2(x)

−(3x2 − 4)

n−1∑
k=0

U2(n−k−1)(x)F2k+1(x),

x2F2n−1(x) = xT2n−1(x)− (3x2 − 4)

n−1∑
k=1

T2(n−k)−1(x)F2k(x),

2xF2n(x) = xU2n−1(x)− (3x2 − 4)

n−1∑
k=1

U2(n−k)−1(x)F2k(x), (22)

F2n+1(x)− xF2n−1 = Tn(x)− Tn−1(x) + (x2 − 2x+ 2)

n−1∑
k=0

Tn−1−k(x)F2k+1(x),

F2n+1(x) = Un(x)− Un−1(x) + (x2 − 2x+ 2)

n−1∑
k=0

Un−1−k(x)F2k+1(x),

F2n(x)− xF2n−2 = xTn−1(x) + (x2 − 2x+ 2)

n−1∑
k=1

Tn−1−k(x)F2k(x),

F2n(x) = xUn−1(x) + (x2 − 2x+ 2)

n−1∑
k=1

Un−1−k(x)F2k(x).

Proof. We will prove only (22); the others can be proved in a similar way. The

formula is essentially a consequence of the functional equation

2xf2(z, x) = xzu1(z, x)− (3x2 − 4)zu1(z, x)f2(z, x),

which can be derived from (7) and (16).

It is worth noting that our previous results can be used to establish connections

between Fibonacci polynomials and balancing and Lucas-balancing polynomials,

respectively. Recall that balancing polynomials Bn(x) and Lucas-balancing poly-

nomials Cn(x) are generalizations of balancing and Lucas-balancing numbers. They

are defined by the same recurrence [4] wn(x) = 6xwn−1(x) − wn−2(x), n ≥ 2, but

with different initial values B0(x) = 0, B1(x) = 1 and C0(x) = 1, C1(x) = 3x,
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respectively. From the definitions (1) and (2), the following connections are easily

derived (see [4])

Bn(x) = Un−1(3x), Cn(x) = Tn(3x), n ≥ 1. (23)

In view of (23) and Theorems 1–3, relations between Fibonacci and balancing

(Lucas-balancing) polynomials are obvious. In the next statement we present only

a few of them.

Corollary 1. For n ≥ 1,

Fn(3x) = Cn−1(x)−
n−2∑
k=1

(
3xCn−k−1(x)− 2Cn−k−2(x)

)
Fk(3x),

Fn(3x) + 3xFn−1(3x) = Bn(x)−
n−2∑
k=1

(
3xBn−k(x)− 2Bn−k−1(x)

)
Fk(3x),

9x2F2n(3x) = C2n+1(x)− C2n−1(x)− (27x2 − 4)

n−1∑
k=1

C2(n−k)−1(x)F2k+1(3x),

6xF2n+1(3x) = B2(n+1)(x)−B2n(x)− (27x2 − 4)

n−1∑
k=0

B2(n−k)(x)F2k+1(3x),

F2n(3x) + F2n−2(3x) = 3xB2n−1(x)− (27x2 − 4)

n−1∑
k=1

B2(n−k)−1(x)F2k(3x),

9x2F2n−1(3x) = 3xC2n−1(x)− (27x2 − 4)

n−1∑
k=1

C2(n−k)−1(x)F2k(3x),

6xF2n(3x) = xB2n(x)− (27x2 − 4)

n−1∑
k=1

B2(n−k)(x)F2k(3x).

4. Chebyshev-Fibonacci Polynomial Identities via Exponential Generat-
ing Functions

Functional equations for exponential generating functions will yield connections

between Chebyshev and Fibonacci polynomials involving binomial coefficients.

Theorem 4. For n ≥ 0, the following identities hold

n−1∑
k=0

(
n

k

)(√
x2 + 4

)n−1−k(
1− (−1)n−k

)
Tk(x)

=

n−1∑
k=1

(
n

k

)
2k−1

(√
x2 − 1

)n−k(
1 + (−1)n−k

)
Fk(x), (24)
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n−1∑
k=0

(
n

k

)(√
x2 + 4

)n−1−k(
1− (−1)n−k

)
Uk(x)

=

n−1∑
k=1

(
n

k

)
2k−1

(√
x2 − 1

)n−1−k(
α(x)− (−1)n−kβ(x)

)
Fk(x). (25)

Proof. To prove formula (24) we use the generating functions (9) and (17). They

give the functional equation

2τ
(z

2
, x
)

sinh
(√x2 + 4

2
z
)

= φ(z, x)
√
x2 + 4 cosh

(√x2 − 1

2
z
)
.

