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Abstract

In this paper we construct an operator calculus over the symmetric
Fock space for countable set of noncommuting generators of strongly
continuous groups, acting on a Hilbert space. As a symbol class of the
calculus we use some algebra of functions of infinitely many variables.
This algebra is described as the image of the space of polynomial ultra-
differentiable functions under Fourier-Laplace transformation.
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1 Introduction
A functional (or an operator) calculus is a theory that studies how to construct
functions depending on operators. An operator calculus is the useful tool,
which allows us to use the functional-analytic methods in general spectral
analysis and theory of Banach algebras.

There are many different approaches to construct a functional calculus for
one operator acting on a Banach space. Most of them are based on some
integral representation of a function from a symbol class. For Riesz-Dunford
functional calculus (or H∞-calculus), based on the Cauchy formula, we refer
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the reader to the book [3]. Such a functional calculus has applications, in
particular, in the spectral theory of elliptic differential equations and maximal
regularity of parabolic evolution equations (see e.g. [5, 7]).

H∞-calculus is good tool when we work with generators of analytic semi-
groups. However, such a calculus is not suitable for an arbitrary strongly
continuous semigroup. For such operators E. Hille and R. Phillips developed
in [4] another method, based on the Laplace transformation. This method is
known as the Hille-Phillips functional calculus. It has many helpful applica-
tions, in particular, in hydrology (see [1] and the references given there).

The Hille-Phillips functional calculus for functions of several variables was
considered, for example, in [8, 10]. The case of functions of infinitely many
variables is less studied. We mention the book [11] that is devoted to spectral
questions (among them there is a functional calculus) of countable families of
self-adjoint operators on a Hilbert space.

In the recent article [12] we construct the Hille-Phillips type functional
calculus for commuting generators of strongly continuous (or (C0)) semigroups
over a Banach space. The main goal of this article is the construction of
such calculus over the symmetric Fock space

À

n∈Z+
Hp⊗n for countable set of

noncommuting generators of (C0) groups, acting on a Hilbert space H.

2 Notations and preliminaries

In what follows L (X ,Y) denotes the space of all continuous linear operators
from a locally convex space X in other such space Y , endowed with the topology
of uniform convergence on bounded subsets of X . Let L (X ) := L (X ,X ).
The dual space X ′ := L (X ,C) is endowed with strong topology. The pairing
between elements of X ′ and X we denote 〈 · , · 〉.

Spaces of functions. Let us fix any real β > 1. An infinitely differentiable
function ϕ is called to be a Gevrey ultradifferentiable if for each segment
[µ, ν] ⊂ R there exist constants h > 0 and C > 0 such that the inequality
supt∈[µ,ν] |∂kϕ(t)| ≤ Chkkkβ holds for all k ∈ Z+. For a fixed h > 0 let us
consider the subspace

Ghβ [µ, ν] :=
{
ϕ ∈ C∞ : suppϕ ⊂ [µ, ν], ‖ϕ‖Ghβ [µ,ν] := sup

k∈Z+

sup
t∈[µ,ν]

|∂kϕ(t)|
hkkkβ

<∞
}
.

In [6] it is proved that each subspace Ghβ [µ, ν] is a Banach space and maps
Ghβ [µ, ν] # Glβ[µ, ν], with h < l, are compact inclusions. Consider the space

Gβ :=
ď

µ<ν, h>0

Ghβ [µ, ν], Gβ ' lim ind
µ<ν, h>0

Ghβ [µ, ν],
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of Gevrey ultradifferentiable functions with compact supports and endow it
with topology of inductive limit with respect to above mentioned compact
inclusions. Let G ′β be its dual space of Roumieu ultradistributions.

Let h > 0 be any positive real and µ, ν ∈ R be any reals such that µ < ν.
In the space of entire functions of exponential type we consider the subspace
Eh
β [µ, ν] of functions with the finite norm

‖ψ‖Ehβ [µ,ν] := sup
k∈Z+

sup
z∈C

|zkψ(z)e−H[µ,ν](η)|
hkkkβ

, where H[µ,ν](η) := sup
t∈[µ,ν]

tη.

Each space Eh
β [µ, ν] is a Banach one, and all maps Eh

β [µ, ν] # Eh′

β [µ′, ν ′]
with [µ, ν] ⊂ [µ′, ν ′], h < h′, are compact inclusions. Consider the space

Eβ :=
ď

µ<ν, h>0

Eh
β [µ, ν], Eβ ' lim ind

µ<ν, h>0
Eh
β [µ, ν],

and endow it with the topology of inductive limit with respect to above men-
tioned compact inclusions.

