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We prove that a monomorphic functor F : Comp → Comp with finite supports is epi-

morphic, continuous, and its maximal ∅-modification F ◦ preserves intersections. This implies

that a monomorphic functor F : Comp → Comp of finite degree degF ≤ n preserves (finite-

dimensional) compact ANRs if the spaces F∅, F ◦∅ and Fn are finite-dimensional ANRs. This

improves a known result of Basmanov.

1 Introduction

In this paper we study monomorphic functors with finite supports defined on topological
categories and then apply the obtained results to generalize the classical result of Basmanov
on the preservation of (finite-dimensional) compact ANRs by functors of finite degree in the
category Comp of compact Hausdorff spaces and their continuous maps.

Let T denote the category whose objects are topological spaces and whose morphisms are
(not necessarily continuous) functions between topological spaces. By a Top-like category
we understand a subcategory C of the category T such that each finite discrete topological
space is an object of C and each map f : D → X from a finite discrete space to an object of
the category C is a morphism of C. This implies that each monomorphism of the category
C is an injective function.

We say that a functor F : C → T defined on a Top-like category C

• is monomorphic if F preserves monomorphisms;

• has finite supports (resp. finite degree ≤ n) if for each object X of C and each a ∈ FX

there is a map f : A → X from a finite discrete space A (of cardinality |A| ≤ n) such
that a ∈ Ff(FA);

• preserves the empty set if F∅ = ∅.
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Let us observe that for each (monomorphic) functor F : C → T that does not preserve
the empty set we can change the value of F at ∅ and define a new (monomorphic) functor
F◦ : C → T,

F◦X =

{
FX if X 6= ∅,

∅ if X = ∅,

which preserves the empty set. This functor F◦ is called the minimal ∅-modification of F .
By an ∅-modification of a (monomorphic) functor F : C → T we understand a (mo-

nomorphic) functor F̃ : C → T such that F̃X = FX for each non-empty object X of the
category C. So, the values of the functors F and F̃ can differ only on the empty set. The
functor F◦ is the minimal ∅-modification of F in the sense that F◦ is a subfunctor of any
∅-modification F̃ of F .

It turns out that the family of all ∅-modifications of a given monomorphic functor F has
a maximal element F ◦. Below we identify a finite ordinal n with the finite discrete space
{0, . . . , n− 1}. For i ∈ 2 let fi : 1 → {i} ⊂ 2 be the constant map.

Theorem 1. Each monomorphic functor F : C → T has the maximal ∅-modification
F ◦ : C → T assigning to ∅ the space

F ◦∅ = {a ∈ F1 : Ff0(a) = Ff1(a)} ⊂ F1.

Proof. In the formulation we have defined the action of the functor F ◦ on the empty set.
For each non-empty space X in C we put F ◦X = FX.

Now we define the action of F ◦ on morphisms. Let f : X → Y be a morphism of the
category C. If X is not empty, then so is Y and we put F ◦f = Ff . If X = ∅ = Y , then
F ◦f is the identity map of the space F ◦∅. If X = ∅ and Y 6= ∅, then we put

F ◦f = Fg|F ◦∅ : F ◦∅ → F ◦Y = FY

where g : 1 → Y is any map.
Let us check that the morphism F ◦f is well-defined, i.e., it does not depend on the choice

of the map g : 1 → Y . Indeed, given another map g′ : 1 → Y , consider the map h : 2 → Y

defined by h(0) = g(0) and h(1) = g′(0). It follows that g = h ◦ f0 and g′ = h ◦ f1 and then
for any a ∈ F ◦∅

Fg(a) = F (h ◦ f0)(a) = Fh ◦ Ff0(a) = Fh ◦ Ff1(a) = F (h ◦ f1)(a) = Fg′(a).

This argument also implies that F ◦(g ◦ f) = F ◦g ◦ F ◦f for any morphisms

X
f //Y

g //Z

of the category C. This means that F ◦ : C → T is a well-defined monomorphic functor. It
is clear that F ◦ is an ∅-modification of F .