From this equation we obtain∑
n≥0

n∑
k=0

(
n

k

)
Tk(x)

2k

((√x2 + 4

2

)n−k
−
(
−
√
x2 + 4

2

)n−k) zn

n!

=

√
x2 + 4

2

∑
n≥0

n∑
k=1

(
n

k

)
Fk(x)

((√x2 − 1

2

)n−k
+
(
−
√
x2 − 1

2

)n−k) zn

n!
.

Comparing the coefficients of both sides gives

n∑
k=0

(
n

k

)
Tk(x)

2k

((√x2 + 4

2

)n−k
−
(
−
√
x2 + 4

2

)n−k)

=

√
x2 + 4

2

n∑
k=1

(
n

k

)
Fk(x)

((√x2 − 1

2

)n−k
+
(
−
√
x2 − 1

2

)n−k)
,

and after simplifications we get (24). The proof of (25) follows in a similar way and

is based on the functional equation

2
√
x2 − 1 sinh

(√x2 + 4

2
z
)
ω
(z

2
, x
)

=
√
x2 + 4

(
x sinh

(√x2 − 1

2
z
)

+
√
x2 − 1 cosh

(√x2 − 1

2
z
))

φ(z, x),

which we derive from generating functions (12) and (17).

The next two theorems give us relations involving odd and even indexed Cheby-

shev and Fibonacci polynomial sequences.

Theorem 5. For n ≥ 0, the following formulas hold:

x

n∑
k=0

(
n

k

)(√x2 + 4(2x3 − x)

x2 + 2

)n−1−k(
ρ(x)− (−1)n−kσ(x)

)
T2k+1(x)

=
(
2x
√
x2 − 1

)n−1 n∑
k=0

(
n

k

)( 2x2 − 1

(x3 + 2x)
√
x2 − 1

)k−1(
α(x) + (−1)n−kβ(x)

)
F2k+1(x)
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and

1

2

n∑
k=0

(
n

k

)(√x2 + 4(2x3 − x)

x2 + 2

)n−1−k(
ρ(x)− (−1)n−kσ(x)

)
U2k+1(x)

=
(
2x
√
x2 − 1

)n−2 n∑
k=0

(
n

k

)( 2x2 − 1

(x3 + 2x)
√
x2 − 1

)k−1
×
(
α2(x)− (−1)n−kβ2(x)

)
F2k+1(x).

Proof. The stated formulas follow from the functional equations(
x sinh

( (2x3 − x)
√
x2 + 4

x2 + 2
z
)

+
√
x2 + 4 cosh

( (2x3 − x)
√
x2 + 4

x2 + 2
z
))

τ1(z, x)

=
√
x2 + 4

(
x cosh

(
2x
√
x2 − 1z

)
+
√
x2 − 1 sinh

(
2x
√
x2 − 1z

))
φ1

(
4x2 − 2

x2 + 2
z, x

)
and

2

(
x sinh

( (2x3 − x)
√
x2 + 4

x2 + 2
z
)

+
√
x2 + 4 cosh

( (2x3 − x)
√
x2 + 4

x2 + 2
z
))

ω1(z, x)

=

√
x2 + 4

x2 − 1

(
α2(x)e2x

√
x2−1z − β2(x)e−2x

√
x2−1z

)
φ1

(
4x2 − 2

x2 + 2
z, x

)
,

that one can obtain from (10), (18) and (13), (18), respectively.

Theorem 6. For n ≥ 0, the following formulas hold:

x

n−1∑
k=0

(
n

k

)(√x2 + 4(2x3 − x)

x2 + 2

)n−k−1(
1− (−1)n−k

)
T2k(x)

=
(
2x
√
x2 − 1

)n−1 n∑
k=1

(
n

k

)( 2x2 − 1

(x3 + 2x)
√
x2 − 1

)k−1(
1 + (−1)n−k

)
F2k(x)

and

1

2

n∑
k=0

(
n

k

)(√x2 + 4(2x3 − x)

x2 + 2

)n−k−1(
1− (−1)n−k

)
U2k(x)

=
(
2x
√
x2 − 1

)n−2 n∑
k=1

(
n

k

)( 2x2 − 1

(x3 + 2x)
√
x2 − 1

)k−1(
α(x)− (−1)n−kβ(x)

)
F2k(x).

