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On unconditionally convergent series in topological rings

Banakh T.0.!?, Ravsky A.V.2

We define a topological ring R to be Hirsch, if for any unconditionally convergent series ), ¢, X;
in R and any neighborhood U of the additive identity 0 of R there exists a neighborhood V C
R of 0 such that Y,cranx, € U for any finite set F C w and any sequence (a,),cr € VE. We
recognize Hirsch rings in certain known classes of topological rings. For this purpose we introduce
and develop the technique of seminorms on actogroups. We prove, in particular, that a topological
ring R is Hirsch provided R is locally compact or R has a base at the zero consisting of open ideals or
R is a closed subring of the Banach ring C(K), where K is a compact Hausdorff space. This implies
that the Banach ring /« and its subrings cy and ¢ are Hirsch. Applying a recent result of Banakh
and Kadets, we prove that for a real number p > 1 the commutative Banach ring ¢, is Hirsch if
and only if p < 2. Also for any p € (1,0), the (noncommutative) Banach ring L(¢,) of continuous
endomorphisms of the Banach ring ¢, is not Hirsch.

Key words and phrases: topological ring, unconditional convergence, locally compact topological
ring, locally compact Abelian topological group.

! Ivan Franko National University of Lviv, 1 Universytetska str., 79000, Lviv, Ukraine

2 Jan Kochanowski University, Kielce, Poland

3 Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, 3b Naukova str., 79060, Lviv, Ukraine
E-mail: t.o.banakh@gmail.com(BanakhT.O.), alexander.ravsky@uni-wuerzburg.de (Ravsky A.V.)

Introduction

We define a topological ring R to be Hirsch if for any unconditionally convergent series
Y new Xn in R and any neighborhood U C R of the additive identity 0 of R there exists a
neighborhood V' C R of 0 such that }_,.ra,x, € U for any finite set F C w and any sequence
(Wz)nel—" e VE

This notion was suggested by a question [8] of Dylan Hirsch who was motivated by the
idea of generalizing the standard theory of Lebesgue measure and integral to functions with
values in topological rings.

In this paper we consider the following general problem.

Problem 1 (see [8]). Recognize Hirsch rings in known classes of topological rings.

Exploring Problem 1, we shall introduce and develop the technique of seminorms on ac-
togroups, see Section 3. We shall show, in particular, that a topological ring R is Hirsch pro-
vided R has a base at the zero consisting of open ideals (see Proposition 3) or R is locally
compact (see Theorem 9) or R is a subring of the topological rings Cx(X,S) of continuous
functions from a topological space X to a locally compact topological ring S, endowed with
the topology of uniform convergence on sets from an ideal K of compact Hausdporff subsets
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of X (see Theorem 10). This implies that the Banach ring /., and its subrings ¢y and c are
Hirsch, see Theorem 15. We prove also that for a number p € [1, o] the commutative Banach
ring ¢, is Hirsch if and only if p € [1,2] U {0}, see Corollary 7. Also for any p € (1,00), the
(noncommutative) Banach ring L(¢,) of continuous endomorphisms of the Banach ring ¢, is
not Hirsch, see Propositions 6 and 7.

1 Unconditional convergence in topological groups

A group in this paper means an Abelian topological group. We shall use the additive no-
tation for denoting the group operations. For a group G its identity element is denoted by Og
(so, x +0g = x = 0g + x for every x € G).

Let I be a countable infinite set and (x;);c; be a sequence of elements of a group G. The
sequence (X;)icr

* converges to an element x € G if for any neighborhood U of the identity of G there exists
a finite set F C I such thatx; € x+ U foranyi € I\ F;

¢ is Cauchy if for any neighborhood U of the identity of G there exists a finite set F C I
such that x; — x; € U forany i, j € I\ F.

It is easy to show that any convergent sequence is Cauchy. A group G is sequentially complete if
any Cauchy sequence in G converges.
The series ) ;< x;

* unconditionally converges to an element x € G if for any neighborhood U of the identity
of G there exists a finite set F C I such that ) ;. jxi € x+U for any finite set | C I
containing F (if the set | is empty then we put } ;c; x; = 0);

¢ is unconditionally Cauchy if for any neighborhood U of the identity of G there exists a finite
set F C I such that ) ;cx x; € U for any finite set K C I\ F.

It is easy to show that any unconditionally convergent series is unconditionally Cauchy. On
the other hand we have the following assertion.

