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Abstract

We study certain series with Catalan numbers and reciprocal Catalan numbers, and
provide presumably new closed form evaluations of these series with Fibonacci and
Lucas entries. In addition, we state some combinatorial sums that can be inferred
from the series.

1. Introduction and Motivation

The famous Catalan numbers Cn, n ≥ 0, are defined by Cn = 1
n+1

(
2n
n

)
. The

numbers are indexed as sequence A000108 in the On-Line Encyclopedia of Integer

Sequences [25]. They have the generating function [27]

G(z) =

∞∑
n=0

Cnz
n =

1−
√

1− 4z

2z

and possess, among other fascinating properties, the integral representations [15, 22]

Cn =
1

2π

∫ 4

0

zn
√

4− z
z

dz and Cn =
1

π

∫ 2

0

z2n
√

4− z2dz.

1Statements and conclusions made in this paper by Robert Frontczak are entirely those of the
author. They do not necessarily reflect the views of LBBW.
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The reciprocals of Catalan numbers are generated by the function

f(z) =

∞∑
n=0

zn

Cn
, z ∈ [0, 4), (1)

which can be expressed as

f(z) =
2(8 + z)

(4− z)2
+

24
√
z arcsin

(√z
2

)√
(4− z)5

. (2)

The function f(z) was studied in detail recently by Amdeberhan et al. [3] and

Koshy and Gao [19]. It also appears in the article by Yin and Qi [33] and is

linked to an interesting problem proposed by Beckwith and Harbor in the American

Mathematical Monthly [6].

Reciprocals of Catalan numbers possess the following integral representation de-

rived by Dana-Picard [15]

1

Cn
=

(2n+ 3)(2n+ 2)(2n+ 1)

24n+4

∫ 2

0

z2n+1
√

4− z2 dz.

Corresponding to G(z) are the sub-series G1(z), G2(z), G3(z), and G4(z) (for

|z| ≤ 1), namely,

G1(z) =

∞∑
n=1

C2n−1

42n−1
z2n−1 =

2

z
−
√

1 + z +
√

1− z
z

, z 6= 0,

G2(z) =

∞∑
n=0

C2n

42n
z2n =

√
1 + z −

√
1− z

z
, z 6= 0,

G3(z) =
1

2

∞∑
n=1

(−1)n−1
C2n−1

42n−1
zn = 4

√
1 + z cos

(1

2
arctan

√
z
)
− 1 ,

G4(z) =
1

2

∞∑
n=0

(−1)n
C2n

42n
zn =

4
√

1 + z√
z

sin
(1

2
arctan

√
z
)
, z 6= 0.

Since

cos
(1

2
arctan

√
p
)

=

√√
1 + p+ 1

2
√

1 + p
and sin

(1

2
arctan

√
p
)

=

√√
1 + p− 1

2
√

1 + p
,

we have more compact formulas for functions G3(z) and G4(z) as follows:

G3(z) =

√√
1 + z + 1

2
− 1 , G4(z) =

√√
1 + z − 1

2z
.
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Our purpose in this paper is to study G(z), G1(z), G2(z), G3(z), G4(z), f(z),

and the following similar series:

X(z) =

∞∑
n=1

zn

n(n+ 1)Cn
, |z| < 4 ,

Y (z) =

∞∑
n=1

zn

n2(n+ 1)Cn
, |z| < 4 ,

W (z) =

∞∑
n=0

Cn
22n+1

z2n+2

2n+ 1
, |z| < 1 ,

focusing mainly on delivering new Fibonacci–Catalan relations. Similar series were

studied by the authors [1], Qi and Guo [24], and Stewart [28]. Other recently

published works on infinite sums with (reciprocal) Catalan numbers and central

binomial coefficients
(
2n
n

)
include the articles [7, 8, 9, 10, 13, 17, 26, 29].

