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Abstract: We study a certain family of infinite series with reciprocal Catalan numbers. We first
evaluate two special candidates of the family in closed form, where we also present some Catalan–
Fibonacci relations. Then, we focus on the general properties of the family and prove explicit formulas,
including two types of integral representations.
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1. Introduction and Motivation

The famous Catalan numbers Cn, n ≥ 0 are defined by Cn = 1
n+1 (

2n
n ). They can be also

expressed by the recursion

Cn =
2(2n− 1)

n + 1
Cn−1, C0 = 1.

The generating function for Cn is

∞

∑
n=0

Cnzn =
1−
√

1− 4z
2z

.

Catalan numbers have a long history and play an extraordinary role in combinatorics.
Excellent sources on these numbers are the books by Koshy [1], Roman [2] and Stan-
ley [3]. Some examples of recent work involving Catalan numbers and their generalizations
include [4–10].

Catalan numbers form a special class of the so-called special numbers and polyno-
mials. Other classes of these objects with comparable importance are Bernoulli numbers
(polynomials), Euler numbers (polynomials), Fibonacci numbers (polynomials), etc. These
objects play an important role in combinatorics, number theory and mathematical physics.
The main approach in the study of these numbers is via their generating functions, which
have been studied continuously. These generating functions have attracted considerable
attention from many mathematicians, statisticians, physicists and engineers [11–20].

This paper was inspired by a recent paper by Amdeberhan et al. [21], who studied
the function

f (z) =
∞

∑
n=0

zn

Cn
, z ∈ [0; 4),
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which generates the reciprocals of Catalan numbers. They prove by several methods that

f (z) =
2(z + 8)
(4− z)2 +

24
√

z arcsin(
√

z/2)
(4− z)5/2 , z ∈ [0; 4), (1)

This expression also appears in [22], and an equivalent form is given in [23]. The
hypergeometric expression for f (z) is

f (z) = 2F1

(
1, 2;

1
2

;
z
4

)
,

where

2F1(a, b; c; z) =
∞

∑
n=0

(a)n(b)n

(c)n

zn

n!
,

(a)n = a(a + 1) · · · (a + n− 1) = Γ(a+n)
Γ(a) , (a)0 = 1, is the Pochhammer symbol, and

Γ(z) is the gamma function defined by Γ(z) =
+∞∫
0

tz−1e−tdt with <(z) > 0.

Substituting z = 2 and z = 3, respectively, into (1) yields the evaluations

∞

∑
n=0

2n

Cn
= 5 +

3π

2
and

∞

∑
n=0

3n

Cn
= 22 + 8

√
3π,

which were stated in 2014 by Beckwith and Harbor as Problem 11765 in the American
Mathematical Monthly [24] and solved by Abel [25].

From [26], we have the identities

∞

∑
n=1

F2n

Cn
=

22
5

+
6(5 + 9

√
5)π

125
ω,

∞

∑
n=0

L2n

Cn
=

62
5

+
6(15 + 19

√
5)π

125
ω,

where Fn and Ln are the famous Fibonacci and Lucas numbers, respectively, α = 1+
√

5
2 is

the golden ratio and ω =
√√

5α =
√

2 + α. These numbers are defined for n ≥ 0 by the
recursions Fn+2 = Fn+1 + Fn and Ln+2 = Ln+1 + Ln with initial conditions F0 = 0, F1 = 1,
L0 = 2 and L1 = 1, respectively. The Binet formulas are given by

Fn =
αn − βn

α− β
, Ln = αn + βn,

where β = − 1
α = 1−

√
5

2 . For negative subscripts we have

F−n = (−1)n+1Fn and L−n = (−1)nLn.

See the book by Koshy [27] for more details.
Our purpose in this paper is to study, for each integer m ≥ 0, the following family

of series:

gm(z) =
∞

∑
n=0

22nnm

2n + 1
zn

Cn
, 0 ≤ z < 1.