It remains to check that F ◦ is the maximal ∅-modification of F . We shall show that for
any ∅-modification F̃ of F we get F̃ i∅1 (F̃∅) ⊂ F ◦∅ ⊂ F1 where i∅1 : ∅ → 1 is the unique
map. Applying the functor F̃ to the equality f0 ◦ i∅1 = f1 ◦ i∅1 we get F̃ f0 ◦ F̃ i∅1 (a) = F̃ f1 ◦
F̃ i∅1 (a) for every a ∈ F̃∅, which means that F̃ i∅1 (a) ∈ F ◦∅ and thus F̃ i∅1 (F̃∅) ⊂ F ◦∅.
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Now, given a functor F : C → T with finite supports and an object X of the category
C, we define the support map suppX : F ◦X → [X]<ω into the set [X]<ω of finite subsets of
X. Each finite subset A ⊂ X will be endowed with the discrete topology. By iAX : A → X

we denote the identity map from the finite discrete space A to X.
For an element a ∈ F ◦X the set

suppX(a) =
⋂
{A ∈ [X]<ω : a ∈ F ◦iAX(F

◦A)}

is called the support of a.
The principal result of this paper is the following theorem, which has been applied in [2].

Theorem 2. Let C be a Top-like category and F : C → T be a monomorphic functor with
finite supports. For any element a ∈ F ◦X the support A = suppX(a) is a well-defined finite
subset of X such that a ∈ F ◦iAX(F

◦A).

We postpone the proof of this theorem till Section 2. Now we discuss an application of
Theorem 2 to functors of finite degree in the Top-like category Comp of compact Hausdorff
spaces and their continuous maps. First we recall the necessary definitions, see [5] for more
details.

A functor F : Comp → T

• is epimorphic if F preserves epimorphisms (which coincide with surjective maps in the
categories Comp and T);

• is continuous if F (Comp) ⊂ Comp and F preserves the limits of inverse spectra in
the category Comp;

• preserves intersections if for any compact Hausdorff space X and closed subsets Xα ⊂
X, α ∈ A, with intersection Z =

⋂
α∈A Xα, we get FiZX(Z) =

⋂
α∈A FiXα

X (FXα).

Here for two compact Hausdorff spaces A ⊂ B by iAB : A → B we denote the identity
embedding.

Theorem 2 is a key ingredient in the proof of the following:

Theorem 3. Each monomorphic functor F : Comp → T with finite supports is epimorphic
and its maximal ∅-modification F ◦ : Comp → T preserves intersections.

For endofunctors F : Comp → Comp in the category of compacta we can prove a bit
more:

Theorem 4. For each monomorphic functor F : Comp → Comp with finite supports
its maximal ∅-modification F ◦ : Comp → Comp is a monomorphic, epimorphic, contin-
uous, intersection preserving functor with finite supports. Moreover, the functors F and
F ◦ preserve the weight of infinite compacta if and only if for every n ∈ ω the space Fn is
metrizable.

In [3] V.Basmanov proved that each monomorphic continuous functor F : Comp →
Comp of finite degree degF ≤ n preserves (finite-dimensional) compact ANRs provided F

preserves intersections and the spaces F∅ and Fn are finite-dimensional ANRs. Theorem 4
allows us to improve this Basmanov’s result:
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Theorem 5. A monomorphic functor F : Comp → Comp of finite degree degF ≤ n pre-
serves (finite-dimensional) compact ANRs provided F∅, F ◦∅, and Fn are finite-dimensional
ANRs.

This theorem implies the following corollary that will be applied in [1] for studying the
functors of free topological universal algebras.

Corollary 1. A monomorphic functor F : Comp → Comp of finite degree degF ≤ n

preserves (finite-dimensional) compact ANRs provided the space F1 is finite and Fn is a
finite-dimensional ANR.