We recall that Fibonacci numbers Fn and the companion sequence of Lucas

numbers Ln are defined for n ≥ 0 by the same recurrence wn+2 = wn+1 + wn, but

with initial conditions F0 = 0, F1 = 1 and L0 = 2, L1 = 1. These are sequences

A000045 and A000032 in [25], respectively.

The Binet formulas, for any integer n, are given by

Fn =
αn − βn

α− β
, Ln = αn + βn,

where α = 1+
√
5

2 and β = − 1
α = 1−

√
5

2 . See [18] for more details.

The next lemma will be used frequently.

Lemma 1. We have

sin
( π

10

)
= −β

2
, sin

(3π

10

)
=
α

2
= α2 sin

( π
10

)
,

cos
( π

10

)
=

√
α
√

5

2
, cos

(3π

10

)
=

√
−β
√

5

2
= −β cos

( π
10

)
,

cot
(2π

5

)
= −β3 cot

(π
5

)
=

β2

√
5

√
α
√

5 . (3)

2. Results from Functions G(z), G1(z), G2(z), G3(z) and G4(z)

Observe that G( 1
5 ) and G(− 1

5 ) give

∞∑
n=0

Cn
5n

=
5−
√

5

2
,

∞∑
n=0

(−1)nCn
5n

=
3
√

5− 5

2
,
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from which we also infer

∞∑
n=0

C2n

25n
=

√
5

2
,

∞∑
n=1

C2n−1

25n
=

5− 2
√

5

10
.

The trigonometric version of the generating function G(z) is

Gt(z) =

∞∑
n=0

Cn
sin2n z

4n
=

1

cos2
(
z
2

) , |z| ≤ π

2
.

At z = π
2 , z = π

3 , z = π
4 and z = π

6 , we have the following series:

∞∑
n=0

Cn
4n

= 2 ,

∞∑
n=0

( 3

16

)n
Cn =

4

3
,

∞∑
n=0

Cn
8n

= 4− 2
√

2 ,

∞∑
n=0

Cn
16n

= 8− 4
√

3 .

The identities G1( 1√
5
) and G2( 1√

5
) give

∞∑
n=1

C2n−1

80n
=

1

2
−
√

5

20

√
10 + 4

√
5 ,

∞∑
n=0

C2n

80n
=

√
10− 4

√
5 .

The trigonometric versions of G1(z) and G2(z), for |z| ≤ π
2 , are

G1t(z) =

∞∑
n=1

C2n−1
sin2n−1 z

42n−1
=

4 sin2( z4 )

sin z
,

G2t(z) =

∞∑
n=0

C2n
sin2n z

42n
=

1

cos( z2 )
.

Example 1. Evaluating G1t(z) and G2t(z) at appropriate arguments yield

∞∑
n=1

C2n−1

16n
=

2−
√

2

4
,

∞∑
n=1

( 3

64

)n
C2n−1 =

2−
√

3

4
,

∞∑
n=0

C2n

16n
=
√

2 ,

∞∑
n=0

( 3

64

)n
C2n =

2
√

3

3
,

∞∑
n=0

C2n

64n
=
√

6−
√

2 .
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Lemma 2. We have

sin2
(3π

20

)
=

1

4

(
2−

√
−β
√

5
)
, (4)

sin2
( π

20

)
=

1

4

(
2−

√
α
√

5
)
, (5)

sin2
(3π

20

)
− sin2

( π
20

)
=
−β
√
−β
√

5

4
, (6)

sin2
(3π

20

)
=
(

1 +

√
α
√

5
)2

sin2
( π

20

)
, (7)

where α = 1+
√
5

2 and β = − 1
α .

Proof. Identities (4) and (5) are straightforward consequences of sin2
(
x
2

)
= 1−cos x

2 .

Identity (6) comes from sin2 3x− sin2 x = sin 2x sin 4x.