We begin by evaluating the functions g0(z) and g1(z) explicitly for some values of z,
including Fibonacci and Lucas numbers. Then, focusing on gm(z), we prove some explicit
expressions for gm(z), including two integral representations.

2. The Functions g0(z) and g1(z)

Sprugnoli [28] has derived some generating functions for series involving reciprocals
of central binomial coefficients. His approach is built on ordinary differential equations
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but leaves some gaps in the derivations. For instance, he does not state the domains of the
presented functions. One of Sprugnoli’s results [28], Theorem 2.4, is the following identity:

∞

∑
n=0

22nzn+1

(2n + 1)(2n
n )

=

√
z

1− z
arctan

(√ z
1− z

)
. (2)

Since arctan
(√

z
1−z

)
= arcsin (

√
z) for 0 ≤ z < 1, the above identity could be stated

equivalently using the arcsine function as in (1). In this paper, however, we have decided to
work with the notation used by Sprugnoli. Our first goal is to give a rigorous proof of (2).

Theorem 1. For all 0 ≤ z < 1 we have the identity

∞

∑
n=0

22nzn+1

(2n + 1)(2n
n )

=

√
z

1− z
arctan

(√ z
1− z

)
. (3)

Proof. For each integer n ≥ 0, consider the integral
∫ 1

−1
(1− x2)ndx. Then, we can evaluate

the integral in two ways. First, we have

∫ 1

−1
(1− x2)ndx =

22n+1

(2n + 1)(2n
n )

. (4)

The result is known. It can be proved easily using integration by parts. It is, however,
a special case of the more interesting fact [1] (p. 52) that

∫ b

a
(x− a)n(b− x)ndx = 2 · 2 · 4 · 6 · · · (2n)

3 · 5 · 7 · · · (2n + 1)
·
(

b− a
2

)2n+1
, n ≥ 1.

By the binomial theorem, the integral can be also evaluated as

∫ 1

−1
(1− x2)ndx =

∫ 1

−1

n

∑
k=0

(
n
k

)
(−1)kx2kdx = 2

n

∑
k=0

(
n
k

)
(−1)k

2k + 1
.

Hence,

∞

∑
n=0

22nzn

(2n + 1)(2n
n )

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
(−1)k zn

2k + 1

=
∞

∑
k=0

(−1)k

2k + 1

∞

∑
n=k

(
n
k

)
zn

=
∞

∑
k=0

(−1)kzk

2k + 1

∞

∑
n=0

(
n + k

k

)
zn

=
∞

∑
k=0

(−1)kzk

2k + 1

∞

∑
n=0

(
n + k

n

)
zn

=
∞

∑
k=0

(−1)kzk

2k + 1
1

(1− z)k+1 .

This shows that

∞

∑
n=0

22nzn+1

(2n + 1)(2n
n )

=
∞

∑
n=0

(−1)n

2n + 1

( z
1− z

)n+1
.
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Combining this with the fact that

∞

∑
n=0

(−1)n

2n + 1
x2n+1

is the Taylor series of the arctangent for −1 < x < 1, and letting x =
√

z
1−z , we find that

identity (2) holds for 0 ≤ z ≤ 1
2 . However, since the series has a radius of convergence 1,

by analytic continuation, the identity in question holds for every z ∈ [0; 1).

Differentiating both sides of (3) with respect to z gives

g0(z) =
1

2(1− z)
+

1
2(1− z)2

arctan
(√

z
1−z

)
√

z
1−z

, z ∈ [0; 1).

Differentiating once more and multiplying by z gives

g1(z) =
2z + 1

4(1− z)2 +
4z− 1

4(1− z)3

arctan
(√

z
1−z

)
√

z
1−z

, z ∈ [0; 1). (5)

Moreover, we see that

g0(z) =
1

(1− z)2

∞

∑
n=0

(−1)n(n + 1)
2n + 1

( z
1− z

)n
,

and

g1(z) =
1

(1− z)3

∞

∑
n=0

(−1)n(n + 1)
2n + 1

(2z + n)
( z

1− z

)n
.

