PHYSICS AND CHEMISTRY OF SOLID STATE

V. 23, No. 3 (2022) pp. 450-453

Section: Physics

DOI: 10.15330/pcss.23.3.450-453

Vasyl Stefanyk Precarpathian National University

ФІЗИКА І ХІМІЯ ТВЕРДОГО ТІЛА Т. 23, № 3 (2022) С. 450-453

Фізико-математичні науки

PACS: 71.20.Nr, 73.40.Lq

ISSN 1729-4428

О.Г. Грушка, С.М. Чупира, О.М. Мислюк, О.М. Сльотов Бар'єрна ємність гетеропереходу n-SnS₂/n-CdIn₂Te₄

Чернівецький національний університет ім. Ю. Федьковича 58012, вул. Коцюбинського 2, Чернівці, Україна, <u>o.grushka@chnu.edu.ua</u>

Наведено результати дослідження електричних характеристик гетеропереходу n-SnS₂/n-CdIn₂Te₄, отриманого методом посадки на оптичний контакт. Показано, що вольт-амперні характеристики та вольтфарадні характеристики (ВФХ) є типовими для різкого гетеропереходу. Виявлено частотну залежність ВФХ: зі збільшенням частоти змінної напруги бар'єрна ємність зменшується. Залежності ВФХ від частоти обумовлені наявністю власних структурних дефектів та пов'язаних із ними локалізованих донорних станів у забороненій зоні CdIn₂Te₄. Одержані результати пояснюються залежними від частоти процесами перезарядки глибоких донорних центрів.

Ключові слова: гетероперехід, бар'єрна ємність, вольт-фарадна характеристика, структурні дефекти.

Подано до редакції 03.02.2022; Прийнято до друку 12.07.2022.

Вступ

Стійкість напівпровідникових приладів до впливу іонізуючих випромінювань багато в чому залежить від властивостей матеріалів, з яких вони виготовлені. У більшості напівпровідників (Ge, Si та інші) при опроміненні відбуваються незворотні зміни їх основних параметрів: провідності та рухливості носіїв заряду. У зв'язку з цим привертають увагу радіаційною напівпровідники з підвищеною стійкістю, зокрема з дефектною кристалічною структурою, що містить велику концентрацію (~10²¹ см⁻³) стехіометричних вакансій. Прикладом можуть бути напівпровідники типу In₂Te₃ та їх похідні, однією із яких є CdIn2Te4 - сполука із системи СdTe-In₂Te₃. У роботі [1] показано, що електричні властивості CdIn₂Te₄ залишаються незмінними під впливом у-випромінювання до доз 1·10⁸ Р. Така властивість є сприятливою для створення фотоелектричних пристроїв на основі CdIn2Te4, що в умовах підвищеної працюють радіації. Спектральний діапазон фоточутливості CdIn2Te4 з максимумом при $\lambda = (0.5-0.6)$ мкм збігається зі спектром сонячного випромінювання [2], що є

важливим при створенні сонячних елементів.

У даній роботі наводяться результати дослідження вольт-амперних характеристик (ВАХ) та вольт-фарадних характеристик (ВФХ), у тому числі частотна залежність бар'єрної ємності гетеропереходу n-SnS₂/n-CdIn₂Te₄ при кімнатній температурі. Температурні залежності ВАХ розглянуті у роботі [3].

I. Результати експерименту

Гетероперехід n-SnS₂/n-CdIn₂Te₄ є ізотипним n-nконтактом двох напівпровідників з різними шириною забороненої зони 2.07 eB (SnS₂) і 1.27 eB (CdIn₂Te₄) та діелектричними проникностями $\varepsilon_1 = 9$ і $\varepsilon_2 = 11.7$ [4] і відповідно різними кристалічними структурами: SnS₂ – шаруватий дисульфід олова тригональної сингонії (параметри решітки $\alpha = 3.65A$, c = 5.88A) [5] та CdIn₂Te₄ з дефектною тетрагональною структурою (параметри решітки $\alpha = 6.205A$, c = 12.405A) [6]. Такий гетероперехід, подібно до діодів Шоттки, є пристроєм з основними носіями заряду [7].

Для виготовлення гетеропереходу SnS₂/CdIn₂Te₄ використовувався метод посадки на оптичний контакт [8] – відносно простий низькотемпературний метод, який унеможливлює перехресне легування і дозволяє отримувати різкі гетеропереходи.

