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Abstract

In this paper, we find formulas for the determinants of some Hessenberg–Toeplitz

matrices whose nonzero entries are derived from the Motzkin number sequence and its

translates. We provide both algebraic and combinatorial proofs of our results, making

use of generating functions for the former and various counting methods, such as direct

enumeration, sign-changing involutions, and bijections, for the latter. In the process,

it is shown that three important classes of lattice paths—namely, the Motzkin paths,

the Riordan paths, and the so-called Motzkin left factors—have their cardinalities

given as determinants of certain Hessenberg–Toeplitz matrices with Motzkin number

entries. Further formulas are found for determinant identities involving two sequences

from the On-Line Encyclopedia of Integer Sequences, which are subsequently explained

bijectively.
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1 Introduction

The Motzkin numbers, denoted by Mn, have been widely studied in enumerative and alge-
braic combinatorics. They are defined recursively by

Mn = Mn−1 +
n−2∑

i=0

MiMn−2−i, n ≥ 2,

or equivalently by

Mn =
2n+ 1

n+ 2
Mn−1 +

3n− 3

n+ 2
Mn−2, n ≥ 2,

with initial values M0 = M1 = 1. The first several terms of the Motzkin sequence (Mn)n≥0

are given by

1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, 113634, . . . .

See sequence A001006 from the On-Line Encyclopedia of Integer Sequences (OEIS) [25] for
further information on this sequence. Here we are interested in some new combinatorial
aspects of Motzkin numbers related to their occurrence in certain Hessenberg–Toeplitz ma-
trices.

Let Rn denote the n-th Riordan number A005043 and Ln the n-th term of sequence
A005773 for n ≥ 0. The first ten terms of (Rn)n≥0 and (Ln)n≥0 are given respectively by

1, 0, 1, 1, 3, 6, 15, 36, 91, 232, . . . and 1, 1, 2, 5, 13, 35, 96, 267, 750, 2123, . . . .

The Rn and Ln are closely aligned with the Motzkin numbers in that they satisfy the simple
relations Mn = Rn + Rn+1 and Mn = 3Ln+1 − Ln+2 for n ≥ 0, which can be shown using
generating functions or bijectively. The Mn, Rn, and Ln sequences enumerate important
classes of first quadrant lattice paths in which there are three kinds of steps–up, down, and
horizontal. See [5] for further combinatorial properties of the Motzkin and Riordan numbers.
In establishing our results, we will make use of their (ordinary) generating function formulas

M(x) :=
∑

n≥0

Mnx
n =

1− x−
√
1− 2x− 3x2

2x2
,

R(x) :=
∑

n≥0

Rnx
n =

1 + x−
√
1− 2x− 3x2

2x(1 + x)
,

and

L(x) :=
∑

n≥0

Lnx
n =

3x− 1−
√
1− 2x− 3x2

6x− 2
.

A variety of different parameters have been considered on Motzkin paths in the literature;
see, e.g., [3, 4, 8, 9, 10, 12, 13, 22, 23, 24].
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On the other hand, relatively little has been written on determinants of matrices with
Motzkin number entries. The main results in this direction are those of Aigner [1], who
showed that the determinant of the Hankel matrix

(
Mi+j−2

)n
i,j=1

is 1 for all n, while the

determinant of the Hankel matrix
(
Mi+j−1

)n
i,j=1

is 1, 0,−1,−1, 0, 1 for n = 1, . . . , 6, repeating

modulo 6 thereafter. Later, in [7], Cameron and Yip used combinatorial methods to evaluate
Hankel determinants for the sequence of sums of consecutive t-Motzkin numbers.

In [14], the authors found determinants of several families of Toeplitz–Hessenberg ma-
trices having various subsequences of the Catalan sequence for the nonzero entries. These
determinant formulas could also be expressed equivalently as identities involving sums of
products of Catalan numbers and multinomial coefficients. Further comparable results fea-
turing combinatorial arguments have been found for the generalized Fibonacci, tribonacci,
and tetranacci numbers [15, 16, 17].

This paper is organized as follows. In the next section, we find formulas giving algebraic
proofs for the determinants of five Hessenberg–Toeplitz matrices whose entries are derived
from translates of the Motzkin number sequence. In particular, we find new expressions
involving determinants for the sequences Mn, Rn, and Ln. An equivalent multi-sum version
of these expressions may be given using a result known as Trudi’s formula (see Lemma 1
below). Further formulas are found for determinants of matrices with entries from the Rn and
Ln sequences and a related recurrence for sequence A109190 is shown. In the third section,
we provide combinatorial proofs of all of our results where we make use of the definition
of an n × n determinant as a signed sum over the set of permutations of [n] = {1, . . . , n}.
We employ various counting techniques, perhaps most notably sign-changing involutions, in
providing these proofs and draw upon the combinatorial interpretations of Mn, Rn, and Ln

as enumerators of certain classes of lattice paths.

2 Determinant formulas of matrices with Motzkin num-

ber entries

A Hessenberg–Toeplitz matrix is one having the form

An := An(a0; a1, . . . , an) =




a1 a0 0 · · · 0 0
a2 a1 a0 · · · 0 0
a3 a2 a1 · · · 0 0

· · · · · · · · · . . . · · · · · ·
an−1 an−2 an−3 · · · a1 a0
an an−1 an−2 · · · a2 a1




, (1)

where a0 6= 0. The following result is known as Trudi’s formula [20, Theorem 1] and gives a
multinomial expansion of det(An) in terms of a sum of products of the ai.
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Lemma 1. Let n be a positive integer. Then

det(An) =
∑

s̃=n

(−a0)
n−|s|

( |s|
s1, . . . , sn

)
as11 as22 · · · asnn , (2)

where
( |s|
s1,...,sn

)
= |s|!

s1!s2!···sn! , s̃ = s1 + 2s2 + · · · + nsn, |s| = s1 + s2 + · · · + sn, si ≥ 0.
Equivalently, we have

det(An) =
n∑

k=1

(−a0)
n−k

∑

i1,...,ik≥1
i1+i2+···+ik=n

ai1ai2 · · · aik .

The case a0 = 1 of Trudi’s formula is known as Brioschi’s formula [21]. Note that the
sum in (2) may be regarded as being over the set of partitions of the positive integer n. Here,
we will focus on some cases of det(An) when a0 = ±1. To simplify notation, we will write
D±(a1, a2, . . . , an) in place of det

(
An(±1; a1, a2, . . . , an)

)
.