Proposition 1. Let }_;c; x; be an unconditionally Cauchy series in a group G and (I,)nc. be
a nondecreasing sequence of finite sets such that U,c,, I, = I. If the sequence (¥;cj, X;)
converges to a point x € G then the series ) ;- x; unconditionally converges to x.

new

Proof. Let U be any neighborhood of the identity of G. Pick a neighborhood V' of the identity
of G such that V 4V C U. Since the sequence (¢, %i) ., converges to x, there exists m € w,
such that ) ;c; x; € x + V for any n > m. Since the series } ;- x; is unconditionally Cauchy,
there exists a finite set ] C I such that Y ;cxx; € V for any finite set K C I\ J. Since the
sequence (I )new is nondecreasing and U, ¢, In = I, there exists a number k > m such that
Iy O J. Let F C I be any finite set containing Iy. Then

in: Zxﬁ— Z x;,€ex+V+VCx+U.
ieF i€l ieF\Ix



268 Banakh T.O., Ravsky A.V.

Proposition 2. Any unconditionally Cauchy series ) ;- x; in a sequentially complete group G
is unconditionally convergent.

Proof. Fix any increasing sequence (I)new Of finite subsets of I such that ,c, In = I. Let
U be any neighborhood of the identity of G such that U = —U. Since the series ) ;. x; is
unconditionally Cauchy, there exists a finite set F C I such that } ;. x; € U for any finite set
K C I'\ F. Since the sequence (I,)ncw is increasing and U,,c,, In = I, there exists k € w such
that [ O F. Let m,n € w be any numbers with k < m < n. Since I, \ I, C I\ F, we have

in—in: Z x; € U.

i€l i€y i€l \Iy

Thus the sequence (Y ;cj, Xi),.,, is Cauchy. Since the group G is sequentially complete, the
sequence (Y ;c; X;) e Converges to a pointa € G. By Proposition 1, the series };c; x; uncon-
ditionally converges to x. O

An endomorphism of a group G is a continuous homomorphism from G to itself.

Lemma 1. Let Y ;. x; be an unconditionally Cauchy series in a group G and (v;);c; be a
sequence of endomorphisms of G such that the set D = {v;};c; is finite. Then the series
Y ic1 vi(x;) is unconditionally Cauchy.

Proof. Let U be any neighborhood of the identity of G. Pick a neighborhood V' of the identity
of G such that the sum of |D| summands V is contained in U. Let v € D be any element. Put
I, = {i € I : v; = v} and pick a neighborhood W, of the identity of G such that v(W,) C V.
Put W = (N,ep Wo. Since the series ) ;c; x; is unconditionally Cauchy, there exists a finite set
F C Isuch that } ;cx x; € W for any finite set K C I\ F. Then for any finite set K C I\ F we
have

Y ooi(xi)=) ) v(xi):Zv< ) xz-)e Y o(W)C ) o(W,)C Y v,

ieK veD ieKNI, veD ieKNI, veD veD veD

witnessing that the series ) ;c; v;(x;) is unconditionally Cauchy. O

2 Topological rings that have a local base of open ideals

A topological ring is a group R endowed with a continuous associative binary operation
-+ R X R — R which is distributive, that is

x(y+z)=xy+xz and (x+y)z=xz+yz
for all x,y,z € R. A nonempty subset | of a ring R is called an ideal in R if
J+J < T and JRURJC J.

Proposition 3. Every topological ring R that has a neighborhood base at zero consisting of
open ideals is Hirsch.

Proof. Let ) ., x; be any (unconditionally) convergent series in R and U be any neighborhood
of the zero 0 of R. Let | be an arbitrary open ideal contained in U. Then for every finite set
I C wwehave) ;c;Jx; C ] C Uas Jisanideal in R. O
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3 Hirsch actogroups

It is natural to explore Problem 1 in a wider context of active groups, i.e., groups endowed
with an action of a topological space with zero.

Definition 1. An active group (briefly an actogroup) A ~ G is a topological group G en-
dowed with a continuous action A x G — G, (a,x) + ax, of a topological space A with a
distinguished point 04 € A. The action should satisty two axioms:

(i) 04 - x = 0¢ forevery x € G;
(ii) a(x + x) = ax + ax foreverya € A and x € G.

The topological space A is called the acting space of the actogroup A ~ G and the distin-
guished point 04 is called the zero of A. If the acting space A and the action A x G — G are
clear from the context, then we shall write G instead of A ~ G.

Example 1. Each topological ring R is an actogroup R ~ R with respect to the continuous
action R x R — R, (a,x) — ax, assigning to a pair of elements a, x € R their product ax in the
ring R.

Definition 2. An actogroup A ~ G is defined to be Hirsch if for every unconditionally con-
vergent series ) ¢, X; in G and every neighborhood U C G of O there exists a neighborhood
V of zero 04 in the acting space A of G such that for every finite set F C w and sequence
(a;)icr € VF we have Y jcpa;x; € U.

It follows that a topological ring is Hirsch if and only if it is Hirsch as an actogroup. So,
Problem 1 is a partial case of the following more general one.

Problem 2. Recognize Hirsch actogroups in known classes of actogroups.