Theorem 1. For any integer s,

∞∑
n=0

F2n+sCn
16n

= 4
(

2−
√
α
√

5
)
Fs−2 +

4
√

5αs−4

5

√
α
√

5, (8)

∞∑
n=0

L2n+sCn
16n

= 4
(

2−
√
α
√

5
)
Ls−2 + 4αs−4

√
α
√

5 . (9)

Proof. Determine αsGt(
3π
10 ) ∓ βsGt( π10 ), where s is an arbitrary integer, using the

Binet formulas and Lemma 2.

Example 2. We have

∞∑
n=0

F2nCn
16n

= −8− 10− 14
√

5

5

√
α
√

5 ,

∞∑
n=0

L2nCn
16n

= 24 + (2− 6
√

5)

√
α
√

5 ,

∞∑
n=0

F2n+1Cn
16n

= 8− 8
√

5

5

√
α
√

5 ,

∞∑
n=0

L2n+1Cn
16n

= −8− (4− 4
√

5)

√
α
√

5 ,

∞∑
n=0

F2n+2Cn
16n

=
6
√

5− 10

5

√
α
√

5 ,

∞∑
n=0

L2n+2Cn
16n

= 16− 2(1 +
√

5)

√
α
√

5 .
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Now we consider functions G3(z) and G4(z).

At z = 1, z = 1
3 , and z = 3, G3(z) gives

∞∑
n=1

(−1)n−1C2n−1

16n
=

√
2 + 2

√
2

4
− 1

2
,

∞∑
n=1

(−1)n−1C2n−1

48n
=

√
18 + 12

√
3

12
− 1

2
,

∞∑
n=1

(
− 3

16

)n
C2n−1 =

1

2
−
√

6

4
.

Similarly, G4(1), G4( 1
3 ), and G4(3), respectively, give

∞∑
n=0

(−1)nC2n

16n
=

√
2
√

2− 2 ,

∞∑
n=0

(−1)nC2n

48n
=

4
√

27− 4
√

3 ,

∞∑
n=0

(
− 3

16

)n
C2n =

√
6

3
.

Lemma 3. We have

√
α = α

√
−β,

√
α
√

5 = α

√
−β
√

5 .

Lemma 4. For any integer r,

αr + βr−1 = αFr−2 + Fr+1, αr − βr−1 = αFr+1 − Fr−2 .

Theorem 2. For any integer s,

∞∑
n=0

F2n+sC2n

64n
=

√
10

5

((
βFs−2 + Fs+1

)√
α
√

5− Ls−2
)
, (10)

∞∑
n=0

L2n+sC2n

64n
=
√

2
((
Fs−2 − βFs+1

)√
α
√

5−
√

5Fs−2

)
, (11)

∞∑
n=1

F2n+sC2n−1

64n
=

√
10

40

(
2
√

10Fs − Ls−1 − (Fs+2 + βFs−1)

√
α
√

5
)
, (12)

∞∑
n=1

L2n+sC2n−1

64n
=

1

8

(
4Ls −

√
10Fs−1 −

√
2(Fs−1 − βFs+2)

√
α
√

5
)
. (13)

Proof. With s an arbitrary integer and noting Lemma 3, αsG2(α2 )∓βsG2(β2 ) means

∞∑
n=0

C2n
α2n+s ∓ β2n+s

43n
=
√

2(αs ∓ βs−1)

√
−β
√

5−
√

2(αs−2 ± βs−2),
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and hence, using Lemma 4 and the Binet formulas, we obtain identities (10) and

(11). The proof of (12) and (13) is similar. Use αsG1(α2 )∓ βsG1(β2 ).