The trigonometric versions of g0(z) and g1(z) are also useful; namely,

gt,0(z) =
∞

∑
n=0

22n sin2n z
(2n + 1)Cn

=
1
2

( 1
cos2 z

+
z

cos3 z sin z

)
=

1
2 cos2 z

(
1 +

2z
sin 2z

)
and

gt,1(z) =
∞

∑
n=0

22nn sin2n z
(2n + 1)Cn

=
1

4 cos4 z

(
2− cos 2z + (1− 2 cos 2z)

2z
sin 2z

)
, (6)

both valid for 0 ≤ z < π
2 .

At z = π
3 , z = π

4 and z = π
6 , function gt,0(z), respectively, gives

∞

∑
n=0

3n

(2n + 1)Cn
= 2 +

8π
√

3
9

,
∞

∑
n=0

2n

(2n + 1)Cn
= 1 +

π

2
,

∞

∑
n=0

1
(2n + 1)Cn

=
2
3
+

4π
√

3
27

.

We also find from (5) or (6) and the principal branch for the square-root function

∞

∑
n=1

n
(2n + 1)Cn

=
2
3

,
∞

∑
n=1

(−1)nn
(2n + 1)Cn

=
2
25

(
1− 16√

5
ln α

)
,

∞

∑
n=1

2nn
(2n + 1)Cn

= 2 +
π

2
,

∞

∑
n=1

(−1)nn2n

(2n + 1)Cn
=

√
3

9
ln
(
2−
√

3
)
, (7)
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∞

∑
n=1

3nn
(2n + 1)Cn

= 10 +
32π

3
√

3
,

∞

∑
n=1

(−1)nn3n

(2n + 1)Cn
= − 2

49

(
1− 16√

21
ln
(5−

√
21

2

))
.

To offer some evaluations of g0(z) involving Fibonacci and Lucas numbers, we need
the following lemma.

Lemma 1 ([29] Lemma 1, see also [30] p. 271, identities (20)–(22)). We have

sin
( π

10

)
= − β

2
, sin

(
3π

10

)
=

α

2
, cos

( π

10

)
=

√
α
√

5
2

, cos
(

3π

10

)
=

1
2

√
5

α
√

5
.

Theorem 2. With ω =
√√

5α =
√

2 + α, we have for any integer s

5
∞

∑
n=0

F2n+s

(2n + 1)Cn
= 2Ls+1 +

4
√

5π ω

25
(
(2 + 2α)Fs + (4− α)Fs−1

)
,

∞

∑
n=0

L2n+s

(2n + 1)Cn
= 2Fs+1 +

4
√

5π ω

25
(2Fs + αFs−1).

Proof. Set z = 3π
10 in gt,0(z) and multiply through by αs, where s is an arbitrary integer.

Using Lemma 1 yields

∞

∑
n=0

α2n+s

(2n + 1)Cn
=

2√
5

αs+1 +
12π√
125
√

5
αs√α.

In a similar manner, set z = π
10 in gt,0(z) and multiply through by βs to obtain

∞

∑
n=0

β2n+s

(2n + 1)Cn
= − 2√

5
βs+1 +

4π√
125
√

5

βs
√

α
.

The difference and sum of the above identities result in the identities

∞

∑
n=0

F2n+s

(2n + 1)Cn
=

2
5

Ls+1 +
4π

25
√

α
√

5
(αLs+2 + Ls−1),

∞

∑
n=0

L2n+s

(2n + 1)Cn
= 2Fs+1 +

4π√
125α
√

5

(
α(Fs+1 + Ls) + Fs + Ls+1

)
.

The stated identities follow upon simplifications.

