УДК 517.53

KHRYSTIYANYN A.YA., KONDRATYUK A.A.

MEROMORPHIC MAPPINGS OF TORUS ONTO THE RIEMANN SPHERE

Khrystiyanyn A.Ya., Kondratyuk A.A. Meromorphic mappings of torus onto the Riemann sphere, Carpathian Mathematical Publications, 4, 1 (2012), 155–159.

The meromorphic mappings of the two dimensional torus onto the Riemann sphere are studied. Their connections with loxodromic meromorphic functions in the punctured plane are considered.

Let \mathcal{T} be a two-dimensional torus in \mathbb{R}^3 obtained by the rotation of the unit circle in the $\xi O \zeta$ plane centered at (l,0), l > 1, around the ζ axis. Its parametric representation is

$$\xi = (l + \cos \psi) \cos \varphi,$$

$$\eta = (l + \cos \psi) \sin \varphi,$$

$$\zeta = \sin \psi,$$
(1)

 $0 \le \varphi \le 2\pi, \ -\pi \le \psi \le \pi.$

The torus \mathcal{T} can be obtained also by a continuous map τ of \overline{A}_{ρ} , $A_{\rho} = \{z : \rho < |z| < \frac{1}{\rho}\}$, in \mathbb{R}^3 so that τ is homeomorphic to the interior of A_{ρ} , $\tau(\overline{A}_{\rho}) = \mathcal{T}$, and $\tau(\rho e^{i\varphi}) = \tau(\frac{1}{\rho}e^{i\varphi})$, for each φ from $[0, 2\pi]$.

A mapping F of \mathcal{T} into the Riemann sphere S is said to be *meromorphic* if there is a meromorphic function f on \overline{A}_{ρ} such that $f = p \circ F \circ \tau$, where p is the stereographic projection of S on $\overline{\mathbb{C}}$.

 $^{2010\} Mathematics\ Subject\ Classification: 30 D35.$

Key words and phrases: meromorphic function, loxodromic function, torus, toroidal derivative, Ahlfors-Shimizu characteristic.

Put
$$q = \rho^2$$
. Since $\tau(qz) = \tau(z)$ for $|z| = \frac{1}{\rho}$ then
$$f(qz) = f(z). \tag{2}$$

Let us show that f has the meromorphic extension in $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ by relation (2). Indeed, put $g(z) = f(\frac{z}{\rho})$ and $\widetilde{g}(z) = g(qz)$. Since g(z) is meromorphic in the closure of the annulus $\{z : q < |z| < 1\}$ there is $\varepsilon > 0$ such that g(z) is meromorphic in the annulus $\{z : q - \varepsilon < |z| < 1 + \varepsilon\}$ and $\widetilde{g}(z)$ is meromorphic for z satisfying the inequalities $q - \varepsilon < q|z| < 1 + \varepsilon$, i.e. in the annulus

$$\left\{z: 1 - \frac{\varepsilon}{q} < |z| < \frac{1}{q} + \frac{\varepsilon}{q}\right\}.$$

However, $g(e^{i\varphi}) = g(qe^{i\varphi}) = \widetilde{g}(e^{i\varphi})$. By the uniqueness theorem $\widetilde{g}(z)$ coincides with g(z) in $\{z: 1-\frac{\varepsilon}{q}<|z|<1+\varepsilon\}$. Hence, $\widetilde{g}(z)$ is a meromorphic extension of g(z) in the closure of the annulus $\{z: 1<|z|<\frac{1}{q}\}$. By induction f admits the meromorphic extension in \mathbb{C}^* which satisfies (2).

Now we can conclude that to any meromorphic function on a torus corresponds a multiplicatively periodic (loxodromic) meromorphic function of a multiplicator q, 0 < q < 1, and vise versa. A slight modification of our construction above shows that this is true not only for positive q but for arbitrary complex q satisfying the inequality |q| < 1 [4], [5].