Consider the Fourier-Laplace transformation

pϕ(z) := (Fϕ)(z) =

ż

R
e−itzϕ(t) dt, ϕ ∈ Gβ, z ∈ C.

It is known [13], that F (Gβ) = Eβ.
Polynomial ultradifferentiable functions and polynomial ultradis-

tributions. For any locally convex space X , let X p⊗n, n ∈ N, be the sym-
metric nth tensor degree of X , completed in the projective tensor topology.
For any x ∈ X we denote x⊗n := x⊗ · · · ⊗ x

looooomooooon

n

∈ X p⊗n, n ∈ N. Set X p⊗0 := C,

x⊗0 := 1 ∈ C.
To define the locally convex space P(nG ′β) of n-homogeneous polynomials

on G ′β we use the canonical topological linear isomorphism P(nG ′β) ' (G ′p⊗nβ )′,
described in [2]. We equip P(nG ′β) with the locally convex topology b of uniform
convergence on bounded sets in G ′β. Set P(0G ′β) := C. The space P(G ′β) of all
continuous polynomials on G ′β is defined to be the complex linear span of all
P(nG ′β), n ∈ Z+, endowed with the topology b. Let P ′(G ′β) mean the strong
dual of P(G ′β).

Elements of the spaces P(G ′β) and P ′(G ′β) we call the polynomial test ul-
tradifferentiable functions and polynomial ultradistributions, respectively.

Denote Γ(Gβ) :=
À

fin
n∈Z+

G p⊗n
β and Γ(G ′β) :=

Ś

n∈Z+
G ′⊗̂nβ . Note, that we

consider the case when the elements of direct sum consist of finite but not
fixed number of addends. In what follows elements of the spaces Γ(Gβ) and
Γ(G ′β) will be written as p =

(
pn
)
and u =

(
un

)
, respectively.
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For elements of total subset of the space Γ(G ′β) let us define the operation(
f⊗n

)
~
(
g⊗n

)
:=

(
(f ∗ g)⊗n

)
and extend it onto whole space by linearity and

continuity. It is easy to see, that Γ(G ′β) is an algebra with respect to ~. Since
the space Γ(Gβ) is dense in Γ(G ′β) (see [9]), the space Γ(Gβ) also is an algebra
with respect to the operation ~.

Using the tensor structure of the space Γ(Gβ), we extend the Fourier-
Laplace transformation onto Γ(Gβ). First, for elements of total subset of the
space G p⊗n

β we define the operator F⊗n : ϕ⊗n 7−→ pϕ⊗n, F⊗0 := IC, where
pϕ⊗n := (Fϕ)⊗n. Next, we extend the map F⊗n onto whole space G p⊗n

β by lin-
earity and continuity. As a result we obtain the map F⊗n ∈ L

(
G p⊗n
β , E

p⊗n
β

)
.

And finally, we define the mapping F⊗ by the formula

F⊗ :=
(
F⊗n

)
: Γ(Gβ) 3 p =

(
pn
)
7−→ pp :=

(
ppn
)
∈ Γ(Eβ) :=

à

fin
n∈Z+

E
p⊗n
β ,

where pn ∈ G p⊗n
β , ppn := F⊗npn ∈ E p⊗n

β .
Note, that for each n ∈ N an element ppn is a symmetric function of n com-

plex variables Cn 3 (z1, . . . , zn) 7−→ pp(z1, . . . , zn) ∈ C, i.e. ppn(z1, z2, . . . , zn) =
ppn(zσ(1), zσ(2), . . . , zσ(n)) for every permutation σ of {1, . . . , n}. It implies that
elements of the space Γ(Eβ) can be considered as functions pp :

Ś

n∈N C −→ C
of infinite many variables

pp : (z1, . . . , zn, . . . ) 7−→ pp(z1, . . . , zn, . . . ) = pp0 +
ÿ

n∈N
ppn(zbn , . . . , zen), (1)

where bn := n(n−1)
2

+ 1, en := n(n+1)
2

. But we note that actually each function
pp ∈ Γ(Eβ) depends on finite (depending on pp) number of variables, because
for each pp the sequence in the right hand side of (1) is finite.

For any operator K ∈ L (Gβ) let us define the operator K⊗ ∈ L
(
Γ(Gβ)

)
by the formula

K⊗ :=
(
K⊗n

)
: p = (pn) 7−→ K⊗p :=

(
K⊗npn

)
, (2)

where K⊗0 := IC is the identity, and the each operator K⊗n ∈ L (G⊗nβ ),
n ∈ N, is defined as linear and continuous extension of the following map
ϕ⊗n 7−→ (Kϕ)⊗n, ϕ ∈ Gβ.