Proof. Generating functions (11), (19) and (13), (19), respectively, yield

2 sinh
((2x3 − x)

√
x2 + 4

x2 + 2
z
)
τ2(z, x)=

√
x2 + 4 cosh

(
2x
√
x2 − 1z

)
φ2

(
4x2 − 2

x2 + 2
z, x

)
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and √
x2 − 1 sinh

( (2x3 − x)
√
x2 + 4

x2 + 2
z
)
ω2(z, x)

=2
√
x2 + 4

(
x sinh

(
2x
√
x2 − 1z

)
+
√
x2 − 1 cosh

(
2x
√
x2 − 1z

))
φ2

(
4x2 − 2

x2 + 2
z, x

)
.

The results follow from writing in terms of power series and collecting terms.

The last theorem contains additional relations for Chebyshev and Fibonacci poly-

nomials that we found.

Theorem 7. For n ≥ 0, the following formulas hold:

n−1∑
k=0

(
n

k

)(√x2 + 4(2x2 − 1)

x

)n−k−1(
1− (−1)n−k

)
T2k(x)

=

n∑
k=1

(
n

k

)(4x2 − 2

x

)k−1(
2x
√
x2 − 1

)n−k(
1 + (−1)n−k

)
Fk(x),

n∑
k=0

(
n

k

)(√x2 + 4(2x2 − 1)

x

)n−k−1(
1− (−1)n−k

)
U2k(x)

= 2x

n∑
k=1

(
n

k

)(4x2 − 2

x

)k−1(
2x
√
x2 − 1

)n−k−1(
α(x)− (−1)n−kβ(x)

)
Fk(x),

n∑
k=0

(
n

k

)(√x2 + 4(2x2 − 1)

x

)n−k−1(
1− (−1)n−k

)
T2k+1(x)

=

n∑
k=1

(
n

k

)(4x2 − 2

x

)k−1(
2x
√
x2 − 1

)n−k(
α(x) + (−1)n−kβ(x)

)
Fk(x),

n∑
k=0

(
n

k

)(√x2 + 4(2x2 − 1)

x

)n−k−1(
1− (−1)n−k

)
U2k+1(x)

= x

n∑
k=1

(
n

k

)(4x2 − 2

x

)k−1(
2x
√
x2 − 1

)n−k−1(
α2(x)− (−1)n−kβ2(x)

)
Fk(x),

x

n∑
k=0

(
n

k

)(x2 + 2

2x

)k(x√x2 + 4

2

)n−k−1(
ρ(x)− (−1)n−kσ(x)

)
Tk(x)

=

n∑
k=0

(
n

k

)( (x2 + 2)
√
x2 − 1

2x

)n−k(
1 + (−1)n−k

)
F2k+1(x),
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x

n∑
k=0

(
n

k

)(x2 + 2

2x

)k−1(x√x2 + 4

x

)n−k−1(
ρ(x)− (−1)n−kσ(x)

)
Uk(x)

=

n∑
k=0

(
n

k

)( (x2 + 2)
√
x2 − 1

2x

)n−k−1(
α(x)− (−1)n−kβ(x)

)
F2k+1(x),

n∑
k=0

(
n

k

)(x2 + 2

2x

)k(x√x2 + 4

2

)n−k−1(
1− (−1)n−k

)
Tk(x)

=

n∑
k=1

(
n

k

)( (x2 + 2)
√
x2 − 1

2x

)n−k(
1 + (−1)n−k

)
F2k(x),

x

n∑
k=0

(
n

k

)(x2 + 2

2x

)k−1(x√x2 + 4

2

)n−k−1(
1− (−1)n−k

)
Uk(x)

=

n∑
k=0

(
n

k

)( (x2 + 2)
√
x2 − 1

2x

)n−k−1(
α(x) + (−1)n−kβ(x)

)
F2k(x),

x

n∑
k=0

(
n

k

)( x2 + 2

4x2 − 2

)k(x√x2 + 4

2

)n−k(
1− (−1)n−k

)
T2k+1(x)

=

n∑
k=0

(
n

k

)(x(x2 + 2)
√
x2 − 1

2x2 − 1

)n−k(
α(x) + (−1)n−kβ(x)

)
F2k(x),

n∑
k=0

(
n

k

)( x2 + 2

4x2 − 2

)k−1(x√x2 + 4

2

)n−k−1(
1− (−1)n−k

)
U2k+1(x)

= 2

n∑
k=0

(
n

k

)(x(x2 + 2)
√
x2 − 1

2x2 − 1

)n−k−1(
α2(x)− (−1)n−kβ2(x)