As examples, we have with ω =
√√

5α :

∞

∑
n=1

F2n

(2n + 1)Cn
=

2
5
+

4(7α− 6)πω

125
,

∞

∑
n=1

L2n

(2n + 1)Cn
=

4(α + 2)πω

25
,

∞

∑
n=1

F2n+1

(2n + 1)Cn
=

1
5
+

8(3α + 1)πω

125
,

∞

∑
n=1

L2n+1

(2n + 1)Cn
= 1 +

8
√

5πω

25
,

∞

∑
n=1

F2n−2

(2n + 1)Cn
=

3
5
+

8(4α− 7)πω

125
,

∞

∑
n=1

L2n−2

(2n + 1)Cn
= −1 +

8(3− α)πω

25
.

Using the same idea for gt,1(z), we can prove the next theorem, whose proof we
therefore omit.
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Theorem 3. With ω =
√√

5α =
√

2 + α, we have for any integer s

∞

∑
n=1

nF2n+s

(2n + 1)Cn
= 2Fs+1 +

8
5

Fs +
8
√

5π ω

125
(√

5αFs+1 + 2Fs
)

and
∞

∑
n=1

nL2n+s

(2n + 1)Cn
= 2Ls+1 +

8
5

Ls +
8
√

5π ω

125
(
(6 + α)Fs+1 + 2α2Fs

)
.

Another interesting example for an evaluation of g1(z) with Fibonacci (Lucas) entries
is the following result.

Theorem 4. Let r be an even integer and s any integer. Then,

∞

∑
n=1

22nnFrn+s

(2n + 1)Ln
r Cn

=

(
F3r+s +

Lr

2
F2r+s

)
Lr

2
+ (LrL2r+s − 4L3r+s)

L2
r

4
√

5
arctan(βr)

+
(

4L3r+s − LrL2r+s + (4F3r+s − LrF2r+s)
√

5
) πL2

r

16
√

5

and

∞

∑
n=1

22nnLrn+s

(2n + 1)Ln
r Cn

=

(
L3r+s +

Lr

2
L2r+s

)
Lr

2
+ (LrF2r+s − 4F3r+s)

L2
r
√

5
4

arctan(βr)

+
(

4L3r+s − LrL2r+s + (4F3r+s − LrF2r+s)
√

5
)πL2

r
16

.

Proof. First note that 1− αr/Lr = βr/Lr and that if r is an even integer, then√
αr/Lr

1− αr/Lr
=

√
αr

Lr − αr = αr.

Let s be an arbitrary integer. Consider αsg1(α
r/Lr)∓ βsg1(βr/Lr). We have

∞

∑
n=1

22nn(αrn+s ∓ βrn+s)

Ln
r (2n + 1)Cn

= (α3r+s ∓ β3r+s)
Lr

2
+ (α2r+s ∓ β2r+s)

L2
r

4
+

(
4α2r+s

βr − αr+s

βr Lr

)
L2

r
4

arctan(αr)

∓
(

4β2r+s

αr − βr+s

αr Lr

)
L2

r
4

arctan(βr),

from which the stated identities in the theorem follow using the Binet formulas and the
fact that arctan αr = π

2 − arctan βr for any even integer r.

As particular instances of Theorem 4, we have, for an even integer r,

∞

∑
n=1

22n+1nF(n−2)r

(2n + 1)Ln
r Cn

= F2r + (Lr + 2Fr
√

5)
πL2

r

4
√

5
− L3

r√
5

arctan(βr),

∞

∑
n=1

22nnL(n−2)r

(2n + 1)Ln
r Cn

= L2
r + (Lr + 2Fr

√
5)

πL2
r

8
− FrL2

r
√

5 arctan(βr), (8)



Axioms 2022, 11, 165 7 of 14

∞

∑
n=1

22nnF(n−3)r

(2n + 1)Ln
r Cn

= −1
4

L2
r Fr +

(
8− L2

r + F2r
√

5
)πL2

r
√

5
80

+
(

L2
r − 8

) L2
r
√

5 arctan(βr)

20
,

and

∞

∑
n=1

22nnL(n−3)r

(2n + 1)Ln
r Cn

=

(
2 +

1
2

L2
r

)
Lr

2
+
(

8− (−1)rL2
r + F2r

√
5
)πL2

r
16

− 1
4

L3
r Fr
√

5 arctan(βr). (9)

Note that both (8) and (9) give (7) when r = 0.