Кристали SnS₂ і CdIn₂Te₄, отримані методом Бріджмена, мали концентрацію електронів і рухливість $n = 4 \cdot 10^{15} \text{ см}^{-3}$, $\mu = 95 \text{ см}^2/(\text{B·c})$ і $n = 3 \cdot 10^{12} \text{ см}^{-3}$, $\mu = 132 \text{ см}^2/(\text{B·c})$ відповідно.

Плоскопаралельні підкладки CdIn₂Te₄ попередньо механічно та хімічно полірувались до досягнення дзеркально-гладкої поверхні з мінімальним мікрорельєфом. Тонкі пластинки товщиною близько 10 мкм знімалися з монокристалу SnS₂, що має шарувату структуру, і ніякій обробці не піддавалися. Отримані пластинки SnS₂ прикладалися до підкладок CdIn₂Te₄ і притискалися. Завдяки еластичності пластинок SnS₂ відбувалося злипання та зчеплення (адгезія) поверхонь різнорідних напівпровідників і створювався міцний контакт гетеропари.

Темнові вольт-амперні характеристики гетеропереходів SnS₂/CdIn₂Te₄ знімалися на постійному струмі при кімнатній температурі. Типова ВАХ наведена на рис. 1. ВАХ має чітко виражені випрямляючі властивості. Коефіцієнт випрямлення, визначений як відношення прямого струму до U = 1V, зворотного при струму дорівнює $K = \frac{I_f}{I_r}\Big|_{IJ=1V} = 1 \cdot 10^3.$

Рис. 1. Темнова вольт-амперна характеристика гетеропереходу SnS₂/CdIn₂Te₄.

При прикладенні прямої напруги при $U < U_{\kappa}$ (U_{κ} – контактна різниця потенціалів) ВАХ описується експоненціальною залежністю типу

$$I = I_0 exp\left(\frac{eU}{kT}\right),\tag{1}$$

де $I_0 = 1.3 \cdot 10^{-9} A$ – струм насичення.

При прямих зміщеннях, що перевищують контактну різницю потенціалів $U > U_{\kappa}$, ВАХ виходить на лінійну ділянку, нахил якої визначається опором базового матеріалу CdIn₂Te₄ (7.5·10³ Oм). Екстраполюючи лінійну ділянку ВАХ до перетину з віссю напруг, визначено напругу відсічки $U_{\kappa} = 0.36$ В.

Вольт-фарадні характеристики в залежності від кругової частоти $\omega = 2\pi/T$ (T – період коливання) наведено на рис. 2, звідки видно, що при збільшенні зворотної напруги U бар'єрна ємність C зменшується,

що обумовлено збільшенням ширини області об'ємного заряду (ООЗ) W переходу за аналогією з плоским конденсатором $C = \varepsilon \varepsilon_0 S/W$, де ε відносна діелектрична проникність, *є*₀ – електрична постійна, S – площа переходу. При цьому спостерігається залежність ємності від частоти змінного сигналу ω : із збільшенням ω ємність зменшується. Такі залежності відомі для неоднорідних систем [9].

Рис. 2. Вольт-фарадні характеристики гетеропереходу SnS₂/CdIn₂Te₄ при частоті ω , кГц: 10 (1), 20 (2) і 30 (3).

Залежність ємності *С* від прикладеного зворотного зміщення *U* може бути представлена у вигляді

$$\frac{1}{C^2} = \frac{2(U_{\rm K} - U)}{e\varepsilon\varepsilon_0 S^2 N_D} = \frac{2U_C}{e\varepsilon\varepsilon_0 S^2 N_D} - \frac{2U}{e\varepsilon\varepsilon_0 S^2 N_D},\tag{2}$$

Залежності $\frac{1}{C^2} = f(U)$, приведені на рис. 3, є лінійними функціями, які притаманні для різкого гетеропереходу. Визначивши тангенс кута нахилу прямих (рис. 3), оцінили концентрації донорів N_D , а екстраполюючи прямі до перетину з віссю напруг $(1/_{C^2} = 0)$ – величини $U_C = f(\omega)$ (бар'єрні напруги відсічки). За перетином залежностей $1/_{C^2} = f(U)$ з віссю ординат при U = 0 визначили ємність $C = f(\omega)$ і ширину області об'ємного заряду $W = f(\omega)$. Отримані величини, що наведені у таблиці, закономірні і взаємопов'язані. Як видно, бар'єрна напруга відсічки $U_{\kappa} = f(\omega)$ вище, ніж напруга відсічки $U_{\rm K}$, яка визначена з ВАХ при $\omega = 0$. При збільшенні частоти ω напруга відсічки U_к росте, що корелює із зміною інших параметрів, наведених в таблиці.