Example 3. Theorem 2 yields

∞∑
n=0

F2nC2n

64n
=

√
10

5

(
α

√
α
√

5− 3
)
,

∞∑
n=0

L2nC2n

64n
=
√

2
(√

5− β2

√
α
√

5
)
,

∞∑
n=1

F2nC2n−1

64n
=

√
10

40

(
1− β2

√
α
√

5
)
,

∞∑
n=1

L2nC2n−1

64n
= 1−

√
2

8

(
α

√
α
√

5 +
√

5
)
,

∞∑
n=0

F2n+1C2n

64n
=

√
10

5

(
1− β2

√
α
√

5
)
,

∞∑
n=0

L2n+1C2n

64n
=
√

2
(
α

√
α
√

5−
√

5
)
.

3. Results from f(z)

It is convenient to write the function f(z) from (1) as

f(z) =
2(8 + z)

z2
cot4

(
arccos

(√z
2

))
+

24

z2
cot5

(
arccos

(√z
2

))
arcsin

(√z
2

)
.

Lemma 5. For any integer r,

3αr − βr+3 = Lr+1

√
5− Lr−1, 3αr + βr+3 =

√
5(Fr+1

√
5− Fr−1).

Theorem 3. For any integer s,

∞∑
n=0

F2n+s

Cn
=

2

5
(Fs+4 + 8Fs+2) +

(√
5Fs+3 − Fs+1

)12
√

5πα

125

√
α
√

5 , (14)

∞∑
n=0

L2n+s

Cn
=

2

5
(Ls+4 + 8Ls+2) +

(√
5Ls+3 − Ls+1

)12
√

5πα

125

√
α
√

5 . (15)
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Proof. Considering αsf(α2) and βsf(β2), where s is an arbitrary integer, we have

∞∑
n=0

α2n+s

Cn
= 2(αs−2 + 8αs−4) cot4

(π
5

)
+

36π

5
αs−4 cot5

(π
5

)
,

∞∑
n=0

β2n+s

Cn
= 2(βs−2 + 8βs−4) cot4

(2π

5

)
+

12π

5
βs−4 cot5

(2π

5

)
,

from which, using the Binet formulas and relevant identities from Lemma 1, we get

∞∑
n=0

F2n+s

Cn

=
2
√

5

25
(αs+4 − βs+4) +

16
√

5

25
(αs+2 − βs+2) + (3αs+2 + βs+5)

12πα

125

√
α
√

5 ,

∞∑
n=0

L2n+s

Cn

=
2

5
(αs+4 + βs+4) +

16

5
(αs+2 + βs+2) + (3αs+2 − βs+5)

12
√

5πα

125

√
α
√

5 .

The stated identities in the theorem now follow when we use the Binet formulas

and invoke Lemma 5 with r = s+ 2.

Example 4. Formulas (14) and (15) yield

∞∑
n=1

F2n−1

Cn
= 3 +

12απ

25

√
α
√

5,

∞∑
n=1

L2n−1

Cn
=

29

5
+

6(5 + 13
√

5)π

125

√
α
√

5 ,

∞∑
n=1

F2n

Cn
=

22

5
+

6(5 + 9
√

5)π

125

√
α
√

5, (16)

∞∑
n=0

L2n

Cn
=

62

5
+

6(15 + 19
√

5)π

125

√
α
√

5 .

The identity (16) was also obtained by Stewart [28, Identity (38a)].

Since L2n = 5F 2
n + 2(−1)n, L2n = L2

n − 2(−1)n, and

∞∑
n=0

(−1)n

Cn
=

14

25
− 24

√
5

125
logα,
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we have also the following series:

∞∑
n=1

F 2
n

Cn
=

282

125
+

6(15 + 19
√

5)π

625

√√
5α+

48
√

5

625
logα ,

∞∑
n=0

L2
n

Cn
=

338

25
+

6(15 + 19
√

5)π

125

√√
5α− 48

√
5

125
logα .

4. Results from W (z)

The trigonometric version of the function

W (z) =

∞∑
n=0

Cn
22n+1

z2n+2

2n+ 1
= z arcsin z +

√
1− z2 − 1

is

Wt(z) =

∞∑
n=0

Cn
22n+1

sin2n+2 z

2n+ 1
= z sin z − 2 sin2

(z
2

)
.