3. Integral Expressions for g0(z) and g1(z)

Integral expressions for the functions g0(z) and g1(z) are derived easily using the
integral identity (4).

Theorem 5. We have

g0(z) =
1
2

∫ 1

−1

1
(1− z(1− x2))2 dx,

g1(z) = z
∫ 1

−1

1− x2

(1− z(1− x2))3 dx.

Proof. From the geometric series and the above lemma, we deduce that for all 0 ≤ z < 1,

∞

∑
n=0

22nzn+1

(2n + 1)(2n
n )

=
1
2

∫ 1

−1

z
1− z(1− x2)

dx.

Differentiating produces the first equation. To obtain the second equation, we perform
the operation z(d/dz)g0(z), and the proof is completed.

It is interesting to compare the integral expressions for g0(z) and g1(z) with that for
f (z). This expression is not stated explicitly in [21] but can be derived as follows:

∞

∑
n=1

zn

Cn
=

∞

∑
n=1

(n + 1)

(2n
n )

zn

=
∞

∑
n=1

n(n + 1)Γ(n)Γ(n + 1)
Γ(2n + 1)

zn

=
∞

∑
n=1

n(n + 1)B(n, n + 1)zn

=
∞

∑
n=1

n(n + 1)
∫ 1

0
xn−1(1− x)ndx zn

= 2z
∫ 1

0

1− x
(1− zx(1− x))3 dx,

where B(a, b) is the beta function B(a, b) =
1∫

0
xa−1(1− x)b−1dx = Γ(a)Γ(b)

Γ(a+b) .

This proves that

f (z) = 1 + 2z
∫ 1

0

1− x(
1− zx(1− x)

)3 dx.
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4. Some General Properties of gm(z)

In this section, we present some general properties of gm(z), which is defined by

gm(z) =
∞

∑
n=0

22nnm

2n + 1
zn

Cn
, 0 ≤ z < 1,

with m ≥ 0 being an integer. We have the following result:

Theorem 6. For each m ≥ 0 and all 0 ≤ z < 1, gm(z) possesses the representation

gm(z) =
P1,m(z)

(1− z)m+1 +
P2,m(z)

(1− z)m+2

arctan
(√

z
1−z

)
√

z
1−z

, (10)

where P1,m(z) and P2,m(z) are polynomials in z of degree m with rational coefficients.
Moreover, for m ≥ 1, the polynomials P1,m(z) and P2,m(z) can be expressed recursively according to

P1,m(z) = z(1− z)
d
dz

P1,m−1(z) + mzP1,m−1(z) +
1
2

P2,m−1(z), (11)

P2,m(z) = z(1− z)
d
dz

P2,m−1(z) + (m + 1)zP2,m−1(z)−
1
2

P2,m−1(z), (12)

with P1,0(z) = P2,0(z) = 1
2 .

Proof. The proof of the representation (10) is easy using induction on m taking into account
gm+1(z) = z(d/dz) gm(z) = (zd/dz)mg0(z) and the identity

d
dz

arctan
(√

z
1−z

)
√

z
1−z

=
1
2z
− 1

2z(1− z)

arctan
(√

z
1−z

)
√

z
1−z

.

The recursive expressions for P1,m(z) and P2,m(z) follow from the proof as a by-
product.

The first few polynomials have the following explicit forms:

P1,1(z) =
1
4
(2z + 1), P2,1(z) =

1
4
(4z− 1),

P1,2(z) =
1
8
(4z2 + 12z− 1), P2,2(z) =

1
8
(16z2 − 2z + 1).