An example of loxodromic function of such a multiplicator is

$$f(z) = \sum_{n=-\infty}^{+\infty} \frac{q^n z}{(1 - q^n z)^2}.$$

The mapping $\tau(z)$ is called of conformal type if there exists a positive continuous function $\varkappa(z)$ on \overline{A}_{ρ} such that

$$ds_{\mathcal{T}} = \varkappa(z)|dz|, \quad z = re^{i\varphi},$$
 (3)

where $ds_{\mathcal{T}}$ is the length element on \mathcal{T} .

Lemma 1. There are a unique l and a unique mapping τ of conformal type which maps \overline{A}_{ρ} onto \mathcal{T} .

Proof. We have $ds_T^2 = d\psi^2 + (l + \cos\psi)^2 d\varphi^2$, and $|dz|^2 = dr^2 + r^2 d\varphi^2$. Relation (3) implies

$$d\psi^{2} + (l + \cos \psi)^{2} d\varphi^{2} = \varkappa^{2}(z)(dr^{2} + r^{2}d\varphi^{2}),$$

$$(l + \cos \psi) = \varkappa(z)r,$$

$$d\psi = \varkappa(z)dr,$$

$$(4)$$

and, consequently,

$$\frac{dr}{r} = \frac{d\psi}{l + \cos\psi},$$

what together with the conditions $\psi(\rho) = -\pi$, $\psi(1/\rho) = \pi$, and the first of the relation (4) yields

$$\operatorname{tg} \frac{\psi(r)}{2} = \sqrt{\frac{l+1}{l-1}} \operatorname{tg} \left(\frac{\sqrt{l^2 - 1}}{2} \log r \right),$$
$$l = \sqrt{1 + \frac{\pi^2}{\log^2 \rho}},$$

and

$$\varkappa(z) = \frac{l + \cos \psi(r)}{r}, \quad r = |z|.$$

Thus, $\tau(z)$ is the mapping of conformal type by which to any $z = re^{i\varphi}$ from \overline{A}_{ρ} corresponds a point from \mathcal{T} given by (1) with

$$\psi = \psi(r) = 2 \arctan\left(\sqrt{\frac{l+1}{l-1}} \operatorname{tg}\left(\frac{l^2-1}{2} \log r\right)\right).$$

If a loxodromic function f(z) is not identically constant then it has two essential singularities at z=0 and $z=\infty$ [5], [2]. In order to investigate its behaviour as $|z|\to 0$ and $|z|\to \infty$ consider the following geometric characteristics.

Let F be a nonconstant meromorphic mapping of \mathcal{T} onto S. Let $|dF|_S$ be the length element by this mapping.

The toroidal derivative of F is said to be

$$\overset{\circ}{F}_{\mathcal{T}} := \frac{|dF|_S}{ds_{\mathcal{T}}}.$$

Let $d\sigma$, $d\sigma_S$, $d\sigma_T$ be area elements on \mathbb{C}^* , S, and \mathcal{T} respectively, $\tau(z)$ be of conformal type,

$$f = p \circ F \circ \tau$$
, $G_r = \tau(A_{1/r})$, $A_{1/r} = \{z : \frac{1}{r} \le |z| \le r\}$.

The spherical area of the image of G_r is

$$A_{\mathcal{T}}(r,F) = \frac{1}{4\pi} \iint_{G_r} \left(\frac{|dF|_S}{ds_{\mathcal{T}}}\right)^2 d\sigma_{\mathcal{T}} = \frac{1}{4\pi} \iint_{G_r} (\mathring{F}_{\mathcal{T}})^2 d\sigma_{\mathcal{T}}.$$
 (5)

But the connection of F with w = f(z) yields

$$\frac{|dF|_{S}}{ds_{\mathcal{T}}} = \frac{|dp^{-1}(w)|_{S}}{ds_{\mathcal{T}}} = \frac{|dp^{-1}(w)|_{S}}{|dw|} \frac{|dw|}{ds_{\mathcal{T}}} = \frac{|dp^{-1}(w)|_{S}}{|dw|} \left| \frac{dw}{dz} \right| \frac{1}{\varkappa(z)} = \mathring{f}_{S}(z) \frac{1}{\varkappa(z)} ,$$

where $\overset{\circ}{f}_{S}(z)$ is the spherical derivative of f.