In the following subsections we shall present examples of Hirsch actogroups among ac-
togroups whose topology is generated by some specific seminorms.

3.1 Seminorms on groups

Definition 3. A seminorm on a (topological) group G is a (continuous) function || - || : G —
[0, 0) such that

101 =0, || =xl[ =[xl and x+yll < lx[| + |ly]

forevery x,y € G.
A seminorm || - || : G — [0, 00) is a norm if

e ||x|| >0 forany x € G\ {0} and
e ||nx|| = n||x|| forany x € G andn € w.

Here nx is the element of G, defined by the recursive formula:

Ox =0c and (n+1)x = nx+x forevery n € w.
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We say that the topology of a group G is generated by a family S of seminorms if for every
neighborhood U C G of O there exists a seminorm || - || € Ssuchthat {x € G : ||x]| <e} C U
for some ¢ > 0 (by the definition, all seminorms on a group are continuous). If the family

S consists of a single seminorm || - ||, then we say that the topology of G is generated by the
seminorm || - ||.
A seminorm || - || : G — [0,00) is said to be bounded if sup,; ||x|| < co. Theorem 3.3.9

from [1] implies that the topology of any group is generated by a suitable family of bounded
seminorms.

3.2 Locally 2-homogeneous seminorms on groups

Definition 4. A seminorm || - || on a group G is called
* 2-homogeneous if ||2x|| = 2||x|| for every x € G;

e locally 2-homogeneous if there exists ¢ > 0 such that ||2x|| = 2||x|| for every x € G with
x| <.

Each 2-homogeneous seminorm on a group is locally 2-homogeneous.

Example 2. Each norm on a group is 2-homogeneous. In particular, the norm | - || : R —
[0,00), || - || : x — |x]|, on the additive group of real numbers R is 2-homogeneous.

Next we explore some operations over (locally) 2-homogeneous seminorms. The following
two lemmas can be easily derived from the definitions.

Lemma 2. Leth : H — G be a continuous homomorphism between groups. If || - ||g is a
(locally) 2-homogeneous seminorm on G, then the seminorm

-l s H = [0,00), - [ x = [[(x) e,
on the group H is (locally) 2-homogeneous.

We recall that for a group G and a subgroup H C G the quotient group G/ H is the group
whose elements are cosets x + H where x € G.

Lemma 3. Let || - || and || - ||g be seminorms on groups G and H, respectively. If the semi-
norms || - ||g and || - || i are (locally) 2-homogeneous, then so is the seminorm || - || : G x H —
[0,00), [ - I = (%, y) = max{|[x[lg, [[yllr}-

Lemma 4. Let || - || be a locally 2-homogeneous seminorm on a group G and H be a subgroup
of G such that {x € H : |x||g < 5¢} = {0y} for some e > 0. Then the seminorm

-1+ G/H = [0,00), |lyll = inf{{[x][c : x € y}
is locally 2-homogeneous.

Proof. Replacing ¢ > 0 by a smaller positive number, we can assume that ||2x||g = 2||x|| g for all
x € G with ||x||g < 3e. We claim that for every y € G/H with ||y|| < e we have |]2y|| = 2]|y||.
Indeed, assume for a contradiction that ||2y|| # 2||y||. Since |[2y|| < ||yl + [yl = 2|ly||, we
have |2y|| < 2]ly||, so there exists z € 2y such that ||z||¢ < 2|ly|| < 2¢. Since |ly|| < ¢, there
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exists x € y such that ||x||c < 3¢ and then ||2x|c = 2||x||¢ < 3e. It follows from z,2x € 2y that
z — 2x € H. The triangle inequality implies that

2%zl < l12xll6 + llzllc < 3¢ +2¢ = 5¢
and hence 2x —z € {h € H : ||| < 5¢} = {0y} and finally z = 2x. Then

2yl < 2llxllc = lI2xllc = llzlle <2lyl,
which is a required contradiction. d

Corollary 1. The seminorm || - || : R/Z — [0,0), || - || : y — min{|x| : x € y}, on the quotient
group T = IR/Z is locally 2-homogeneous.

Lemma 5. Let H be an open subgroup of a group G. If a seminorm || - ||y : H — [0, ) on the
group H is locally 2-homogeneous, then the seminorm

min{1, ||x||g}, if x € H,
I-llc:G—=1[000), |-llc— .