2 Proof of Theorem 2

We assume that F : C → T is a monomorphic functor with finite supports defined on a
Top-like category C and F ◦ : C → T is its maximal ∅-modification. We recall that for a
finite subset A of a topological space X by iAX : A → X we denote the identity map from A

endowed with the discrete topology to X.
Theorem 2 will be derived from the following lemma.

Lemma 1. For any subsets A,B of a finite discrete space X we get

F ◦iA∩B
X (F ◦(A ∩B)) = F ◦iAX(FA) ∩ F ◦iBX(FB).

Proof. The inclusion F ◦iA∩B
X (F ◦(A∩B)) ⊂ F ◦iAX(F

◦A)∩F ◦iBX(F
◦B) follows from the func-

toriality of F ◦. To prove the reverse inclusion, we consider 4 cases.
1. If A ⊂ B, then iAX = iBX ◦ iAB and then F ◦iAX(F

◦A) = F ◦iBX ◦ F ◦iAB(F
◦A) ⊂ F ◦iBX(F

◦B)

and F ◦iAX(F
◦A) ∩ F ◦iBX(F

◦B) = F ◦iAX(F
◦A) = F ◦iA∩B

X (F ◦(A ∩B)).

2. By analogy we can consider the case B ⊂ A.
3. The sets A,B ⊂ X are non-empty but have empty intersection A ∩ B = ∅. In this

case F ◦A = FA and F ◦B = FB. To prove that FiAX(FA)∩FiBX(FB) ⊂ F ◦i∅X(F
◦∅), fix any

element c ∈ FiAX(FA) ∩ FiBX(FB). We need to prove that c ∈ F ◦i∅X(F
◦∅). Find elements

cA ∈ FA and cB ∈ FB such that FiAX(cA) = c = FiBX(cB).
First we prove that for any point a ∈ A we get c ∈ Fi

{a}
X (F{a}) ⊂ FX. Indeed, consider

the map r : X → A such that r(x) = x if x ∈ A and r(x) = a if x ∈ X\A. Let rB{a} : B → {a}
denote the constant map and observe that iAX ◦ r ◦ iBX = i

{a}
X ◦ rB{a}.

Applying the functor F to the equality iAX = iAX ◦ r ◦ iAX , we get c = FiAX(cA) = FiAX ◦Fr ◦
FiAX(cA) = FiAX ◦ Fr(c) = FiAX ◦ Fr ◦ FiBX(cB) ∈ F (iAX ◦ r ◦ iBX)(cB) = F (i

{a}
X ◦ rB{a})(cB) =

Fi
{a}
X (FrB{a}(cB)) ∈ Fi

{a}
X (F{a}) ⊂ FX.

By the same argument, we can prove that c ∈ Fi
{b}
X (F{b}) ⊂ FX for any b ∈ B.

Let rX1 : X → 1 be the unique map and fa, fb : 1 → X be two maps such that fa(0) = a ∈
A and fb(0) = b ∈ B. Since c ∈ Fi

{a}
X (F{a}) = Ffa(F1) and c ∈ Fi

{b}
X F ({b}) = Ffb(F1)

there are two elements ca, cb ∈ F1 such that Ffa(ca) = c = Ffb(cb). Since rX1 ◦ fa = id =

rX1 ◦ fb, we conclude that

ca = FrX1 ◦ Ffa(ca) = FrX1 (c) = FrX1 ◦ Ffb(cb) = cb.
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Now we see that the element c1 = ca = cb belongs to F ◦∅ and c = Ffa(c1) = Ffb(c1),
which means that c = F ◦i1X (c1) ∈ F ◦i∅X(F

◦∅) according to the definition of the morphism
F ◦i∅X : F ◦∅ → F ◦X = FX.