We mention that the coupled recursions (11) and (12) can be solved explicitly, but the
closed forms seem not to shed enough light on their general structure. Nevertheless, we
can prove the following expressions:

Proposition 1. For each m,

P1,m(z) =
1
2

m!zm +
m−1

∑
j=0

(
m
j

)
j!zj
(

z(1− z)
d
dz

P1,m−(j+1)(z) +
1
2

P2,m−(j+1)(z)
)

,

P2,m(z) =
1
2

m

∏
j=1

(
(j + 1)z− 1

2

)
+ z(1− z)

m

∑
j=1

d
dz

P2,m−j(z)
j

∏
k=2

(
(m + 3− k)z− 1

2

)
,

where the empty product is one and the empty sum is zero.
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Proof. We can use induction on m to prove both formulas. For m = 0, the statements are
true. The inductive step for P1,m(z) is

P1,m+1(z) = (m + 1)zP1,m(z) + z(1− z)
d
dz

P1,m(z) +
1
2

P2,m(z)

=
1
2
(m + 1)!zm+1 +

m−1

∑
j=0

(
m
j

)
j!(m + 1)zj+1

(
z(1− z)

d
dz

P1,m−(j+1)(z) +
1
2

P2,m−(j+1)(z)
)

+ z(1− z)
d
dz

P1,m(z) +
1
2

P2,m(z)

=
1
2
(m + 1)!zm+1 +

m−1

∑
j=−1

(
m + 1
j + 1

)
(j + 1)!zj+1

(
z(1− z)

d
dz

P1,m−(j+1)(z) +
1
2

P2,m−(j+1)(z)
)

=
1
2
(m + 1)!zm+1 +

m

∑
j=0

(
m + 1

j

)
j!zj
(

z(1− z)
d
dz

P1,m−j(z) +
1
2

P2,m−j(z)
)

.

Similarly, the inductive proof for P2,m(z) is accomplished according to

P2,m+1(z) =
(
(m + 2)z− 1

2

)
P2,m(z) + z(1− z)

d
dz

P2,m(z)

=
(
(m + 2)z− 1

2

)(1
2

m

∏
j=1

(
(j + 1)z− 1

2

)

+ z(1− z)
m

∑
j=1

d
dz

P2,m−j(z)
j

∏
k=2

(
(m + 3− k)z− 1

2

))
+ z(1− z)

d
dz

P2,m(z)

=
1
2

m+1

∏
j=1

(
(j + 1)z− 1

2

)
+ z(1− z)

(
d
dz

P2,m(z)

+
m

∑
j=1

d
dz

P2,m−j(z)
(
(m + 2)z− 1

2

) j

∏
k=2

(
(m + 3− k)z− 1

2

))

=
1
2

m+1

∏
j=1

(
(j + 1)z− 1

2

)
+ z(1− z)

m

∑
j=0

d
dz

P2,m−j(z)
j

∏
k=1

(
(m + 3− k)z− 1

2

)

=
1
2

m+1

∏
j=1

(
(j + 1)z− 1

2

)
+ z(1− z)

m+1

∑
j=1

d
dz

P2,m−(j−1)(z)
j−1

∏
k=1

(
(m + 3− k)z− 1

2

)

=
1
2

m+1

∏
j=1

(
(j + 1)z− 1

2

)
+ z(1− z)

m+1

∑
j=1

d
dz

P2,m+1−j(z)
j

∏
k=2

(
(m + 4− k)z− 1

2

)
.