At z = π
2 , π

3 , π
4 , and π

6 , respectively, Wt(z) gives

∞∑
n=0

Cn
4n(2n+ 1)

= π − 2 ,

∞∑
n=0

(
3

16

)n
Cn

2n+ 1
=

4(π
√

3− 3)

9
,

∞∑
n=0

Cn
8n(2n+ 1)

=
(π + 4)

√
2

2
− 4 ,

∞∑
n=0

Cn
16n(2n+ 1)

=
2(π + 6

√
3− 12)

3
.

Lemma 6. For any integer r,

3αr + βr = 2Lr + Fr
√

5 , 3αr − βr = Lr + 2Fr
√

5 .

Theorem 4. For any integer s,

∞∑
n=0

F2n+sCn
16n(2n+ 1)

=
2
√

5π

25

(
2Ls−1 +

√
5Fs−1

)
− 8Fs−2 +

4
√

5

5

(
β2Fs−1 − 2Fs−2

)√
α
√

5,
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∞∑
n=0

L2n+sCn
16n(2n+ 1)

=
2π

5

(
Ls−1 + 2

√
5Fs−1

)
− 8Ls−2 −

4
√

5

5

(
β2Ls−1 − 2Ls−2

)√
α
√

5.

Proof. Determining αs−2Wt(
3π
10 )∓βs−2Wt(

π
10 ), where s is an arbitrary integer, and

employing identity (6), we have

∞∑
n=0

Cn
16n

α2n+s ∓ β2n+s

2n+ 1
=

2π

5
(3αs−1 ± βs−1)

− 16(αs−2 ∓ βs−2) sin2
( π

20

)
− 4

√
−β3
√

5αs−2,

from which the stated identities follow in view of the Binet formulas and Lemmas 2

and 6.

Example 5. For s = 0 and s = 1, from Theorem 4 we obtain

∞∑
n=1

F2nCn
16n(2n+ 1)

= 8 +
2(5− 2

√
5)π

25
+

2(5− 7
√

5)

5

√
α
√

5 ,

∞∑
n=0

L2nCn
16n(2n+ 1)

= −24− 2(1− 2
√

5)π

5
− 2(1− 3

√
5)

√
α
√

5 ,

∞∑
n=0

F2n+1Cn
16n(2n+ 1)

= −8 +
8
√

5π

25
+

8
√

5

5

√
α
√

5 ,

∞∑
n=0

L2n+1Cn
16n(2n+ 1)

= 8 +
4π

5
+ 4(1−

√
5)

√
α
√

5 .

5. Results from Y (z)

The identity

Y (z) =

∞∑
n=1

zn

n2(n+ 1)Cn
= 2 arcsin2

(√z
2

)
immediately yields the following summation formulas:

∞∑
n=1

1

n2(n+ 1)Cn
=
π2

18
,

∞∑
n=1

(−1)n−1

n2(n+ 1)Cn
= 2 log2 α , (17)

∞∑
n=1

4n

n2(n+ 1)Cn
=
π2

2
,

∞∑
n=1

3n

n2(n+ 1)Cn
=

2π2

9
. (18)
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Most likely all these summations are known. The first one is a classical result due

to Euler. Both sums in (18) can be found in [28].

From (17) we also obtain

∞∑
n=1

1

n2(2n+ 1)C2n
=
π2

9
− 4 log2 α ,

∞∑
n=1

1

n(2n− 1)2C2n−1
=
π2

18
+ 2 log2 α .

Theorem 5. For any integer s,
∞∑
n=1

F2n+s

n2(n+ 1)Cn
=

π2

50
√

5
(9αs − βs) ,

∞∑
n=1

L2n+s

n2(n+ 1)Cn
=
π2

50
(9αs + βs) .

Proof. Determine αsY (α2)± βsY (β2) and use the Binet formulas.