Let Cn = 1
n+1

(
2n
n

)
denote the n-th Catalan number [25, A000108]. We have the follow-

ing Hessenberg–Toeplitz determinant formulas and the corresponding multi-sum Motzkin
number identities upon applying (2).

Theorem 2. We have

D+(M0,M1, . . . ,Mn−1) = (−1)n−1Rn−1 =
n−1∑

k=0

(−1)k
(
n− 1

k

)
Ck, (3)

D+(M1,M2, . . . ,Mn) = (−1)n−1Mn−2 =
n−1∑

k=1

(−1)k
(
n− 2

k − 1

)
Ck, n ≥ 2, (4)

D−(M0,M1, . . . ,Mn−1) = Ln =
n−1∑

k=0

(−1)n−k−1(2k + 1)

(
n− 1

k

)
Ck, (5)

D−(M1,M2, . . . ,Mn) =
1

2
A111961(n), (6)

D+(M2,M3, . . . ,Mn+1) = (−1)n−1Rn−1, n ≥ 2, (7)

which hold for n ≥ 1 unless stated otherwise.
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Corollary 3. We have

∑

s̃=n

(−1)|s|−1

( |s|
s1, . . . , sn

)
M s1

0 M s2
1 · · ·M sn

n−1 = Rn−1, (8)

∑

s̃=n

(−1)|s|−1

( |s|
s1, . . . , sn

)
M s1

1 M s2
2 · · ·M sn

n = Mn−2, n ≥ 2, (9)

∑

s̃=n

( |s|
s1, . . . , sn

)
M s1

0 M s2
1 · · ·M sn

n−1 = Ln, (10)

∑

s̃=n

( |s|
s1, . . . , sn

)
M s1

1 M s2
2 · · ·M sn

n =
1

2
A111961(n), (11)

∑

s̃=n

(−1)|s|−1

( |s|
s1, . . . , sn

)
M s1

2 M s2
3 · · ·M sn

n+1 = Rn−1, n ≥ 2, (12)

which hold for n ≥ 1 unless stated otherwise.

The identities in the preceding theorem and corollary are equivalent, so we need only to
prove the former where we will draw upon (2).

Proof. We proceed to show (3)–(7) and will make use of generating functions. Let f(x) =∑
n≥1 det(An)x

n, where An is of the form (1). By Trudi’s formula, we have

f

(
− x

a0

)
=
∑

n≥1

xn
∑

s̃=n

( |s|
s1, . . . , sn

)(
−a1

a0

)s1

· · ·
(
−an

a0

)sn

=
h(x)

1− h(x)
,

where h(x) := − 1
a0

∑
i≥1 aix

i, upon considering the contribution from each term of the ex-

pansion h(x)
1−h(x)

= h(x) + h2(x) + h3(x) + · · · . Thus, we get

f(x) =
g(x)

1− g(x)
,

where g(x) :=
∑

i≥1(−a0)
i−1aix

i.
We now consider various cases on ai. First suppose ai = Mi−r for i ≥ 1, where r ≥ 1 is

fixed and Mj := 0 if j < 0. In this case, we have

g(x) =
∑

i≥1

(−a0)
i−1Mi−rx

i =
∑

i≥0

(−a0)
i+r−1Mix

i+r = (−a0)
r−1xr

∑

i≥0

Mi(−a0x)
i

= (−a0)
r−1xrM(−a0x).

If r = a0 = 1 in the preceding, then we get

g(x) = xM(−x) =
1 + x−

√
1 + 2x− 3x2

2x
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and

∑

n≥1

D+(M0, . . . ,Mn−1)x
n = f(x) =

g(x)

1− g(x)
=

x− 1 +
√
1 + 2x− 3x2

2(1− x)

= xR(−x) =
∑

n≥1

(−1)n−1Rn−1x
n,

which yields the first part of formula (3). If r = 1 and a0 = −1, then we get g(x) = xM(x)
and

∑

n≥1

D−(M0, . . . ,Mn−1)x
n = f(x) =

1− x−
√
1− 2x− 3x2

3x− 1 +
√
1− 2x− 3x2

= L(x)− 1 =
∑

n≥1

Lnx
n,

which yields the first part of (5).
Now suppose ai = Mi+r, where r ≥ 0. In this case, we have

g(x) =
∑

i≥1

(−a0)
i−1Mi+rx

i = − 1

a0

∑

i≥r+1

Mi(−a0x)
i−r

=
1

(−a0)r+1xr

(
M(−a0x)−

r∑

i=0

Mi(−a0x)
i

)
.

If r = 0 and a0 = 1 in the preceding, then

g(x) = 1−M(−x) =
2x2 − x− 1 +

√
1 + 2x− 3x2

2x2

and

f(x) =
g(x)

1− g(x)
=

2x2 − x− 1 +
√
1 + 2x− 3x2

x+ 1−
√
1 + 2x− 3x2

.

Hence, we have

∑

n≥2

D+(M1, . . . ,Mn)x
n = f(x)− x =

√
1 + 2x− 3x2 − x− 1

2

=
∑

n≥2

(−1)n−1Mn−2x
n,

which yields the first part of (4). If r = 0 and a0 = −1, then g(x) = M(x)− 1 and

f(x) =
M(x)− 1

2−M(x)
=

K(x)− 1

2
,
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where

K(x) :=
∑

n≥0

A111961(n)xn =
1√

1− 2x− 3x2 − x
,

which implies (6). If r = a0 = 1, then

g(x) =
1

x

(
M(−x)− 1 + x

)
=

1 + x− 2x2 + 2x3 −
√
1 + 2x− 3x2

2x3

and

f(x) =
1 + x− 2x2 + 2x3 −

√
1 + 2x− 3x2

2x2 − x− 1 +
√
1 + 2x− 3x2

.

Hence, we have

∑

n≥2

D+(M2, . . . ,Mn+1)x
n = f(x)− 2x =

x− 1 +
√
1 + 2x− 3x2

2(1− x)
− x

=
∑

n≥2

(−1)n−1Rn−1x
n,

which implies (7). Finally, the second parts of (3)–(5) may be shown by computing the

respective generating functions using the formula
∑

n≥0 Cnx
n = 1−

√
1−4x
2x

, the details of which
we leave to the reader.

The Rn and Ln sequences satisfy the following further determinant identities.