The direct verification shows that $F_{\mathcal{T}}$ is multiplicatively periodic of multiplicator q. It follows from (3) that

$$\frac{d\sigma_{\mathcal{T}}}{d\sigma} = \varkappa^2(z).$$

Taking into account (5) we have

$$A_{\mathcal{T}}(r,F) = \frac{1}{4\pi} \iint_{\frac{1}{z} \le |z| \le r} (\mathring{f}(z))^2 d\sigma(z) = A_S(r,f) .$$

Here $A_S(r, f)$ is the spherical area of $A_{1/r}$ by the mapping f.

For any $a \in \overline{\mathbb{C}}$ the non-constant loxodromic function f of multiplicator q has the same number m of a-points, $m \geq 2$ in each annulus $\{z : qr < |z| \leq r\}$ [5], [2].

This number m is called the *order* of f.

Thus, denoting by n(r, a) the number of a-points of f in the annulus $\{z : \frac{1}{r} < |z| \le r\}$ we obtain [1]

$$A_S(r,f) = \frac{1}{4\pi} \int_{\overline{\mathbb{C}}} n(r,a) d\sigma(a) \le 2nm \le 2m \frac{\log r}{\log \frac{1}{q}} + 2m$$
 (6)

for r in the interval $(\frac{1}{q^{n-1}}, \frac{1}{q^n}]$.

Similarly,

$$2m\frac{\log r}{\log \frac{1}{q}} - 2m \le A_S(r, f). \tag{7}$$

The Ahlfors-Shimizu characteristic of f is [1], [3]

$$\overset{\circ}{T}(r,f) = \int_{1}^{r} \frac{A_{S}(t,f)}{t} dt.$$

Relations (6) and (7) yield the following result.

Theorem 1. Let f be a loxodromic function of multiplicator q and order m. Then its Ahlfors-Shimizu characteristic $\overset{\circ}{T}(r,f)$ satisfies the inequalities

$$\frac{m}{\log \frac{1}{q}} \log^2 r - 2m \log r \le \mathring{T}(r, f) \le \frac{m}{\log \frac{1}{q}} \log^2 r + 2m \log r.$$

Note that

$$A_{\mathcal{T}}\left(\frac{1}{\rho}, F\right) = A_{S}\left(\frac{1}{\rho}, f\right) = m.$$

Therefore, the spherical area of the image of \mathcal{T} is equal to m.

References

- 1. Goldberg A.A., Ostrovskiy I.O. Value distribution of meromorphic functions, Nauka, Moskva, 1970. (in Russian)
- 2. Hellegouarch Y. Invitation to the Mathematics of Fermat-Wiles, Academic Press, 2002.
- 3. Kondratyuk A., Laine I. Meromorphic functions in multiply connected domains, Fourier series method in complex analysis (Merkrijärvi, 2005), Univ. Joensuu Dept. Math. Rep. Ser., 10 (2006), 9–111.
- 4. Rausenberger O. Lehrbuch der Theorie der Periodischen Functionen Einer Variabeln, Leipzig, Druck und Ferlag von B.G.Teubner, 1884.
- 5. Valiron G. Cours d'Analyse Mathematique, Theorie des fonctions, 2nd Edition, Masson et.Cie., Paris, 1947.

Ivan Franko Lviv National University, Lviv, Ukraine e-mail: $khrystiyanyn@ukr.net,\ kond@franko.lviv.ua$

Received 01.03.2012

Кондратюк А.А., Христіянин А.Я. *Мероморфні відображення тора на сферу Рімана* // Карпатські математичні публікації. — 2012. — Т.4, №1. — С. 155–159.

Вивчаються мероморфні відображення двовимірного тора на сферу Рімана. Розглядаються їх зв'язки з локсодромними мероморфними функціями в проколеній площині.

Кондратюк А.А., Християнин А.Я. *Мероморфные отображения тора на сферу Римана* // Карпатские математические публикации. — 2012. — Т.4, №1. — С. 155–159.

Изучаются мероморфные отображения двухмерного тора на сферу Римана. Рассмотрены их связи с локсодромными мероморфными функциями в проколотой плоскости.