)
F2k(x),

x

n∑
k=0

(
n

k

)( x2 + 2

4x2 − 2

)k(x√x2 + 4

2

)n−k−1(
ρ(x)− (−1)n−kσ(x)

)
T2k(x)

=

n∑
k=0

(
n

k

)(x(x2 + 2)
√
x2 − 1

2x2 − 1

)n−k(
1 + (−1)n−k

)
F2k+1(x),

n∑
k=0

(
n

k

)( x2 + 2

4x2 − 2

)k−1(x√x2 + 4

2

)n−k−1(
ρ(x)− (−1)n−kσ(x)

)
U2k(x)

= 2

n∑
k=0

(
n

k

)(x(x2 + 2)
√
x2 − 1

2x2 − 1

)n−k−1(
α(x)− (−1)n−kβ(x)

)
F2k+1(x).
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5. Concluding Comments: Fibonacci and Lucas Identities Implied by
Chebyshev-Fibonacci Identities

The polynomial relations derived in this paper imply many Fibonacci and Lucas

identities, some of which are certainly known but some of which could turn out to be

new. These identities come from the various links between Chebyshev polynomials

and Fibonacci (Lucas) numbers. In [2] and [17] many such links are listed. Among

the various connections we have

Tn

(3

2

)
=

1

2
L2n, Un

(3

2

)
= F2n+2, (26)

Tn

( i
2

)
=
in

2
Ln, Un

( i
2

)
= inFn+1,

T2n

(√5

2

)
=

1

2
L2n, U2n

(√5

2

)
= L2n+1,

T2n+1

(√5

2

)
=

√
5

2
F2n+1, U2n+1

(√5

2

)
=
√

5F2n+2.

Using (26), for instance, from Theorems 1–3, we can immediately obtain new

families of Fibonacci and Lucas identities. In the next statement, we state some

examples.

Corollary 2. For n ≥ 1, we have the following identities:

15F2(2n−1) = 5 · 4n − 20 · 4−n + 11

n−1∑
k=1

(
4k − 4−k

)
F2(2n−2k−1),

15F4n = 12
(
4n − 4−n

)
+ 11

n−1∑
k=1

(
4k − 4−k

)
F4(n−k),

15F2n = 4
(
4n − 4−n

)
− 5

n−1∑
k=1

(
4k − 4−k

)
F2(n−k),

15L4(n−1) = 4n + 104 · 4−n + 11

n−1∑
k=1

(
4k − 4−k

)
L4(n−k−1),

5L2(2n−1) = 9 · 4n + 36 · 4−n + 11

n−1∑
k=1

(
4k − 4−k

)
L2(2n−2k−1),

3L2n−2 = 4n + 8 · 4−n −
n−1∑
k=0

(
4k − 4−k

)
L2(n−k−1).

To give another example, observe that from

Tn(−
√

5) =

{
1
2L3n, n even,

−
√
5
2 F3n, n odd,

Un(−
√

5) =

{
1
4L3n+3, n even,

−
√
5
4 F3n+3, n odd,
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and

Fn(−
√

5) =

{
−
√
5
3 F2n, n even,

1
3L2n, n odd,

from Theorem 2 we get the next summation identities.

Corollary 3. Let n ≥ 0. Then

11

n∑
k=1

F4kL6(n−k) = 3L6n − 2F4n+4 + 18F4n,

11

n∑
k=1

F4kL6(n−k)+3 = 3L6n+3 − 4F4n+4 − 4F4n,

11

n∑
k=0

L4k+2F6(n−k)+3 = 3(F6n+9 − F6n+3)− 2(L4n+6 − L4n+2),

11

n∑
k=0

L4k+2F6(n−k)+6 = 3(F6n+12 − F6n+6)− 8L4n+6.

Finally, with Fn(4) = F3n/2, we get from Theorem 1 the following.

Corollary 4. Let n ≥ 1. Then

F3n = 2Tn−1(4)−
n−2∑
k=1

(
4Tn−1−k(4)− 2Tn−2−k(4)

)
F3k,

F3n + 4F3n−3 = 2Un−1(4)−
n−2∑
k=1

(
4Un−1−k(4)− 2Un−2−k(4)

)
F3k,

with

Tn(4) = 4n
bn/2c∑
j=0

(
n

2j

)(15

16

)j
and

Un(4) = 4n
bn/2c∑
j=0

(
n+ 1

2j + 1

)(15

16

)j
.

More experiments in this direction are left for a personal study.
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