Theorem 4. We have

D−(R0, R1, . . . , Rn−1) = Mn−1, (13)

D+(R0, R1, . . . , Rn−1) = (−1)n−1A344507(n− 1), (14)

D−(R1, R2, . . . , Rn) =
1

2
A109190(n), (15)

D+(R1, R2, . . . , Rn) = (−1)n−1Mn−2, n ≥ 2, (16)

D+(R3, R4, . . . , Rn+2) = (−1)n−1Mn−2, n ≥ 3, (17)

which hold for n ≥ 1 unless stated otherwise.

Theorem 5. We have

D−(L1, L2, . . . , Ln) = A059738(n− 1), (18)

D+(L1, L2, . . . , Ln) = (−1)n−1Mn−1, (19)

D−(L2, L3, . . . , Ln+1) = un, (20)

D+(L2, L3, . . . , Ln+1) = (−1)n−1Mn−2, n ≥ 2, (21)
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which hold for n ≥ 1 unless stated otherwise, where un denotes the sequence satisfying

un = 4un−1 +Mn−2 + 2
n−3∑

i=0

Miun−2−i

for n ≥ 3, with u1 = 2 and u2 = 9.

Proof. Proofs similar to those presented above for (3)–(7) may be given for (13)–(21). Alter-
natively, two of the preceding formulas follow from the previous identities and an inversion
theorem [18, Lemma 4], which can be paraphrased as follows:

Let (bn)n≥0 be the sequence defined by bn = det(An) for n ≥ 1 with b0 = 1, where An is
given by (1) with a0 = 1. Then an = det(Bn) for n ≥ 1, where Bn is the Hessenberg–Toeplitz
matrix associated with b0, . . . , bn.

Note that formulas (13) and (19) then follow respectively from (3) and (5) since

D+(M0, . . . ,Mn−1) = (−1)n−1Rn−1 if and only if

D−(R0, . . . , Rn−1) = D+(R0,−R1, . . . , (−1)n−1Rn−1) = Mn−1

and

D+(L1, . . . , Ln) = (−1)n−1Mn−1 if and only if

D−(M0, . . . ,Mn−1) = D+(M0,−M1, . . . , (−1)n−1Mn−1) = Ln.

The sequence A109190 used in formula (15) above for D−(R1, . . . , Rn) was conjectured
previously by Mathar to satisfy a certain linear fourth-order recurrence (see discussion in
the OEIS entry). We close this section by providing a proof of this conjectured recurrence.

Proposition 6. The sequence an = A109190(n) is given recursively by

nan = (4n− 3)an−1 + 3(n− 1)an−2 − 2(7n− 15)an−3 − 12(n− 3)an−4, n ≥ 4, (22)

with initial values a0 = 1, a1 = 0, a2 = a3 = 2. Hence, if dn = D−(R1, . . . , Rn), then dn
satisfies the same recurrence for n ≥ 5, but with initial values d1 = 0, d2 = d3 = 1, d4 = 4.

Proof. The second statement follows from the first and (15), so we need only show the first.
Let

f(x) :=
∑

n≥0

anx
n =

1

x+
√
1− 2x− 3x2

.

Then we have
∑

n≥4

(
nan − (4n− 3)an−1 − 3(n− 1)an−2 + 2(7n− 15)an−3 + 12(n− 3)an−4

)
xn

= x(f ′ − 4x− 6x2)− x(f + 4xf ′ − 1− 18x2)− 3x2(f + xf ′ − 1) + 2x3(6f + 7xf ′ − 6)

+ 12x4(f + xf ′)

= x(1− 4x− 3x2 + 14x3 + 12x4)f ′ − x(1 + 3x− 12x2 − 12x3)f + x− x2.
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Recurrence (22) holds if and only if the last quantity is zero, i.e.,

(1− 4x− 3x2 + 14x3 + 12x4)f ′ = (1 + 3x− 12x2 − 12x3)f + x− 1 . (23)

Now observe that f ′ =
(

1+3x−
√
1−2x−3x2√

1−2x−3x2

)
f 2 so that (23) is equivalent to

(1− 4x− 3x2 + 14x3 + 12x4)(1 + 3x−
√
1− 2x− 3x2)f 2

= (1 + 3x− 12x2 − 12x3)
√
1− 2x− 3x2f + (x− 1)

√
1− 2x− 3x2. (24)

Note the factorization 12x4 + 14x3 − 3x2 − 4x+ 1 = (4x2 + 2x− 1)(3x2 + 2x− 1) and that

f may be rewritten as f = x−
√
1−2x−3x2

4x2+2x−1
. Upon clearing fractions, we then have that (24) is

equivalent to

− (1− 2x− 3x2)(1 + 3x−
√
1− 2x− 3x2)(1− 2x− 2x2 − 2x

√
1− 2x− 3x2)

=
(
(1 + 3x− 12x2 − 12x3)(x−

√
1− 2x− 3x2) + (x− 1)(4x2 + 2x− 1)

)√
1− 2x− 3x2,

i.e.,

− (1− 2x− 3x2)
(
1 + 3x− 12x2 − 12x3 − (1 + 4x2)

√
1− 2x− 3x2

)

= −(1− 2x− 3x2)(1 + 3x− 12x2 − 12x3)

+
(
x(1 + 3x− 12x2 − 12x3) + (x− 1)(4x2 + 2x− 1)

)√
1− 2x− 3x2 .

The last equation is easily verified, which completes the proof of (22).

3 Combinatorial proofs

In this section, we give combinatorial proofs of formulas (3)–(7) and (13)–(21) above. Before
doing so, let us recall the combinatorial interpretations of several integer sequences which
we will make use of here and specify some further terminology. Let Mn denote the set of
lattice paths (called Motzkin paths) from the origin to the point (n, 0) that never dip below
the x-axis using u = (1, 1), d = (1,−1), and h = (1, 0) steps. Then Mn = |Mn| for all n ≥ 0,
where M0 is understood to consist of the empty path of length zero. The number of steps
in a Motzkin path λ will be denoted by |λ|. A u step (d step) is said to terminate at height
j if it joins the points (i − 1, j − 1) and (i, j) (the points (i − 1, j + 1) and (i, j)) for some
i. By the level of an h step within a member of Mn, we are referring to the y-coordinate
of the two points in the path connected by the h. A low h will refer to an h step at level
zero (i.e., one that begins and ends on the x-axis). Let M∗

n denote the subset of Mn whose
members contain no low h’s. Then it is well-known that |M∗

n| = Rn for all n ≥ 0 (see, e.g.,
the discussion in A005043), and members of M∗

n are referred to as Riordan paths.
A member of M2n that contains no h steps is called a Dyck path (of semilength n);

i.e., it is a lattice path starting at the origin and terminating on the x-axis with 2n steps