Рис. 3. Залежності (1/*C*²)=*f*(*U*) при частоті *ω*, кГц: 10 (*1*), 20 (*2*), 30 (*3*).

	Таблиця	1.
Sng /n	CdIn To	

Thapamerph rereponepexody in-SilS2/in-Culli21e4					
ω ,	U_{κ} , B	N_D , см- 3	C, Φ	W ,	
кГц		_		МКМ	
10	0.65	9.8·10 ¹³	6.2·10 ⁻¹⁰	2.6	
20	1.22	$4.3 \cdot 10^{13}$	$3.0 \cdot 10^{-10}$	5.3	
30	1.48	$1.6 \cdot 10^{13}$	$1.7 \cdot 10^{-10}$	9.6	
0	0.36	$3.0 \cdot 10^{12}$	$1.5 \cdot 10^{-10}$	10.9	

II. Обговорення результатів

Як відомо, область об'ємного заряду виникає із-за енергетичного бар'єру в гетеропереході. Заряд ООЗ, утворений іонізованими донорами, компенсується вільними електронами за межами ООЗ, де зберігається електронейтральність.

Заряд, що відповідає відгуку на змінний сигнал, є вільними електронами, а не іонами, тому за допомогою ВФХ визначається концентрація вільних електронів, а не концентрація донорів. Враховуючи цю особливість, за допомогою формул

$$C = \left(\frac{\varepsilon\varepsilon\varepsilon_0 S^2 N_D}{2U_{\rm K}}\right)^{1/2}, \ W = \left(\frac{2\varepsilon\varepsilon_0 U_{\rm K}}{2N_D}\right)^{1/2}, \tag{3}$$

в яких, прирівнюючи U_{κ} контактній різниці потенціалів, визначеної з ВАХ (рис. 1), а N_D – рівноважній концентрації електронів при кімнатній температурі, оцінили можливі значення *C* і *W* при відсутності змінного електричного поля ($\omega = 0$). Отримані дані (Таблиця, нижній рядок) відображають ситуацію, коли глибокі дефектні рівні практично не впливають на бар'єрні властивості гетеропереходу. Подібна ситуація має місце при дослідженні ВФХ при досить високих частотах (близько 1 МГц) [9, 10], коли глибокі дискретні рівні не встигають перезарядитися за період коливання. При зменшенні частоти ω (збільшенні періоду коливання) процеси перезарядки стають більш суттєвими і заповнення глибоких дискретних рівнів встигає за період коливання, тим інтенсивніше спустошуються глибокі центри, тому бар'єрна ємність гетеропереходу зростає, що й спостерігається на досліді.

власних структурних дефектів Вплив на властивості CdIn₂Te₄ виявлено при дослідженні краю власного поглинання [2]. Наявність дефектів визначає експоненціальний характер розподілу густини станів, відповідальних за "хвіст" зони провідності. Як показано у роботі [11], у спектрі фотолюмінесценції фотона hv = 0.95eBCdIn₂Te₄ при енергії спостерігається широка домішкова смуга, що пов'язана з рівнями електронних станів, локалізованих у забороненій зоні. Ці стани відповідальні за електронні процеси в кристалі і в першу чергу вони впливають на провідність та особливості $C = f(\omega)$ в змінному електричному полі.

Висновок

Збільшення бар'єрної ємності $C = f(\omega)$ гетеропереходу n-SnS₂/n-CdIn₂Te₄ із зменшенням частоти ω обумовлено високою густиною глибоких рівнів у забороненій зоні CdIn₂Te₄ та звільненням їх від електронів зі збільшенням періоду коливання змінного електричного поля. Спустошені глибокі центри збільшують концентрацію позитивно заряджених донорів. У цьому випадку ширина області об'ємного заряду $W = f(\omega)$ зменшується, а ємність $C = f(\omega)$ зростає.

Грушка О.Г. – кандидат фіз.-мат. наук, асистент кафедри електроніки і енергетики;

Чупира С.М. – кандидат фіз.-мат. наук, доцент кафедри електроніки і енергетики;

Мислюк О.М. – кандидат фіз.-мат. наук, асистент кафедри електроніки і енергетики;

Сльотов О.М. – доктор технічних наук, доцент кафедри електроніки і енергетики.