Example 6. We have
∞∑
n=1

F2n−1

n2(n+ 1)Cn
=

(25− 4
√

5)π2

250
,

∞∑
n=1

L2n−1

n2(n+ 1)Cn
=

(4
√

5− 5)π2

50
,

∞∑
n=1

F2n

n2(n+ 1)Cn
=

4
√

5π2

125
, (19)

∞∑
n=1

L2n

n2(n+ 1)Cn
=
π2

5
,

∞∑
n=1

F2n+1

n2(n+ 1)Cn
=

(25 + 4
√

5)π2

250
,

∞∑
n=1

L2n+1

n2(n+ 1)Cn
=

(5 + 4
√

5)π2

50
.

Identity (19) was also obtained by Stewart [28, Identity (37c)].

6. Results from X(z)

The function

X(z) =

∞∑
n=1

zn

n(n+ 1)Cn
=

2
√
z arcsin(

√
z/2)√

4− z
,



INTEGERS: 22 (2022) 12

can also be written as

X(z) = 2 cot
(

arccos
(√z

2

))
arcsin

(√z
2

)
.

At z = 1, z = −1, z = 2, and z = 3, we have the following series:
∞∑
n=1

1

n(n+ 1)Cn
=

√
3π

9
, (20)

∞∑
n=1

(−1)n

n(n+ 1)Cn
=

2
√

5

5
logα , (21)

∞∑
n=1

2n

n(n+ 1)Cn
=
π

2
, (22)

∞∑
n=1

3n

n(n+ 1)Cn
=

2
√

3π

3
. (23)

The series (20) and (21) can be found in [14, p. 89] and [20], respectively, while the

series (22) and (23) were also obtained in [28].

Also, from (20) and (21) we obtain

∞∑
n=1

1

n(2n+ 1)C2n
=

√
3

9
− 2
√

5

5
logα ,

∞∑
n=1

1

n(2n− 1)C2n−1
=

√
3

9
+

2
√

5

5
logα .

Theorem 6. For any integer s,
∞∑
n=1

F2n+s

n(n+ 1)Cn
=

√
5πα

25

(√
5Fs+1 − Fs−1

)√
α
√

5 ,

∞∑
n=1

L2n+s

n(n+ 1)Cn
=

√
5πα

25

(√
5Ls+1 − Ls−1

)√
α
√

5 .

Proof. Evaluation of αsX(α2)± βsX(β2) gives

∞∑
n=1

α2n+s ± β2n+s

n(n+ 1)Cn
=

3π

5
αs cot

(π
5

)
± π

5
βs cot

(
2π

5

)
.

Thus, using the Binet formulas and identity (3) of Lemma 1, we have

∞∑
n=1

F2n+s

n(n+ 1)Cn
=

π

5
√

5
(3αs + βs+3) cot

(π
5

)
,

∞∑
n=1

L2n+s

n(n+ 1)Cn
=
π

5
(3αs − βs+3) cot

(π
5

)
,

and hence the stated identities, upon use of Lemma 5 with r = s.
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Example 7. We have

∞∑
n=1

F2n−1

n(n+ 1)Cn
=

√
5πα

25

√
α
√

5 ,

∞∑
n=1

L2n−1

n(n+ 1)Cn
=

(7
√

5− 5)π

50

√
α
√

5 ,

∞∑
n=1

F2n

n(n+ 1)Cn
=

2
√

5π

25

√
α
√

5 , (24)

∞∑
n=1

L2n

n(n+ 1)Cn
=

2
√

5πα2

25

√
α
√

5 , (25)

∞∑
n=1

F2n+1

n(n+ 1)Cn
=
πα

5

√
α
√

5 ,

∞∑
n=1

L2n+1

n(n+ 1)Cn
=

(15− 2
√

5)πα

25

√
α
√

5 .

Both series (24) and (25) appeared recently as a problem proposal [16]. Identity

(24) was also found by Stewart [28, Identity (37b)].