9
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consisting of u’s and d’s that never goes below the x-axis. Then Cn enumerates the set Cn
of Dyck paths of semilength n. Let Ln for n ≥ 1 denote the set of lattice paths starting at
the origin and terminating on the line x = n− 1 using u, d, and h steps that never go below
the x-axis (which are referred to as Motzkin left factors [2, p. 111]). Note that |Ln| = Ln

for all n ≥ 1. By an internal return within a Motzkin path of length n, we mean a point
(i, 0) on the x-axis with 0 < i < n where a d or h step terminates. A member of Mn for
which there are no internal returns will be described as being primitive. Note that λ ∈ Mn

for n ≥ 2 is primitive if and only if λ = uλ′d for some λ′ ∈ Mn−2, with the single member
of M1 also assumed to be primitive. Finally, a unit of a lattice path will refer to a section
lying between two consecutive returns to the x-axis or to the section lying to the left of the
first return. Thus, a member of Mn is primitive if and only if it contains exactly one unit.

When computing the determinant of an n × n Hessenberg–Toeplitz matrix using the
definition of a determinant as a signed sum over the set of permutations σ of [n], one need
consider only those σ each of whose cycles when expressed disjointly with the smallest element
first in each cycle comprises a set of consecutive integers in increasing order. Such σ are
in one-to-one correspondence with the compositions of n, upon identifying the various cycle
lengths with parts of a composition, and hence they number 2n−1. Thus, the determinant
sum for a matrix An of the form (1) may be regarded as a weighted sum over the set of
compositions of n. In this sum when a0 = 1, a part of size r ≥ 1 has (signed) weight given
by (−1)r−1ar (regardless of its position) and the weight of a composition is the product of
the weights of its constituent parts. The sign of a composition is then given by (−1)n−m,
where m denotes the number of its parts. On the other hand, when a0 = −1, every part
of size r is weighed by ar and each term in the determinant sum for An is non-negative
assuming ai ≥ 0 for i ≥ 1. Equivalently, when one computes det(An) where a0 = −1, one
is in fact finding the permanent of the matrix obtained from An by replacing a0 = −1 with
a0 = 1. For other examples of weighted composition sums with combinatorial weights, see,
e.g., [19] as well as the related literature on n-color compositions.

To find a combinatorial explanation of a purported formula for det(An) when a0 = 1, we
make frequent use of sign-changing involutions defined on a (signed) structure S whose sum
of signs coincides with det(An), which has the effect of cancelling out some of the terms in
the formula. We then show that the sum of the signs of the remaining unpaired members
of S (often referred to as the set of survivors of the involution) is given by the formula for
det(An), which is clear in several instances or requires a further enumeration in others. When
a0 = −1, then all terms in the expansion of det(An) are non-negative and some structure T

is found whose cardinality is seen to coincide with det(An). An expression for the cardinality
of T is subsequently found establishing its equality with det(An), which is done by a direct
enumeration and/or bijection.

We now provide combinatorial proofs of the formulas from Theorems 2, 4, and 5 above.
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3.1 Proof of Eq. (3)

We first develop a combinatorial interpretation for D+(M0, . . . ,Mn−1). Let σ denote a com-
position of n with parts σ1, . . . , σm for some m ≥ 1. For each part σi, we overlay a lattice
path λi ∈ Mσi−1 followed by an h. We then color any low h within λi black and each ap-
pended h step white. Then let λ = λ1hλ2h · · ·λmh be the (colored) Motzkin path obtained
as the concatenation of the paths λih for 1 ≤ i ≤ m. Let An denote the set of all lattice
paths that arise when one considers all possible compositions σ of n. Define the sign of λ as
(−1)n−m, where m denotes the number of white low h steps of λ (equivalently, the number
of parts in the underlying composition σ). Then, by the interpretation of the determinant
of a Hessenberg–Toeplitz matrix as a (signed) weighted sum over the set of compositions of
n, we have that D+(M0, . . . ,Mn−1) gives the sum of the signs of all members of An.

Note that members of An must end in a white h step. We then define a sign-changing
involution on An by switching the color of the rightmost non-terminal low h step. This
operation is not defined on the subset A∗

n of An consisting of those paths whose only low h

step is the terminal (white) h. Note that members of A∗
n and M∗

n−1 are clearly synonymous,
upon deleting the terminal h, with each member of A∗

n having sign (−1)n−1. Thus, we get
D+(M0, . . . ,Mn−1) = (−1)n−1Rn−1. To establish the other formula in (3), we must show
equivalently for all n ≥ 0 that Rn =

∑n

k=0(−1)k
(
n

k

)
Cn−k. Let Bn denote the subset of Cn

consisting of those lattice paths ρ = ρ1ρ2 · · · ρ2n ∈ Cn such that ρ2i−1ρ2i 6= ud for all 1 ≤ i ≤ n,
i.e., there are no peaks at odd height. By an inclusion-exclusion argument considering the
number k of peaks at odd height within a member of Cn, we have |Bn| =

∑n

k=0(−1)k
(
n

k

)
Cn−k.

On the other hand, by the bijection from [6] between Bn and M∗
n (see also [26]), we have

|Bn| = Rn, which completes the proof of (3).

3.2 Proof of Eq. (4)

Let σ be a composition of n with parts σ1, . . . , σm. On each σi, we overlay λi ∈ Mσi
and then

let λ = λ1 · · ·λm. Further, we mark the final step of each subpath λi and define the sign of λ
as (−1)n−m. Let Dn denote the set of all the members of Mn so marked. Then we have that
D+(M1, . . . ,Mn) gives the sum of the signs of the members of Dn. Consider the rightmost
non-terminal step that is either a (i) low h or (ii) d step terminating on the x-axis. We
then either mark this step if it is unmarked or remove the marking from it if marked. This
operation yields an involution on Dn that is not defined on the primitive members of Dn,
which number Mn−2 and are each of sign (−1)n−1. This establishes the first formula in (4).
For the second, we show equivalently that Mn−1 =

∑n−1
k=0(−1)k

(
n−1
k

)
Cn−k, upon replacing n

by n+1. Let En denote the set of Dyck paths ρ = ρ1ρ2 · · · ρ2n ∈ Cn in which ρ2iρ2i+1 6= ud for
all 1 ≤ i ≤ n−1. By an inclusion-exclusion argument, we have |En| =

∑n−1
k=0(−1)k

(
n−1
k

)
Cn−k.