- O.G. Grushka, V.T. Maslyuk, S.M. Chupyra, O.M. Myslyuk, O. M. Slyotov, The influence of γ-irradiation on electrical properties of CdIn₂Te₄ crystals, Telecommunications and Radio Engineering 78(11), 1027 (2019); <u>https://doi.org/10.1615/TelecomRadEng.v78.i11.90.</u>
- [2] O.G. Grushka, S.M. Chupyra, S.V. Bilichuk, O.A. Parfenyuk, Electronic processes in CdIn₂Te₄ crystals, Semiconductors 52(8), 973 (2018); <u>https://doi.org/10.1134/S1063782618080079.</u>
- [3] P.M. Gorley, Z.M. Grushka, O.G. Grushka, P.P. Gorley, I.I. Zabolotsky, Electrical properties of n-SnS₂/n-CdIn₂Te₄ heterostructure, Semiconductor Physics. Quantum Electronics and Optoelectronics 13(4), 444 (2010); https://doi.org/10.15407/spqe013.04.

- [4] V. Riede, H.Neumann, V.Krämer, M.Kittel, Infrared and Raman spectra of CdIn₂Te₄, Solid State Communication 78(3), 211 (1991); <u>https://doi.org/10.1016/0038-1098(91)90285-4</u>.
- [5] G.B. Dubrovskii, Crystal structure and electronic spectrum of SnS₂, Physics of the Solid State 40, 1557 (1998); https://doi.org/10.1134/1.1130598.
- [6] S.S. Ou, S.A. Eshraghi, O.M. Stafsudd, The electronic characteristics of n-type CdIn₂Te₄, J. Appl. Phys. 57(2), 355 (1985); <u>https://doi.org/10.1063/1.334814.</u>
- [7] B.L. Sharma, R.K. Purochit. Semiconductor heterojunctions (Sov. radio, Moscow, 1979).
- [8] D.B. Ananyina, V.L. Bakumenko, A.K. Bonakov, G.G. Grushka, About the characteristics of a n-SnS₂-n-Hg₃In₂Te₆ heterojunction formed by deposition over optical contact, Semiconductors 14(12), 2419 (1980). (in Russian).
- [9] V.V. Malyutina-Bronskaya, O.A. Grebenschikov, V.B. Zalesski, T.R. Leonova, Analysis of capacitance-voltage haracteristics of ZnO:RE thin films on silicone substrates by the Therman method, Condensed Matter and Interphases 14(4), 433 (2012); <u>https://journals.vsu.ru/kcmf/article/view/1001</u>
- [10] N.A. Kornushkin, N.A. Valishenko, A.P. Kovcavtsev, G.L. Kuryshev, The influence of interface properties and deep levels in the band gap on capacitance-voltage characteristics of InAs-bases Metal-Insulator-Semiconductor structures, Semiconductors 30(5), 914 (1996); <u>http://journals.ioffe.ru/articles/viewPDF/18430</u> (in Russian).
- [11] T.G. Kerimova, I.A.Mamedova, Temperature dependence of the photoluminescence of CdIn₂Te₄, XIV Russian Conference on Physics of Semiconductors (Pero, Moscow, 2019), p. 56. <u>https://www.isp.nsc.ru/semicond2019/upload/semicond2019-abstracts-1.pdf</u> (in Russian).

O.G. Grushka, S. M. Chupyra, O.M. Myslyuk, O.M.Slyotov

The barrier capacitance of n-SnS₂/n-CdIn₂Te₄ heterojunction

Yuri Fedjkovych Chernivtsy National University, 2 Kotsyubynsky Str., 58012 Chernivtsi, Ukraine, o.grushka@chnu.edu.ua

We report the electrical study results for the $n-SnS_2/n-CdIn_2Te_4$ structure formed by deposition over optical contact. The measured current-voltage and capacitance-voltage (C-V) curves are typical for an abrupt heterojunction. According to the C-V curve analysis, higher voltage frequencies lead to lower barrier capacitance. This effect may be caused by intrinsic structural defects producing localized donor states in the band gap of CdIn_2Te_4. The observed electrical properties can be explained by frequency-dependent recharging processes of such deep donor centers.

Keywords: heterojunction, barrier capacitance, capacitance-voltage curve, structural defects.