7. Some Combinatorial Identities

Before closing we state some combinatorial identities (finite and infinite) which

can be inferred from the series studied in the previous sections. Concerning the

finite class we note that similar results were studied by Witu la and S lota and their

collaborators [30, 31], and more recently by Alzer and Nagy [2], Batir et al. [4],

Batir and Sofo [5], Bhandari [7], Chen [11], Chu [12], and Qi et al. [23].

Our first example is an identity derived by Witu la and S lota [31] using a com-

pletely different method.

Theorem 7. For each n ≥ 1,

n∑
k=1

22k(
2k
k

) =
1

3

(22n+1

Cn
− 2
)
. (26)

Proof. We work with the function f(z). From (2) we get

∞∑
n=0

z2n

Cn
=

2(8 + z2)

(4− z2)2
+

24z arcsin( z2 )

(4− z2)5/2
. (27)
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Now, for all |z| < 1,

2z

(1− z2)5/2
arcsin(z) =

1

(1− z2)2
2z√

1− z2
arcsin(z)

=

∞∑
n=0

(n+ 1)z2
∞∑
n=1

(2z)2n

n
(
2n
n

)
=

∞∑
n=1

n∑
k=1

(n+ 1− k)
22k

k
(
2k
k

)z2n
and by replacing z by z

2

16z

(4− z2)5/2
arcsin

(z
2

)
=

1

2

∞∑
n=1

n∑
k=1

(n+ 1− k)
22k−2n

k
(
2k
k

) z2n.

Hence,
∞∑
n=0

z2n

Cn
=

2(8 + z2)

(4− z2)2
+

3

4

∞∑
n=1

n∑
k=1

(n+ 1− k)
2−2(n−k)

k
(
2k
k

) z2n.

Next, from the partial fraction decomposition

16 + 2z2

(4− z2)2
=

1

4(2 + z)
+

1

4(2− z)
+

3

2(2 + z)2
+

3

2(2− z)2

it follows that
16 + 2z2

(4− z2)2
=

∞∑
n=0

2 + 3n

22n+1
z2n, |z| < 2.

Comparing the coefficients of z2n and rearranging yields for all n ≥ 1

n∑
k=1

(n+ 1− k)
22k

k
(
2k
k

) =
1

3

(22n+2

Cn
− 4
)
− 2n.

The identity (26) follows from

n∑
k=1

22k

2k
(
2k
k

) =
22n(
2n
n

) − 1,

which is known as Parker’s formula [32].

Theorem 8. For each n ≥ 0,

n∑
k=0

(
2k
k

)(
2(n−k)
n−k

)
(2k + 1)

(
2(n− k) + 1

) =
16n

(n+ 1)(2n+ 1)
(
2n
n

) . (28)
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Proof. This identity can be derived straightforwardly by working with the function

Y (z) in conjunction with the power series expansion

A(z) = arcsin(z) =

∞∑
n=0

(
2n

n

)
z2n+1

4n(2n+ 1)
, |z| < 1.

It is interesting to compare identity (28) with the following identity derived by

Witu la et al. [30]:
n∑
k=0

(
2k
k

)(
2(n−k)
n−k

)
(2k + 1)

=
16n

(2n+ 1)
(
2n
n

) . (29)

The identity (29) was rediscovered by Qi et al. [23] and also by Batir et al. [4]

applying the Wilf-Zeilberger method.

The results stated in Theorems 9–12 follow from identities Gt(z), G1t(z), G2t(z),

and Y (z), in view of the identity∫ π
2

0

sin2n+1 x dx =
1

2n+ 1

4n(
2n
n

) , n ≥ 0. (30)

Theorem 9. If r is a positive integer, then

∞∑
n=0

1

(n+ 1)(2n+ 2r + 1)

(
2n
n

)(
2n+2r
n+r

) =
1

2(2r − 1)
(
2r−2
r−1

) − 1

22rr
.