By the bijection from [6], we have |En| = Mn−1, as desired, which completes the proof.

11



3.3 Proof of Eq. (5)

Let An be as in the proof above for (3). Note that, by changing each 1 to −1 along the
superdiagonal of An(1;M0, . . . ,Mn−1), one introduces an extra sign factor to each term in
the determinant expansion of D+(M0, . . . ,Mn−1) that is equal to the sign of the member of
An corresponding to the term. Thus, D−(M0, . . . ,Mn−1) gives |An| instead of the sum of
the signs of members of An. Let M′

n denote the set of colored Motzkin paths of length n in
which each low h comes in one of two colors (say blue and green). Then members of An+1

are synonymous with members of M′
n, and to establish the first formula, it suffices to define

a bijection between M′
n and Ln+1 for n ≥ 0. Given ρ ∈ M′

n, replace each green low h with
u, leaving all other steps the same and ignoring the coloring of any blue h. Let ρ̃ denote
the resulting lattice path and note that ρ̃ ∈ Ln+1. Then the mapping ρ 7→ ρ̃ is reversible,
upon considering the final height t of ρ̃ and the rightmost u step terminating at a height i
for 1 ≤ i ≤ t. Thus, we have |M′

n| = Ln+1, which implies the first formula in (5).
For the second formula in (5), we show

|M′
n| =

n∑

k=0

(−1)n−k(2k + 1)

(
n

k

)
Ck, n ≥ 0. (25)

Note that the right side of (25) may be rewritten as

n∑

k=0

(−1)k(2(n− k) + 1)

(
n

k

)
Cn−k = 2n

n−1∑

k=0

(−1)k
(
n− 1

k

)
Cn−k +

n∑

k=0

(−1)k
(
n

k

)
Cn−k.

In the combinatorial proofs of (3) and (4) above, it was seen that

n−1∑

k=0

(−1)k
(
n− 1

k

)
Cn−k = Mn−1 and

n∑

k=0

(−1)k
(
n

k

)
Cn−k = Rn.

Thus, to establish (25), we need to show

|M′
n| = 2nMn−1 +Rn, n ≥ 0. (26)

Since there are Rn members of M′
n that contain no low h’s, to show (26), we must argue

that there are 2nMn−1 members of M′
n that contain at least one low h. Clearly, we may

assume n ≥ 1 in (26). Let Jn denote the set of Motzkin paths of length n wherein there
is at least one h step (at any level) such that exactly one of the h steps is colored either
blue or green. Upon choosing the color and relative position of the colored h, we have
|Jn| = 2nMn−1. Let Kn denote the subset of M′

n whose members contain at least one low
h. To complete the proof of (26), it suffices to define a bijection between Jn and Kn.

In order to do so, we consider the level ℓ, where ℓ ≥ 0, of the colored h within λ ∈ Jn.
Then λ can be decomposed as

λ =

{
ρ0u · · · ρℓ−1uρℓhρ

′
ℓd · · · ρ′1dρ′0, if ℓ ≥ 1;

ρ0hρ
′
0, if ℓ = 0,

(27)
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Figure 1: Decomposition of colored Motzkin path λ ∈ J34

where ρ0, . . . , ρℓ, ρ
′
0, . . . , ρ

′
ℓ are all (possibly empty) Motzkin paths and the colored h is un-

derlined. Pictured above in Figure 1 is the decomposition of λ ∈ Jn where n = 34 and ℓ = 2,
in which the ρi and ρ′i sections for 0 ≤ i ≤ 2 are separated by red u and by red d steps,
respectively, and the colored h is blue as indicated. We transform λ as given in (27) to a
member of Kn as follows. First replace each u directly preceding a ρi section with an h of
the same color as that of the underlined h in λ and do the same for each d directly following
some ρ′j. For each ρi and ρ′j where 0 ≤ i, j ≤ ℓ, we color all low h steps contained therein
with the color not used for the underlined h. Finally, we keep the color of the underlined h

in λ the same (deleting the underlining). Let λ′ denote the resulting lattice path and one
may verify λ′ ∈ Kn. Further, it must be the case that at least one of the colors is applied to
an odd number of h steps in λ′ as an equal number of u and d in λ were converted to h with
the same color as that of the underlined h. Pictured in Figure 2 is λ′ ∈ K34 corresponding
to the λ illustrated above.

�❅ � ❅ �❅ �
�❅ �❅

❅ � ❅ �❅ � ❅

Figure 2: The corresponding λ′ ∈ K34

Let K(e,o)
n denote the subset of Kn for which there are an even number of blue h and an

odd number of green h steps, with the obvious analogous meanings for K(o,e)
n , K(e,e)

n , and
K(o,o)

n . Let J (1)
n and J (2)

n denote the subsets of Jn in which the colored h step is blue or
green, respectively. Then the mapping λ 7→ λ′ is reversible when restricted to either J (1)

n or
J (2)

n and hence yields a bijection between the sets J (1)
n and K(o,e)

n ∪K(o,o)
n as well as between

J (2)
n and K(e,o)

n ∪ K(o,o)
n . Thus, we get

|Jn| = |J (1)
n |+ |J (2)

n | = |K(e,o)
n |+ |K(o,e)

n |+ 2|K(o,o)
n |. (28)

Now we have |K(e,e)
n | = |K(o,o)

n |, upon changing the color of the rightmost low h step within a

member of K(e,e)
n or K(o,o)

n . Note that since each member of Kn contains at least one low h,
the preceding operation is well-defined and bijective. Thus, |K(e,e)

n | = |K(o,o)
n |, together with

(28), implies |Jn| = |Kn|, as desired, which completes the proof.
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3.4 Proof of Eq. (6)

Let Dn be as in the proof of (4) and it is seen that D−(M1, . . . ,Mn) = |Dn|. Let dn = 2|Dn|
for n ≥ 1 with d0 = 1 so that dn enumerates the set of all marked Motzkin paths of length
n wherein some subset (possibly empty) of the returns to the x-axis (including the final
return) is marked. We make use of the symbolic enumeration method (see, e.g., [11]) and
let D = D(x) :=

∑
n≥0 dnx

n. We then have D = 1 + 2xD + 2x2DM , where M = M(x),
which follows from considering whether a nonempty lattice path σ counted by D can be
expressed as σ = hσ′ or σ = uτdσ′′ such that σ′, σ′′ are paths of the form enumerated
by dn and τ is a Motzkin path. (Equivalently, we have the combinatorial recurrence dn =
2dn−1 + 2

∑n−2
i=0 Midn−2−i for n ≥ 2, with d0 = 1 and d1 = 2.) Solving for D gives

D =
1

1− 2x− 2x2M
=

1√
1− 2x− 3x2 − x

=
∑

n≥0

A111961(n)xn,

which implies (6).