4. The intersection A ∩ B is not empty. In this case F ◦A = FA, F ◦B = FB and
F ◦(A ∩B) = F (A ∩B).

To prove that FiAX(FA)∩FiBX(FB) ⊂ FiA∩B
X (F (A∩B)), fix any element c ∈ FiAX(FA)∩

FiAX(FB) and find elements cA ∈ FA and cB ∈ FB such that FiAX(cA) = c = FiBX(cB).
Choose any map rXA∩B : X → A ∩ B such that r(x) = x for all x ∈ A ∩ B and define

retractions rXA : X → A and rXB : X → B by

rXA (x) =

{
x if x ∈ A

rXA∩B(x) otherwise
and rXB (x) =

{
x if x ∈ B

rXA∩B(x) otherwise.

Observe that rXA∩B = rXB ◦ rXA = rXA ◦ rXB .
We claim that cA = FrXA (c). Since iAX = iAX ◦ rXA ◦ iAX , we get

FiAX(cA) = FiAX ◦ FrXA ◦ FiAX(cA) = FiAX ◦ FrXA (c) = FiAX(FrXA (c))

and hence cA = FrAX(c) by the injectivity of the map FiAX : FA → FX.
The same argument yields cB = FrXB (c). Now consider the element cAB = FrXA∩B(c) ∈

F (A ∩B). Since rXA∩B = rXA∩B ◦ iAX ◦ rXA , we get

cAB = FrXA∩B(c) = FrXA∩B ◦ FiAX ◦ FrXA (c) = FrXA∩B ◦ FiAX(cA).

Applying the functor F to the equality iA∩B
B ◦ rXA∩B ◦ iAX = rXB ◦ iAX , we get

FiA∩B
B (cAB) = FiA∩B

B ◦ FrXA∩B ◦ FiAX(cA) = FrXB ◦ FiAX(cA) = FrXB (c) = cB

and then

FiA∩B
X (cAB) = F (iBX ◦ iA∩B

B )(cAB) = FiBX ◦ FiA∩B
B (cAB) = FiBX(cB) = c,

which means that c = FiA∩B
X (cAB) ∈ FiA∩B

X (F (A ∩B)).

The following lemma implies Theorem 2.

Lemma 2. For any object X of the category C and an element a ∈ F ◦X the support
A = suppX(a) is a well-defined finite subset of X such that a ∈ F ◦iAX(F

◦A).

Proof. We recall that suppX(a) = ∩B where B = {B ∈ [X]<ω : a ∈ F ◦iBX(F
◦B)}. First we

show that the family B is not empty. Since the functor F ◦ has finite supports, there is a
map f : C → X from a finite discrete space C such that a ∈ F ◦f(F ◦C). Let B = f(C) and
fC
B : C → B be the map such that fC

B (c) = f(c) for all c ∈ C. Since f = iBX ◦ fC
B , we get

F ◦f = F ◦iBX ◦ F ◦fC
B and

a ∈ F ◦f(F ◦C) = F ◦(iBX ◦ fC
B )(F

◦C) = F ◦iBX(F
◦fC

B (F
◦C)) ⊂ F ◦iBX(F

◦B).
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Now we see that B ∈ B and the family B is not empty. So, the intersection supp(a) =

∩B is a well-defined finite subset of X. Since supp(a) = ∩B is finite, there exist subsets
B1, B2, . . . , Bn ∈ B of X such that supp(a) =

⋂n
i=1 Bi. For every k ≤ n let Ak =

⋂k
i=1 Bi.

Thus A1 = B1 and An = supp(a).
We claim that a ∈ F ◦iAk

X (F ◦Ak) for every 1 ≤ k ≤ n. This will be done by induction
on k. For k = 1 this inclusion follows from A1 = B1 and the choice of B1. Assume
that a ∈ F ◦i

Ak−1

X (F ◦Ak−1) for some k ≤ n. Taking into account that Ak = Ak−1 ∩ Bk

and a ∈ F ◦iBk
X (F ◦Bk) and applying Lemma 1, we conclude that a ∈ F ◦i

Ak−1

X (F ◦Ak−1) ∩
F ◦iBk

X (F ◦Bk) = F ◦iAk
X (F ◦Ak).