Applying Theorem 6 in the case m = 2 yields

∞

∑
n=1

22nn2

2n + 1
zn

Cn
=

4z2 + 12z− 1
8(1− z)3 +

16z2 − 2z + 1
8(1− z)4

arctan
(√

z
1−z

)
√

z
1−z

,

from which we obtain
∞

∑
n=1

n2

(2n + 1)Cn
=

2
3
+

8
√

3π

81
,

∞

∑
n=1

2nn2

(2n + 1)Cn
= 6 + 2π,

∞

∑
n=1

3nn2

(2n + 1)Cn
= 82 +

272
√

3π

9
.
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Corollary 1. For each m ≥ 0, the sum
∞

∑
n=0

2nnm

(2n + 1)Cn
can be expressed in the form a + bπ, with

a and b rational. The sums
∞

∑
n=0

nm

(2n + 1)Cn
and

∞

∑
n=0

3nnm

(2n + 1)Cn
allow the same representation

but with b being irrational.

Theorem 7. For each m ≥ 0 and all |z| < 1, gm(z) possesses the integral representation

gm(z) =
∫ 1

−1

Qm(z; x)
(1− z(1− x2))m+2 dx,

where Qm(z; x) is a polynomial in z of degree m given by

Qm(z; x) =
1
2
(m + 1)!(az)m + (1− az)z

d
dz

Qm−1(z; x)

+ (1− az)z
m−1

∑
j=1

(
m + 1

j

)
j!(az)j d

dz
Qm−(j+1)(z; x), (13)

with Q0(z; x) = 1
2 , and where we have set a = 1− x2.

Proof. We prove the claim by induction on m. Since

g0(z) =
1
2

∫ 1

−1

1
(1− z(1− x2))2 dx,

the statement is true for m = 0. Now, assuming it is true for a fixed m > 0, we can
proceed with

gm+1(z) = z
d
dz

gm(z) = z
∫ 1

−1

d
dz Qm(z; x)(1− az) + (m + 2)aQm(z; x)(

1− z(1− x2)
)m+3 dx.

This gives the recursion

Qm(z; x) = (m + 1)azQm−1(z; x) + z(1− az)
d
dz

Qm−1(z; x), m ≥ 1. (14)

This recursion can be solved by standard methods to give (13). Alternatively, one can
prove (13) directly by induction on m using (14).

5. Another Integral Expression for gm(z) Using Mellin Transform

Lemma 2. For integers m, n ≥ 0, we have

m

∑
j=0

(−1)jS(m + 1, m + 1− j)(n + m− j)! = nmn!,

where S(n, k) are the Stirling numbers of the second kind, defined by S(0, 0) = 1, S(n, n) =
S(n, 1) = 1 (n ≥ 1) and

S(n, k) =
1
k!

k

∑
s=0

(−1)s
(

k
s

)
(k− s)n.

Proof. Consider the known representation

xm =
m

∑
j=0

(
x
j

)
S(m, j)j!.
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Let x = −n. Using
(

s
j

)
= (−1)j

(
−s + j− 1

j

)
we have

(−1)m+1nm+1 =
m+1

∑
j=0

(
−n

j

)
S(m + 1, j)j!

=
m+1

∑
j=0

(−1)j
(

n + j− 1
j

)
S(m + 1, j)j!

=
m+1

∑
j=0

(−1)j (n + j− 1)!
(n− 1)!

S(m + 1, j).

Thus, by reindexing the summation

(−1)m+1nm+1(n− 1)! =
m+1

∑
j=0

(−1)m−j+1S(m + 1, m + 1− j)(n + m− j)!

=
m

∑
j=0

(−1)m−j+1S(m + 1, m + 1− j)(n + m− j)!

as S(n, 0) = 0, n ≥ 1.

Theorem 8. The function gm(z) possesses the integral representation

gm(z) =
1√
z

m

∑
j=0

(−1)jS(m + 1, m + 1− j)
∫ ∞

0
x(m−j)/2Kj+1−m(2

√
x) sinh(2

√
xz)dx,

where Kv(x) is the modified Bessel function of the second kind, which can be defined by

Kv(x) =
∫ ∞

0
cosh(vt)e−x cosh tdt (x > 0).