3.5 Proof of Eq. (7)

Given n ≥ 2 and 1 ≤ k ≤ n, let Gn,k denote the set of k-tuples (λ1, . . . , λk), where each λi

is a Motzkin path of length at least two and
∑k

i=1 |λi| = n + k. Define the sign of λ ∈ Gn,k

as (−1)n−k and let Gn = ∪n
k=1Gn,k. Then D+(M2, . . . ,Mn+1) gives the sum of the signs of all

members of Gn. To prove (7), we define a sign-changing involution on Gn in several steps as
follows. Throughout, we let λ = (λ1, . . . , λk) denote a member of Gn,k for some k ∈ [n].

First suppose that the last step of λk is h, with λk = ωh for some nonempty Motzkin path
ω. If |λk| ≥ 3, then replace the final component λk of λ with the two components λk = ω

and λk+1 = h2. If |λk| = 2, whence λk = h2 and n ≥ 2 implies k ≥ 2, then delete the final
component of λ and append an h to the path λk−1. These two operations, taken together,
define a sign-changing involution on the subset of Gn consisting of those members in which
the final step of the final component path is an h, and thus their contribution towards the
determinant D+(M2, . . . ,Mn+1) is zero.

Henceforth, assume that the final component λk within λ ends in d. First suppose λk has
one of the following four forms, where |λk| ≥ 3 and k ≥ 1:

(i) λk = hα, where α contains no low h’s,

(ii) λk = h2β, where β contains no low h’s,

(iii) λk = uγd, where γ is a Motzkin path that has at least one low h,

(iv) λk has no low h, but does have at least one internal return to the x-axis.

Note that in case (iii), the lattice path λk has no internal returns to the x-axis, but contains
an h at level one. We divide the case when |λk| = 2, and hence λk = ud with k ≥ 2, into the
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following four subcases based on the penultimate component λk−1:

(a) λk−1 does not contain a low h,

(b) λk−1 = hδ, where δ does not contain a low h,

(c) λk−1 = hδ, where δ contains a low h,

(d) λk−1 starts with u and has a low h.

We now pair cases (i)–(iv) with (a)–(d), respectively, as follows. If (i) occurs, then delete
the initial h from λk and replace λk with the two components λk = α and λk+1 = ud. If
(ii) holds, then replace λk = h2β with the components λk = hβ and λk+1 = ud. If (iii),
then replace λk = uγd with λk = hγ and λk+1 = ud. Finally, if (iv), then consider the
decomposition λk = ρ′ρ′′, where ρ′ and ρ′′ are both nonempty, ρ′ contains no low h’s and
ρ′′ is primitive. Further, let ρ′′ = uσd, where σ is possibly empty with no restrictions. In
this case, we replace the final component λk with λk = ρ′hσ and λk+1 = ud. Moreover, it
is understood in each case that all other components of λ are to remain unchanged. Then
it is seen that each of the four mappings described above is reversible and changes the sign
as the number of components increases by one in each case. Note that in order to reverse
the mapping for case (iv), one needs to consider the position of the leftmost low h in the
penultimate component within a member of Gn for which (d) above applies.

So the remaining cases for when λk ends in d are as follows:

(I) λk contains a low h, with the last low h occurring in the third step or beyond,

(II) λk is primitive and has no h at level one, with |λk| > 2 and k ≥ 2,

(III) k = 1 and λ1 ∈ Mn+1 is primitive and has no h at level one.

We pair members of Gn for which (I) or (II) applies as follows. If (I), then write λk = τhτ ′,
where |τ | ≥ 2 and τ ′ contains no low h’s. Note that the assumption that λk ends in d implies
τ ′ 6= ∅. We then replace λk = τhτ ′ with the two components λk = τ and λk+1 = uτ ′d,
keeping all other components of λ the same. Note that λk+1 is primitive and has no h at
level one since τ ′ does not contain a low h, whence (II) holds for the resulting member of
Gn. Further, this operation is seen to be reversible and always changes the sign.

Thus, each member of Gn has been paired with another of opposite sign except for those
where (III) above applies, each of which has sign (−1)n−1. Upon deleting the initial u and
the final d, members of Gn in (III) are synonymous with Riordan paths of length n− 1. This
implies D+(M2, . . . ,Mn+1) = (−1)n−1Rn−1 for n ≥ 2, as desired.

3.6 Proofs of Eqs. (13)–(16)

To show (13), let An be as in the proof of (3) and note that D−(R0, . . . , Rn−1) enumerates
the subset A′

n of An consisting of those λ = λ1h · · ·λmh in which each λi is a Riordan
path. Upon deleting the final h, one may identify members of A′

n with members of Mn−1,
which yields (13). For (14), first note that D+(R0, . . . , Rn−1) gives the sum of the signs
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of the members of A′
n, where the sign is defined as (−1)n−m. Equivalently, we have that

(−1)nD+(R0, . . . , Rn) equals the sign-balance of the low h statistic on Mn, i.e.,

(−1)nD+(R0, . . . , Rn) =
∑

π∈Mn

(−1)µ(π) := vn, n ≥ 1,

with v0 = 1, where µ(π) denotes the number of low h’s in π. Let V = V (x) :=
∑

n≥0 vnx
n.

Considering whether a nonempty Motzkin path starts with h or u gives V = 1−xV +x2MV ,
and hence

V =
1

1 + x− x2M
=

2

1 + 3x+
√
1− 2x− 3x2

.

A comparison with the generating function formula for A344507 then implies (14).
For (15), first let en = 2D−(R1, . . . , Rn) for n ≥ 1, with e0 = 1. Then en enumerates

members of M∗
n in which returns to the x-axis may be marked. By dropping the restriction

that a member ofMn cannot go below the x-axis, one obtains the class of lattice paths known
as the Grand Motzkin paths, denoted by GMn. Then it is known that A109190(n) enumerates
the subset of GMn consisting of those members with no h steps at level zero. By reflecting
in the x-axis each unit to the left of a marked return within a marked member of M∗

n, it is
seen that en also enumerates the aforementioned subset of GMn. Hence, en = A109190(n)
for all n ≥ 0, which implies (15). Finally, note that the proof above for the first part of (4)
applies when restricted to the subset of Dn in which the corresponding λ are Riordan paths.
Since this subset contains the set of survivors of the involution, formula (16) follows.