For k = n we get An = supp(a) and hence a ∈ F ◦iAn
X (F ◦An).

3 Proof of Theorem 3

Let F : Comp → T be a monomorphic functor with finite supports and F ◦ : Comp → T

be its maximal ∅-modification. By Theorem 1, the functor F ◦ is monomorphic. Also it is
clear that F ◦ has finite supports. The two properties of F and F ◦ stated in Theorem 3 are
proved in the following two lemmas.

Lemma 3. Each monomorphic functor F : Comp → T with finite supports preserves
surjective maps and hence is epimorphic.

Proof. Let f : X → Y be a surjective map between compact spaces and b ∈ FY be any
element. Since F has finite supports, there is a finite subset B ⊂ Y such that b ∈ FiBY (FB)

where iBY : B → Y is the identity map from B to Y . Let s : B → X be any map such that
f ◦ s = iBY . Such a map s exists because the map f is surjective. Fix an element bB ∈ FB

such that b = FiBX(bB) and let a = Fs(bB). Applying the functor F to the equality f ◦s = iBX ,
we get b = FiBX(bB) = Ff ◦ Fs(bB) = Ff(a), witnessing that the map Ff : FX → FY is
surjective. Therefore F is an epimorphic functor.

Lemma 4. The functor F ◦ : Comp → T preserves intersections.

Proof. Let X be a compact Hausdorff space and Xα, α ∈ A, be closed subspaces of X with
intersection Z =

⋂
α∈A Xα. For two compact Hausdorff spaces A ⊂ B by iAB : A → B we

denote the identity embedding.
We need to prove that F ◦iZX(F

◦Z) =
⋂

α∈A F ◦iXα
X (F ◦Xα). The inclusion

F ◦iZX(F
◦Z) ⊂

⋂
α∈A

F ◦iXα
X (F ◦Xα)

trivially follows from the functoriality of F ◦.
In order to prove the reverse inclusion, fix any element b ∈

⋂
α∈A F ◦iXα

X (F ◦Xα). For every
α ∈ A find an element bα ∈ F ◦Xα such that b = F ◦iXα

X (bα). Since the functor F ◦ has finite
supports, there is a finite set Yα ⊂ Xα such that bα ∈ F ◦iYα

Xα
(F ◦Yα). Since iYα

X = iXα
X ◦ iYα

Xα
,

we get
b = F ◦iXα

X (bα) ∈ F ◦iXα
X (F ◦iYα

Xα
(F ◦Yα)) = F ◦iYα

X (F ◦Yα).
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The definition of the set A = supp(b) guarantees that A = supp(b) ⊂ Yα ⊂ Xα ⊂ X.
Then A ⊂

⋂
α∈AXα = Z and iAX = iZX ◦ iAZ . By Theorem 2, b ∈ F ◦iAX(F

◦A) and consequently,
there is an element a ∈ F ◦A such that b = F ◦iAX(a). Let c = F ◦iAZ(a) ∈ F ◦Z. Then

b = F ◦iAX(a) = F ◦(iZX ◦ iAZ)(a) = F ◦iZX(F
◦iAZ(a)) = F ◦iZX(c) ∈ F ◦iZX(F

◦Z),

which completes the proof.

4 Proof of Theorem 4

Let F : Comp → Comp be a monomorphic functor with finite supports. By Theorem 3,
its maximal ∅-modification F ◦ : Comp → Comp is a monomorphic, epimorphic functor
with finite supports, which preserves intersections. The remaining two properties of F ◦

stated in Theorem 4 are proved in the following two lemmas.

Lemma 5. Each monomorphic functor F : Comp → Comp with finite supports is conti-
nuous.