Proof. The proof is based on ideas developed in [21]. Recall that the Mellin transform of a
real-valued function f (x) on (0, ∞) is defined by the integral [31]

M[ f (x)](s) =
∫ ∞

0
xs−1 f (x)dx.

The gamma function Γ(n) can be interpreted as M[e−x](n) and thus

M[xe−x](n + 1) = (n + 1)!.

Since

gm(z) =
∞

∑
n=0

(4z)n

(2n + 1)!
nm(n + 1)!n!,

we want to find a function fm(x) such that

nmn!(n + 1)! = M[ fm(x)]M[xe−x](n + 1).

By Lemma 2, it follows that such a function is

fm(x) =
m

∑
j=0

(−1)jS(m + 1, m + 1− j)xm−je−x.

Now, we are going to apply the Mellin convolution theorem:

M[ f1(x)]M[ f2(x)](s) = M[F(x)](s)
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with
F(x) =

∫ ∞

0
f1(x1) f2

( x
x1

)dx1

x1
.

In our case, F(x) equals

F(x) =
∫ ∞

0

( m

∑
j=0

(−1)jS(m + 1, m + 1− j)xm−j
1 e−x1

) x
x1

e−x/x1
dx1

x1

=
m

∑
j=0

(−1)jS(m + 1, m + 1− j)
∫ ∞

0
x

e−(x1+x/x1)

xj+2−m
1

dx1

= 2
m

∑
j=0

(−1)jS(m + 1, m + 1− j)x(m+1−j)/2Kj+1−m(2
√

x),

where the following representation for the modified Bessel function of the second kind [21]
was used:

Kv(z) =
1
2

( z
2

)v ∫ ∞

0

e−(t+z2/4t)

tv+1 dt.

Finally, we calculate

gm(z) =
∞

∑
n=0

(4z)n

(2n + 1)!
nm(n + 1)!n!

=
∞

∑
n=0

(4z)n

(2n + 1)!
M[F(x)](n + 1)

=
∫ ∞

0
F(x)

∞

∑
n=0

(4xz)n

(2n + 1)!
dx

=
∫ ∞

0
F(x)

sinh(2
√

xz)
2
√

xz
dx.

Two special cases of the representation are

g0(z) =
1√
z

∫ ∞

0
sinh(2

√
xz)K1(2

√
x)dx

and
g1(z) =

1√
z

∫ ∞

0
sinh(2

√
xz)
(√

xK0(2
√

x)− K1(2
√

x)
)

dx.

6. Concluding Comments

In this paper, we have studied an interesting family of infinite series involving Catalan
numbers. In particular, we have evaluated these series for special arguments and pro-
vided characterizations. Before closing, we want to state two different approaches that
were communicated to us by one of the referees. First, if we set r(z) = z arctan z and

k(z) =
√

z
1−z , then h(z) = r(z) ◦ k(z), where h(z) equals identity (3). This shows that

the functions gm(z) can also be studied by the Faà di Bruno formula. Furthermore, as
gm+1(z) = z d

dz gm(z) = (z d
dz )

mg0(z), it is possible to study gm(z) by expanding the factors
(z d

dz )
m according to (

z
d
dz

)n
= ∑

k
S(n, k)zk

( d
dz

)k
,

where S(n, k) are the Stirling numbers of the second kind.
Finally, we remark that Sprugnoli’s identity (2), which is the starting point of our

exploration, can be integrated resulting in the identity
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∞

∑
n=0

22n

(2n + 1)(n + 1)(n + 2)
zn

Cn
=

1
2z

+
1

2z2 arctan2
(√ z

1− z

)
−

arctan
(√

z
1−z

)
z
√

z
1−z

,

and containing the evaluation

∞

∑
n=0

2n

(2n + 1)(n + 1)(n + 2)Cn
=

π2

8
− π

2
+ 1

as a special instance (at z = 1
2 ).
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