3.7 Proof of Eq. (17)

Given n ≥ 3 and 1 ≤ k ≤ n, let Hn,k denote the set of k-tuples λ = (λ1, . . . , λk) such that

each λi is a Riordan path of length at least three with
∑k

i=1 |λi| = n + 2k. Define the sign
of λ ∈ Hn,k as (−1)n−k and let Hn = ∪n

k=1Hn,k. Then D+(R3, . . . , Rn+2) is seen to give the
sum of the signs of all members of Hn. We define a sign-changing involution on Hn in three
steps as follows. First let H(1)

n ⊆ Hn comprise those λ = (λ1, . . . , λk) where k can range over
[n] such that either

(i) λk = αβ, or

(ii) λk = uβd,

where α is any Riordan path with |α| ≥ 3 and β is primitive with |β| ≥ 2 in both cases. Note,
in (ii), that the only return to the line y = 1 within λk occurs with the penultimate step.
We exchange cases (i) and (ii) by replacing λk in (i) with the two components λk = α and

λk+1 = uβd, and vice versa if (ii) holds with k > 1. This yields an involution of H(1)
n which

always reverses the sign that is not defined on the subset H̃(1)
n comprising those members

for which k = 1 and λ1 = uβd, where β is as described. Note that |H̃(1)
n | = Mn−2 since β

16

https://oeis.org/A344507
https://oeis.org/A109190
https://oeis.org/A109190


is primitive and hence of length at least three (as k = 1), with each member of H̃(1)
n having

sign (−1)n−1.

Next, let H(2)
n consist of those λ = (λ1, . . . , λk) in Hn where k can vary such that either

(i) λk = uαd, where α is a Motzkin path that has at least one internal return to the x-axis
and does not end in h, or (ii) λk = udβ, where β is primitive. Note that λk a Riordan path
implies |β| ≥ 2 in (ii). Further, in (i), we let α = α′α′′, where α′′ is primitive. Then, by
the assumptions on α, we have α′ 6= ∅ and |α′′| ≥ 2. We now exchange cases (i) and (ii) as
follows. If (i) holds, then replace λk = uα′α′′d with λk = uα′d and λk+1 = udα′′, keeping
all other components of λ the same. If (ii) holds, along with the further assumptions that
k ≥ 2 and λk−1 be primitive, then we reverse the operation just described.

Thus, at this point, we have paired each member of H(2)
n with another of opposite sign

except for those satisfying condition (ii) with k = 1 or with k ≥ 2 such that λk−1 is not
primitive. If the latter holds, then write λk−1 = σσ′, where σ′ is primitive (and hence σ 6= ∅).
If |σ| ≥ 3, then replace λk−1 = σσ′, λk = udβ with λk−1 = σ, λk = udσ′ and λk+1 = udβ,
where β is primitive as before. If |σ| = 2 and k ≥ 3, then replace λk−2 = τ , σk−1 = udτ ′ and
σk = udβ with λk−2 = ττ ′ and λk−1 = udβ, where τ ′ is primitive. In either case, we keep
all other components of λ the same. This mapping, taken together with the one defined in
the preceding paragraph, yields a sign-changing involution on all members of H(2)

n except for
those satisfying condition (ii) with k = 1 or with k = 2 such that λ1 = udσ′, where σ′ is
primitive.

Let H̃(2)
n denote the subset of H(2)

n for which the involution is not defined. Note that
there are Mn−2 possibilities for members of H̃(2)

n where k = 1, each of sign (−1)n−1, and∑n−4
i=0 MiMn−4−i = Mn−2 − Mn−3 possibilities for members in which k = 2, each of sign

(−1)n−2, by the Motzkin number defining recurrence where i in the summation denotes

|σ′| − 2. Thus, the sum of the signs of the members of H̃(2)
n is given by

(−1)n−1Mn−2 + (−1)n−2(Mn−2 −Mn−3) = (−1)n−1Mn−3.

Note that it is a straightforward matter at this point to pair members of H̃(2)
n of opposite

sign, if one desires, by considering the standard decomposition of a Motzkin path according
to its first return to the x-axis.

Now let H(3)
n = Hn −H(1)

n −H(2)
n and note that H(3)

n consists of those members λ ∈ Hn

for which the final component λk is primitive with the last two steps hd. If |λk| = 3, i.e.,
λk = uhd, then n ≥ 3 implies k ≥ 2 and we consider whether or not λk−1 is primitive. If
it is, then delete λk and insert an h directly preceding the terminal d step in λk−1. Note
that the resulting lattice path is still primitive with length at least four. If |λk| ≥ 4, then
remove the penultimate h step from λk and add the component λk+1 = uhd. These two

operations together yield an involution of H(3)
n that is not defined if λk = uhd, with λk−1

not primitive. In this case, we make use of a mapping similar to that employed in the
second part of the involution defined above on H(2)

n in which either the antepenultimate and
penultimate components of λ were combined or the penultimate component was broken into
two as described. Thus, each λ in H(3)

n is paired with another of opposite sign except for
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those in which k = 2 with λ1 = udα and λ2 = uhd, where α is primitive, the subset of which
we denote by H̃(3)

n . Note that |H̃(3)
n | = Mn−3, with each member of H̃(3)

n having sign (−1)n−2.

We have now defined sign-changing involutions on H(i)
n for 1 ≤ i ≤ 3 with respective sets

of survivors H̃(i)
n . Hence, the sum of the signs of all members of Hn = ∪3

i=1H(i)
n is the same

as the sum of the signs of members of ∪3
i=1H̃(i)

n . The contributions from H̃(2)
n and H̃(3)

n to this
sum cancel and thus we get (−1)n−1Mn−2. Note that it is a straightforward matter to pair

the remaining unpaired members of H̃(2)
n (i.e., those accounted for by (−1)n−1Mn−3) with the

members of H̃(3)
n , if desired, as both sets are readily seen to be in one-to-one correspondence

with Mn−3. Since D+(R3, . . . , Rn+2) equals the sum of the signs of all members of Hn, the
proof of (17) is complete.

