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The meromorphic mappings of the two dimensional torus onto the Riemann sphere are
studied. Their connections with loxodromic meromorphic functions in the punctured plane are
considered.

Let 7 be a two-dimensional torus in R? obtained by the rotation of the unit circle in the
€0( plane centered at (I,0), [ > 1, around the ( axis. Its parametric representation is

¢ = (I 4 cos®) cos g,
n = (I + cosy)sinp, (1)
¢ = sin,

0<p<2m —nm<¢Y <.

The torus 7 can be obtained also by a continuous map 7 of A,, A, ={z:p < |z| < %},
in R? so that 7 is homeomorphic to the interior of A,, 7(A,) = T, and 7(pe'?) = (1),
for each ¢ from [0, 27].

1
p

A mapping F' of T into the Riemann sphere S is said to be meromorphic if there is a

meromorphic function f on Zp such that f = poFor, where p is the stereographic projection
of S on C.
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Put ¢ = p%. Since 7(qz) = 7(2) for |z| = % then

flaz) = f(2). (2)

Let us show that f has the meromorphic extension in C* = C \ {0} by relation (2).
Indeed, put ¢g(z) = f(i) and g(z) = g(gz). Since g(z) is meromorphic in the closure of the
annulus {z : ¢ < |z| < 1} there is ¢ > 0 such that g(z) is meromorphic in the annulus
{z:q—e < |z| <1+4¢€} and g(z) is meromorphic for z satisfying the inequalities ¢ — & <
qlz] < 1+e¢,ie. in the annulus

€ 1 ¢
{z:l——<]z|<—+—}.
q q 4

However, g(e™?) = g(ge?) = g(e’?). By the uniqueness theorem g(z) coincides with g(z)
in {z:1-% <|z] <1+¢€}. Hence, g(2) is a meromorphic extension of g(z) in the closure
of the annulus {z : 1 < |z] < %} By induction f admits the meromorphic extension in C*
which satisfies (2).

Now we can conclude that to any meromorphic function on a torus corresponds a multi-
plicatively periodic (loxodromic) meromorphic function of a multiplicator ¢, 0 < ¢ < 1, and
vise versa. A slight modification of our construction above shows that this is true not only
for positive ¢ but for arbitrary complex ¢ satisfying the inequality |¢| < 1 [4], [5].

An example of loxodromic function of such a multiplicator is

“+o0o

1= 3 gy

n=—oo

The mapping 7(2) is called of conformal type if there exists a positive continuous function
»(z) on A, such that
dst = »(2)|dz|, z=re", (3)

where ds7 is the length element on 7T .
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Lemma 1. There are a unique | and a unique mapping 7 of conformal type which maps E,,
onto T.

Proof. We have ds3 = di* + (I + cos¢)?d¢?, and |dz|* = dr? + r?dy?. Relation (3) implies

dp? + (I + cos)?dp? = 32(2)(dr? + r’de?),

(I + cosyp) = x(2)r, (4)
dy = »(2)dr,
and, consequently,
ar__ &y
r 1+cosy’
what together with the conditions ¢(p) = —m, ¥(1/p) = 7, and the first of the relation (4)
yields
¢(r)_\/l+1 Vi2—1
tg 5 = l—ltg 5 logr |,
2
=1+ ——
log” p
and l
elz) = LSV
r

Thus, 7(z) is the mapping of conformal type by which to any z = re’ from Zp corresponds
a point from 7 given by (1) with

wzw(r):2arctg< ;titg <l22_1logr>>.

]

If a loxodromic function f(z) is not identically constant then it has two essential singu-
larities at z = 0 and z = oo [5], [2]. In order to investigate its behaviour as |z| — 0 and
|z| = oo consider the following geometric characteristics.

Let F' be a nonconstant meromorphic mapping of 7 onto S. Let |dF'|g be the length
element by this mapping.

The toroidal derivative of F is said to be

Fry o= 125
dST

Let do, dog, dor be area elements on C*, S, and T respectively, 7(z) be of conformal
type,
f=poFor, G.=1(Ay), Ayr={z:-<|z[<r}

The spherical area of the image of G, is

Ap(r, F) = i / / (%)2&77 _ ﬁ / / (P2 doy. (5)
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But the connection of F' with w = f(z) yields
AFls _ ldp s _ [dp™ w)ls [dw| _
dsr dsr |dw|  dsy
_ ’dp_l(w>’5 d_w 1 _;c (Z) 1
o |dw| dz | 2(z) 7 (2)

where f¢(z) is the spherical derivative of f.
The direct verification shows that F'7 is multiplicatively periodic of multiplicator q.

It follows from (3) that
d
_dUaT = *(2).

Taking into account (5) we have

Ar(r F) = - / / (F(2))%do(z) = As(r. f) -

L<zl<r
T

Here Ag(r, f) is the spherical area of A/, by the mapping f.
For any a € C the non-constant loxodromic function f of multiplicator ¢ has the same

number m of a-points, m > 2 in each annulus {z : gr < |z| < r} [5], [2].

This number m is called the order of f.
Thus, denoting by n(r, a) the number of a-points of f in the annulus {z : 1 < [z] < r}

we obtain [1]
1 logr
Ags(r, f) = — [ n(r,a)do(a) < 2nm < 2m—= + 2m (6)
47 log =
= q
for r in the interval (qnl,1 , qin]
Similarly,
1
om—2" _om < Ag(r, f). (7)

The Ahlfors-Shimizu characteristic of f is [1], [3]

T(r, f) = / —Asf’ D

1

Relations (6) and (7) yield the following result.
Theorem 1. Let f be a loxodromic function of multiplicator ¢ and order m. Then its

Ahlfors-Shimizu characteristic T'(r, f) satisfies the inequalities
m
log®r + 2mlogr.

n log®r — 2mlogr < T(r, f) < 1
0

log %

Note that ) )
AT(—,F>:AS <_7f):m'
p p

1
q

Therefore, the spherical area of the image of T is equal to m.
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Busuatorbest MmepomopdHi BijobpazkeHHst TBOBUMipHOTO Topa Ha cdepy Pimana. Pozris-
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Nsy4arorcs mepoMopdHbIe 0TOOparKeHusI JBYXMEPHOTO Topa Ha cdepy Pumana. Paccmor-
DPEHBI UX CBSI3U C JIOKCOJPOMHBIMU MEPOMOPMHBIME (DYHKIUSIMA B IIPOKOJIOTON TJIOCKOCTH.