For any ultradistribution f ∈ G ′β and ultradifferentiable function ϕ ∈ Gβ the
cross-correlation is the function defined as follows (f ?ϕ)(s) := 〈f(t), ϕ(t+s)〉.
It is easy to see, that the cross-correlation operator Kf : ϕ 7−→ f ? ϕ belongs
to the space L (Gβ) for any ultradistribution f ∈ G ′β.

Using the definition (2) we obtain

K⊗u :=
(
K⊗nun

)
∈ L

(
Γ(Gβ)

)
and K⊗nun ∈ L (G⊗nβ ), (3)
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where u := (un) ∈ Γ(G ′+) with un ∈ G ′⊗n+ , n ∈ Z+.

Let us define the operation, which is the extension of the cross-correlation
on the spaces of polynomial ultradifferentiable functions and ultradistributions.
For any u = (un) ∈ Γ(G ′β) and p = (pn) ∈ Γ(Gβ) their cross-correlation is the
element u ? p := K⊗up =

(
K⊗nun pn

)
.

Infinite parameter operator groups. Let a countable set of operators
A = (A1,A2, . . . ,An, . . . ) be defined in a complex Hilbert spaceH. Note, that
we do not assume any commutativity relations. Denote by Γ(H) :=

À

n∈Z+

Hp⊗n

the symmetric Fock space.

Suppose, that Aj, j ∈ N, generates an one-parameter (C0) group (see [4])
R 3 t 7−→ e−itAj ∈ L (H), which satisfies the condition

sup
t∈R
‖e−itAj‖L (H) ≤ 1. (4)

Let us denote Aj := IH ⊗ · · · ⊗ IH
looooooomooooooon

j

⊗Aj ⊗ IH ⊗ · · · ∈ L (Γ(H)), j ∈ N,

An := Abn ⊗ · · · ⊗Aen , n ∈ N. Set A0 := IH⊗ IH⊗ · · · ∈ L (Γ(H)), A0 := A0

by definition.

Instead of the set A of (noncommuting) operators over Hilbert space H we
consider countable set of commuting operators, acting in the symmetric Fock
space Γ(H), namely

A := (A0, A1, A2, . . . , An, . . . ). (5)

It easy to see, that each An generates strong continuous n-parameter group
Rn 3 t 7−→ e−itAn ∈ L (Γ(H)), where e−itAn := e−it1Abn ⊗ · · · ⊗ e−itnAen and
e−itiAj := IH ⊗ . . .⊗ IH

looooooomooooooon

j

⊗ e−itiAj ⊗ IH ⊗ . . ., i = 1, . . . , n, j ∈ N. Note, that

each one-parameter group e−itiAj satisfies the condition (4).

Operator An and group e−itAn are defined on whole Fock space Γ(H), but
they do not act as identity only on Hp⊗n. So, without restriction of generality
we can write An ∈ L (Hp⊗n), e−itAn ∈ L (Hp⊗n), n ∈ Z+.

Let G be the set of countable systems of operators of view (5). For all
n ∈ N let Gn be a set of collections of operators of view An = Abn ⊗ · · ·⊗Aen .
Set G0 := {A0} by definition.
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3 Functional calculus for countable set of ope-
rators

For all n ∈ Z+ let us define the set rHn := {rpn : Gn −→ L (Hp⊗n) : pn ∈ G p⊗n
β },

which consist of functions of operator argument

rpn(An) :=

ż

Rn
e−it1Abn ⊗ · · · ⊗ e−itnAenpn(t1, . . . , tn) dt1 . . . dtn. (6)

Set rp0 : G0 3 A0 7−→ rp0(A0) := p0IC ∈ L (C) by definition.
Define the map

F := (Fn) : Γ(Gβ) 3 p =
(
pn
)
7−→ rp :=

ÿ

n∈Z+

rpn ∈ rH, (7)

where rH :=
ř

n∈Z+

rHn. Condition (4) and [4, Theorem 15.2.1] imply, that all
mappings Fn : pn 7−→ rpn, n ∈ Z+, are isomorphisms.

Note, that rH := {rp : G −→ L (Γ(H)) : p ∈ Γ(Gβ)} is an algebra of
functions with pointwise multiplication (rp · rq)(A) := rp(A) ◦ rq(A).