Proof. By Lemma 3, F is epimorphic. By Theorem 2.2.2 of [5] the continuity of the functor
F will follow as soon as we check that for each cardinal κ and any two distinct elements
a, b ∈ F (Iκ) there is a finite subset D ⊂ κ such that FpD(a) 6= FpD(b) where pD : Iκ → ID

is the projection of the Tychonov cube Iκ onto its face ID.
Since F has finite supports, there is a finite subset C ⊂ Iκ such that a, b ∈ FiC(FC)

where iC : C → Iκ denotes the identity embedding. Find elements aC , bC ∈ FC such that
a = FiC(aC) and b = FiC(bC). Since C is finite, we can find a finite subset D ⊂ κ such
that the composition pD ◦ iC : C → ID is injective. Since F is monomorphic, the map
FpD ◦ FiC : FC → F ID is injective and hence

FpD(a) = FpD ◦ FiC(aC) 6= FpD ◦ FiC(bC) = FpD(b).

For a topological space X by w(X) we denote its weight (equal to the smallest cardinality
of a base of the topology of X). For two compact Hausdorff spaces X, Y by C(X, Y ) we
denote the space of continuous functions from X to Y , endowed with the compact-open
topology.

Lemma 6. If F : Comp → Comp is a monomorphic functor with finite supports, then
w(FX) ≤ sup{w(X), w(Fn) : n ∈ ω} for each infinite compact space X.

Proof. By Lemmas 3 and 5, the functor F is epimorphic and continuous. Then by Theorem
2.2.3 of [5], for every n ∈ ω the map

F : C(n,X) → C(Fn, FX), F : f 7→ Ff,

is continuous and so is the map

ξn : C(n,X)× Fn → FX, ξn : (f, a) 7→ Ff(a),
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according to the exponential law for the compact-open topology [4, 3.4.8]. Then the image
FnX = ξn(C(n,X)× Fn) ⊂ FX is a compact space of weight

w(FnX) ≤ w(C(n,X)× Fn) ≤ max{w(Xn), w(Fn)} = max{w(X), w(Fn)},

see [4, 3.1.22].
Since F has finite supports, the compact space FX is equal to the countable union FX =⋃

n∈ω FnX and hence has weight w(FX) ≤ supn∈ω w(FnX) ≤ sup{w(X), w(Fn) : n ∈ ω}
according to [4, 3.1.20].
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Банах Т.О., Мартиненко М.В., Зарiчний М.М. Про мономорфнi топологiчнi функтори зi
скiнченними носiями // Карпатськi математичнi публiкацiї. — 2012. — Т.4, №1. — C. 4–11.

Доведено, що мономорфний функтор F : Comp → Comp зi скiнченними носiями є
епiморфним, неперервним i його максимальна ∅-модифiкацiя F ◦ зберiгає перетини. Iз
цього випливає, що мономорфний функтор F : Comp → Comp скiнченного степеня
degF ≤ n зберiгає (скiнченновимiрнi) ANR-компакти, якщо простори F∅, F ◦∅, i Fn є
скiнченновимiрними ANR-компактами. Цей факт покращує одну вiдому теорему Басма-
нова, позбавляючи її вiд зайвих умов.

Банах Т.О., Мартыненко М.В., Заричный М.М. О мономорфных топологических функто-
рах с конечными носителями // Карпатские математические публикации. — 2012. — Т.4,
№1. — C. 4–11.

Доказано, что мономорфный функтор F : Comp → Comp с конечными носителями
является эпиморфным, неперерывным и его максимальная ∅-модификация F ◦ сохраняет
пересечения. Из этого следует, что мономорфный функтор F : Comp → Comp конеч-
ной степени degF ≤ n сохраняет (конечномерные) ANR-компакты, если пространства
F∅, F ◦∅, и Fn являются конечномерными ANR-компактами. Этот факт улучшает одну
известную теорему Басманова, избавляя ее от лишних условий.