3.8 Proofs of Eqs. (18) and (19)

Given a composition σ of n with parts σ1, . . . , σm, we overlay each σi with a member λi ∈ Lσi

followed by an h step. Then let λ = λ1h · · ·λmh denote the corresponding member of Ln+1

wherein we mark each appended h. Let Qn denote the set of all λ ∈ Ln+1 so marked. We
then have D−(L1, . . . , Ln) = |Qn| for all n ≥ 1. By a base h within a Motzkin left factor,
we mean an h step (including possibly a terminal h step) for which there exists no step
anywhere to its right that terminates at a strictly lower level. Upon deleting the final h, we
may regard the λ ∈ Qn as marked members of Ln in which some subset (possibly empty) of
the base h’s is marked.

Let Pn denote the set of tricolored Motzkin paths of length n in which low h’s are colored
either black, white or red. Then it is known that |Pn| is given by A059738(n) for all n ≥ 0.
Thus, to complete the proof of (18), it suffices to define a bijection between Pn and Qn+1.
To do so, consider replacing each red low h within ρ ∈ Pn by u and regard each white low
h as being marked. Let ρ′ denote the resulting marked Motzkin left factor. One may verify
that only base h’s can be marked in ρ′ and hence ρ′ ∈ Qn+1. Let t denote the final height of
a member of Qn+1. Then the mapping ρ 7→ ρ′ may be reversed by considering the rightmost
u step starting from the line y = i for each 0 ≤ i ≤ t− 1, which completes the proof of (18).

To show (19), define the sign of λ ∈ Qn as (−1)n−ℓ, where ℓ is the number of marked h

steps in λ. Then D+(L1, . . . , Ln) equals the sum of the signs of all members of Qn. Define
an involution on Qn by identifying the leftmost non-terminal base h and either marking it
or removing the marking from it. This operation reverses the sign and fails to be defined on
the subset Q∗

n of Qn whose members do not contain a base h outside of the terminal base
h. Then members of Q∗

n each have sign (−1)n−1 and, by the inverse of the mapping ρ 7→ ρ′

defined above, are equivalent to members of Pn−1 in which each low h is red. As there are
clearly Mn−1 such members of Pn−1, formula (19) follows.
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3.9 Proofs of Eqs. (20) and (21)

By a base step within a Motzkin left factor, we mean a non-terminal step for which there
exists no step anywhere to its right that terminates at a strictly lower height. Let Un

denote the set of marked members of Ln+1 in which some subset (possibly empty) of the
base steps is marked. By reasoning similar to that used in the proof of (18), we have
D−(L2, . . . , Ln+1) = |Un| for n ≥ 1. Let un = |Un| and one may verify u1 = 2 and u2 = 9,
using the definitions. So assume n ≥ 3 and let λ ∈ Un. If λ = uλ′ or λ ∈ hλ′, where
λ′ ∈ Un−1, then the first step of λ is a base step in either case, which implies 4un−1 possibilities
altogether. Now assume λ starts with u and returns to the x-axis at some point. Then
λ = uτdλ′, where τ ∈ Mi and λ′ ∈ Un−2−i for some i ≥ 0. If λ′ = ∅, then λ is primitive
and there are no base steps in λ since the final step terminates at height zero and all other
steps terminate at a positive height. Hence, there are Mn−2 possibilities in this case. If
λ′ 6= ∅, then the d following the section τ within λ is a base step (with no others to its
left). Considering all 0 ≤ i ≤ n − 3 in this case thus gives 2

∑n−3
i=0 Miun−2−i possibilities.

Combining the prior cases then yields the recurrence stated for un and completes the proof
of (20).

For (21), define the sign of a member of Un by (−1)n−1−ℓ, where ℓ denotes the number
of base steps. Then D+(L2, . . . , Ln+1) equals the sum of the signs of the members of Un.
By either marking or unmarking the leftmost base step, each member of Un is paired with
another of opposite sign except for those which fail to contain a base step. From the analysis
used to deduce the recurrence for un, members of Un that do not contain a base step are
precisely the primitive Motzkin paths and hence they number Mn−2, each with sign (−1)n−1,
which implies (21).

Remark 7. Sequences A111961 and A344507 have apparently only arisen before in algebraic
settings and thus the structures used in conjunction with them in the proofs of (6) and (14)
provide the first known combinatorial interpretations of these sequences. In particular, it
was seen that A111961(n) enumerates Motzkin paths of length n in which some subset of the
steps terminating on the x-axis (either d or h) is marked whereas A344507(n) corresponds to
the sign-balance of the low h statistic on Mn. Further, the proofs of (15) and (18) provide
new combinatorial interpretations for the sequences A109190 and A059738, respectively.
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paths with no peak at odd height, J. Integer Sequences 12 (2009), Article 09.3.2.

[25] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences. Available at
https://oeis.org, 2022.

[26] J. O. Tirrell, Orthogonal polynomials, lattice paths, and skew Young tableaux, Ph.D.
Thesis, Brandeis Univ., 2016. Available at https://people.brandeis.edu/~gessel/
homepage/students/JordanTirrellThesis.pdf.

2020 Mathematics Subject Classification: Primary 05A19; Secondary 11C20, 15B05.
Keywords: Motzkin number, Motzkin path, Riordan number, Catalan number, Hessenberg–
Toeplitz matrix, Trudi’s formula, generating function.

(Concerned with sequences A000108, A001006, A005043, A005773, A059738, A109190, A111961,
and A344507.)

Received September 5 2022; revised version received March 12 2023. Published in Journal

of Integer Sequences, March 14 2023.

Return to Journal of Integer Sequences home page.

21

https://cs.uwaterloo.ca/journals/JIS/VOL7/Tsikouras/tsikouras43.html
https://cs.uwaterloo.ca/journals/JIS/VOL12/Shapiro/shapiro7.html
https://oeis.org
https://people.brandeis.edu/~gessel/homepage/students/JordanTirrellThesis.pdf
https://people.brandeis.edu/~gessel/homepage/students/JordanTirrellThesis.pdf
https://oeis.org/A000108
https://oeis.org/A001006
https://oeis.org/A005043
https://oeis.org/A005773
https://oeis.org/A059738
https://oeis.org/A109190
https://oeis.org/A111961
https://oeis.org/A344507
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Determinant formulas of matrices with Motzkin number entries
	Combinatorial proofs
	Proof of Eq. (3)
	Proof of Eq. (4)
	Proof of Eq. (5)
	Proof of Eq. (6)
	Proof of Eq. (7)
	Proofs of Eqs. (13)–(16)
	Proof of Eq. (17)
	Proofs of Eqs. (18) and (19)
	Proofs of Eqs. (20) and (21)