Remark 1. The mapping F : Γ(Gβ) −→ rH acts as homomorphism of al-
gebra

{
Γ(Gβ),~

}
into algebra { rH, ·}. On the other hand, results of the ar-

ticle [13] imply that there exists a homomorphism F⊗ : Γ(Gβ) −→ Γ(Eβ).
Therefore, the map F ◦ (F⊗)−1 : Γ(Eβ) −→ rH we may treat as “elemen-
tary” functional calculus. In other words, we understand the operator rp(A) =
ř

n rpn(An) ∈ L (Γ(H)) as a “value” of a function pp of infinite many variables
(see (1)) at a countable system A = (A0, A1, A2, . . . , An, . . . ) ∈ G of operators
(see (5)).

Consider the one-parameter semigroup rT⊗ : R 3 s 7−→ rT⊗s ∈ L
(

rH
)
on

the space rH, where

rT⊗s :=
(

rT⊗ns
)

: rp =
ÿ

n∈Z+

rpn 7−→ rT⊗s rp :=
ÿ

n∈Z+

rT⊗ns rpn.

The function rT⊗ns rpn ∈ rHn is defined to be the map rT⊗ns rpn : Gn 3 An 7−→
rT⊗ns rpn(An) ∈ L (Hp⊗n), where

rT⊗ns rpn(An) :=

ż

Rn
e−it1Abn ⊗ · · · ⊗ e−itnAenpn(t1 + s, . . . , tn + s) dt1 . . . dtn.

Here the function rpn of operator argument is defined by (6).
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Using Bochner’s integral properties (see [4, 3.7]), we obtain that for any
p =

(
pn
)
∈ Γ(Gβ) with pn = ϕ⊗n ∈ G p⊗n

β , ϕ ∈ Gβ, the following equalities

ĆT⊗s p(A) = F
[(
T⊗ns pn

)]
(A) = F

[(
(Tsϕ)⊗n

)]
(A)

= IC +
ÿ

n∈N

ż

Rn
e−it1Abn ⊗ · · · ⊗ e−itnAen (Tsϕ)⊗n(t1, . . . , tn) dt1 . . . dtn

= IC +
ÿ

n∈N

ż

Rn
e−it1Abn ⊗ · · · ⊗ e−itnAen

n
ą

k=1

ϕ(tk + s) dt1 . . . dtn

= IC +
ÿ

n∈N

ż

Rn
e−it1Abn ⊗ · · · ⊗ e−itnAenpn(t1 + s, . . . , tn + s) dt1 . . . dtn

= rp0(A0) +
ÿ

n∈N

rT⊗ns rpn(An) = rT⊗s rp(A),

hold for all s ∈ R and A =
(
An

)
∈ G .

Hence, the operator rT⊗s can be represented as follows rT⊗s = F ◦ T⊗s ◦ F−1.
Continuity of the mappings T⊗s and F as well as openness of F imply that the
group rT⊗ : R 3 s 7−→ rT⊗s ∈ L

(
rH
)
has the (C0) property.

The commutant of the group rT⊗ is defined to be the set[
rT⊗

]c
:=

{
rT ∈ L

(
rH
)

: rT ◦ rT⊗s = rT⊗s ◦ rT ,∀s ∈ R
}
.

Define the mapping

Q :=
(
Qn

)
: Γ(G ′β) 3 u =

(
un

)
7−→ Qu :=

ÿ

n∈Z+

Qun ∈ L
(

rH
)
, (8)

where un := f⊗n ∈ G ′p⊗nβ , f ∈ G ′β. Here Qun ∈ L
(

rHn

)
, n ∈ Z+, is defined by

the following formulas: (Qu0 rp0)(A0) := IC and Qun : rpn 7−→ Qunrpn, n ∈ N,
where

(Qunrpn)(An) :=

ż

Rn
e−it1Abn ⊗ · · · ⊗ e−itnAenK⊗nf pn(t1, . . . , tn) dt1 . . . dtn.

Here the function rpn of operator argument is defined by (6), and the operator
K⊗nf is defined by (2) and (3).

Theorem 3.1. The map Q, defined by (8), is an algebraic isomorphism of
the algebra

{
Γ(G ′β),~

}
and the subalgebra in the commutant

[
rT⊗

]c of operators
of view rK⊗ = F ◦K⊗ ◦ F−1 ∈ L

(
rH
)
, where K ∈ L (Gβ). In particular, the

equality Qu~v = Qu ◦ Qv holds for all u,v ∈ Γ(G ′β) and Qδ is the identity in
L

(
rH
)
, where δ =

(
δ⊗n

)
.
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Proof. Let u =
(
un

)
∈ Γ(G ′β) and p =

(
pn
)
∈ Γ(Gβ), where un = f⊗n, f ∈ G ′β.