Theorem 10. If r is a non-negative integer, then

∞∑
n=1

1

(2n+ 1)(2n+ 2r + 1)4n

(
4n
2n

)(
2n+2r
n+r

)
=

1

22r−1

∫ π
2

0

sin2r x sin
(x

2

)
dx− 1

(2r + 1)
(
2r
r

) .
In particular,

∞∑
n=1

1

(2n+ 1)24n

(
4n
2n

)(
2n
n

) = 3− 2
√

2.

Theorem 11. If r is a positive integer, then

∞∑
n=1

1

n(2n+ 2r − 1)4n

(
4n−2
2n−1

)(
2n+2r−2
n+r−1

)
=

1

(2r − 1)
(
2r−2
r−1

) − 1

22r−2

∫ π
2

0

sin2r−1 x cos
(x

2

)
dx.
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In particular,
∞∑
n=1

1

n(2n+ 1)4n

(
4n−2
2n−1

)(
2n
n

) =

√
2− 1

3
.

Theorem 12. If r is an integer and r ≥ −1, then

∞∑
n=1

1

n2(2n+ 2r + 1)

4n(
2n
n

) 4n(
2n+2r
n+r

) =
1

22r−1

∫ π
2

0

x2 sin2r+1 x dx.

In particular,

∞∑
n=1

16n

n2(2n+ 1)
(
2n
n

)2 = 2π − 4,

∞∑
n=1

16n

n2(2n− 1)
(
2n
n

)(
2n−2
n−1

) = −7

2
ζ(3) + 2πG,

where ζ(s) =
∞∑
k=1

1
ks is the Riemann zeta function and G =

∞∑
k=0

(−1)k
(2k+1)2 is Catalan’s

constant.

The trigonometric form of A(z) is

At(z) =

∞∑
n=0

(
2n

n

)
sin2n+1 z

4n(2n+ 1)
= z. (31)

Lemma 7 (Lewin [21, Identity A.3.3.13]). For real or complex y,∫ y

0

x

sinx
dx = Cl2(y) + Cl2(π − y) + y log

(
tan

(y
2

))
,

where Cl2(z) is the Clausen function defined by

Cl2(z) = −
∫ z

0

log |2 sin(x/2)| dx.

The following values are known, among others, see Lewin [21, p. 291, Sect. A.2.4]:

Cl2

(π
2

)
= G = −Cl2

(
3π

2

)
.

Our next result is a straightforward consequence of At(z), given in (31), upon

application of Lemma 7 and the well-known result:∫ π
2

0

sin2n x dx =
π

22n+1

(
2n

n

)
, n ≥ 0. (32)
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Theorem 13. If r is an integer and r ≥ 0, then

∞∑
n=0

(
2n
n

)(
2n+2r
n+r

)
24n+2r+1(2n+ 1)

=
1

π

∫ π
2

0

x sin2r−1 x dx.

In particular,

∞∑
n=0

(
2n
n

)2
16n(2n+ 1)

=
4G

π
,

∞∑
n=0

(
2n
n

)(
2n+2
n+1

)
16n(2n+ 1)

=
8

π
.

From the function Wt(z) and identities (30) and (32) come the next result.

Theorem 14. If r is an integer and r ≥ −1, then

∞∑
n=0

(
2n
n

)(
2n+2r+2
n+r+1

)
(n+ 1)(2n+ 1)24n+2r+4

=
1

π

∫ π
2

0

z sin2r+1 zdz − 1

22r+1

(
2r

r

)
+

1

π(2r + 1)
.

In particular,

∞∑
n=0

(
2n
n

)2
16n(n+ 1)(2n+ 1)

=
8G− 4

π
,

∞∑
n=0

(
2n
n

)(
2n+2
n+1

)
16n(n+ 1)(2n+ 1)

=
32

π
− 8 .
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