The following equalities are valid

(Qurp)(A) =
ÿ

n∈Z+

(Qunrpn)(An)

= IC +
ÿ

n∈N

ż

Rn
e−it1Abn ⊗ · · · ⊗ e−itnAenK⊗nf pn(t1, . . . , tn) dt1 . . . dtn

= F
[
K⊗nf pn

]
(A) = ĆK⊗up(A), K⊗u =

(
K⊗nf

)
,

(9)

for all A =
(
An

)
∈ G . It follows that the map Q can be represented in the

form Qu = F ◦ K⊗u ◦ F−1. Continuity of the mappings K⊗u and F as well
as openness of F imply that Qu ∈ L

(
rH
)
for all u ∈ Γ(G ′β). Therefore, the

equalities

(Qu rT⊗s rp)(A) =
ÿ

n∈Z+

(Qun rT⊗ns rpn)(An)

= IC +
ÿ

n∈N

ż

Rn
e−it1Abn ⊗ · · · ⊗ e−itnAenK⊗nf pn(t1 + s, . . . , tn + s) dt

= IC +
ÿ

n∈N

rT⊗ns

ż

Rn
e−it1Abn ⊗ · · · ⊗ e−itnAenK⊗nf pn(t1, . . . , tn) dt

=
ÿ

n∈Z+

( rT⊗ns Qunrpn)(An) = ( rT⊗s Qurp)(A), dt := dt1 . . . dtn,

hold for all s ∈ R, rp =
ř

n∈Z+
rpn ∈ rH and A :=

(
An

)
∈ G . Hence, for all

u ∈ Γ(G ′β) the operator Qu belongs to the commutant
[

rT⊗
]c.

Conversely, let the operator rK⊗ = F◦K⊗◦F−1 ∈ L
(

rH
)
with K ∈ L (Gβ)

belongs to the commutant
[

rT⊗
]c. Then

F ◦K⊗ ◦ T⊗s ◦ F−1 = F ◦K⊗ ◦ F−1 ◦ F ◦ T⊗s ◦ F−1 = rK⊗ ◦ rT⊗s = rT⊗s ◦ rK⊗

= F ◦ T⊗s ◦ F−1 ◦ F ◦K⊗ ◦ F−1 = F ◦ T⊗s ◦K⊗ ◦ F−1.

Therefore the operator K⊗ belongs to the commutant of the semigroup T⊗s .
Let us define the ultradistribution f0 ∈ G ′β as follows 〈f0, ϕ〉 := (Kϕ)(0)

for any ϕ ∈ Gβ. It is easy to see, that (f0 ? ϕ)(s) = 〈f0, Tsϕ〉 = (KTsϕ)(0) =
(Kϕ)(s). Therefore for the elements w := (1, f0, . . . , f

⊗n
0 , . . . ) the following

equalities K⊗wp =
(
(f0 ?ϕ)⊗n

)
=

(
(Kϕ)⊗n

)
=

(
K⊗nϕ⊗n

)
= K⊗p, hold for any

p := (ϕ⊗n), ϕ ∈ Gβ. Hence, K⊗ = K⊗w and rK⊗ = rK⊗w.
The equality K⊗u~v = K⊗u ◦K⊗v implies

Qu~v = F ◦K⊗u~v ◦ F−1 = F ◦K⊗u ◦K⊗v ◦ F−1

= F ◦K⊗u ◦ F−1 ◦ F ◦K⊗v ◦ F−1 = Qu ◦ Qv.
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Since δ =
(
δ⊗n

)
is the unit element in the algebra

{
Γ(G ′β),~

}
, we obtain

the equalities Qδ ◦ Qu = Qδ~u = Qu = Qu~δ = Qu ◦ Qδ, i.e. Qδ ∈ L
(

rH
)
is

the identity operator.

Remark 2. The map Γ(G ′β) 3 u 7−→ Qurp ∈ rH is a homomorphism of
the algebra Γ(G ′β) and the algebra of operator valued functions, defined on G .
It easy to see (see formulas (7) and (8)), that the function Qurp of operator
argument can be represented as Qurp = Ću ? p. From (9) it follows, that the
operator Qurp(A) = Ću ? p(A) ∈ L (Γ(H)) we can understand as a “value” of
a function zu ? p ∈ Γ(Eβ) of infinite many variables at a countable system
(A1,A2, . . . ,An, . . . ) of generators of one-parameter (C0) contraction groups.
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