1, if xe G\H
on the group G is locally 2-homogeneous, too.
Proof. Since | - || is locally 2-homogeneous, there exists a positive e < 1 such that ||2x|y =
2||x|| i for every x € H with ||x||g < e. The definition of the seminorm || - || ensures that for
every x € G with ||x||g < e we will have x € H and hence 1 > ¢ > ||x||¢ = min{], ||x| gy}
implies that ||x||g = ||x||¢ and ||2x||g < 2||x||g < 2¢ < 1. Then

12x[[¢ = min{1, [[2x[|} = [[2x[[z = 2[|x[|z = min{2, 2||x[|z} = 2min{1, [[x][} = 2[|x[[c,

so the seminorm || - || is locally 2-homogeneous. O

3.3 Lipschitz and contracting seminorms on actogroups

By a seminorm on an actogroup A ~ G we understand a seminorm on the group G.
Definition 5. A seminorm || - || : G — [0, 00) on an actogroup A ~ G is called

 Lipschitz if there exist positive real numbers L, ¢ and a neighborhood V. C A of 04 such
that |jax|| < L||x|| foreverya € V and every x € G with ||x|| <¢;

e contracting if for every A > 0 there existe > 0 and a neighborhood V C A of 04 such that
|lax|| < Al|x|| forevery a € V and every x € G with ||x|| < e.

It is clear that each contracting seminorm on an actogroup is Lipschitz.
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Theorem 1. Let || - || : G — [0,00) be a locally 2-homogeneous seminorm on an actogroup
A ~ G and assume that there exists ¢ > 0 such that the closed e-ball B = {x € G : ||x|| < ¢} is
compact. Then the seminorm || - || is contracting.

Proof. Since || - || is locally 2-homogeneous, we can replace ¢ by a smaller positive number and
assume thate < 1 and ||2x|| = 2||x|| for every x € B. To prove that || - || is contracting, take any
positive real number A < 1.

The continuity of the action A x G — G, (a,x) — ax, implies that W = {(4,x) € A X B :
lax|| < }Ae} is an open neighborhood of the compact set {04} x B in A x B. Using the
compactness of B, we can find a neighborhood V' C A of 04 such that V x B C W and hence
|ax|| < Aeforeverya € V and x € B.

To see that || - || is contracting, it remains to show that ||ax|| < Al|x|| for every a € V and
x € B. Suppose for a contradiction that there exista € V and x € B such that |lax|| > A x]|.

It follows from x € B that ||x|| < e and hence 0 < A||x| < [jax|| < jAe < e. Then there
exists a unique number k € w such that 25||ax|| < e < 2K 1||ax]||.

Claim 1. For every nonnegative integeri < k + 1 we have ||a(2x)| = 2/||ax||.

Proof. We prove the claim by induction on i. For i = 0 the equality ||a(2%x)]|| = 2°||ax|| is trivial.
Assume that ||a(2'x)|| = 2/||ax|| for some i < k + 1. Then

la(2x)]| = 2'[lax|| < 2ax|| <
and hence
la@* 1) || = lla(2"x + 2x)|| = a(2'x) + a(2'x)|| = 2[|a(2'x))|| = 2'"||ax]
by the inductive hypothesis. O

Claim 2. ||x|| > 0.

Proof. Assume on contrary that ||x|| = 0. Claim 1 and the choice of k imply |la(2¥1x)| =
2 1jax|| > e. On the other hand, ||x|| = 0 implies ||2¥*1x|| = 0 and hence 2¢*'x € B and
|a(2"1x)|| < Ae < e by the choice of the neighborhood V 3 a. This contradiction shows that
||x]| > 0. O

Since 0 < ||x|| < ¢, there exists a unique number n € w such that 2"||x|| < e < 2"*1| x|. By
analogy with Claim 1 we can prove that ||2/x|| = 2/||x|| for all nonnegative integers i < n + 1.

Since A < 1, there exists a unique number d € w such that 29\ <1 < 24+1),

Observe that for every i < n we have [|2'x|| < 2/||x|| < 2"||x|| < e and hence 2'x € B

and [|la(2x)| < fAe < e < 2K1jax|| = ||a(2¥*1x)|| by the choice of the neighborhood V 3 a
and the number k. Also for every integer i < d + 2, by the triangle inequality, ||a(2""x)|| <
2il|la(2"x)|| < 29+2i0e < & < 2MH1|ax|| = ||a(2**1x)||. Therefore, for every i < n+d +2 we

have ||a(2'x)|| < e < |la(2¥*1x)|, which implies that n +d + 2 < k + 1. Then Claim 1 and the
choice of k and n ensure that

27 2 ax| = a2 )| < e < 2"

and finally |lax|| < Zdlﬁ ||x]| < A|lx||, which contradicts our assumption. O
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3.4 Absolute seminorms

Definition 6. A seminorm || - || on a group G is defined to be

* C-absolute for some positive real number C if there exists ¢ > 0 such that for any finite set
F and sequence (x;);cr € GF with M := maxgcr || Vicp xi|| < e we have Ycr ||xi]| < CM;

e absolute if || - || is C-absolute for some positive real number C.

Example 3. Thenorm |-|: R — [0,00), | - | : x — |x|, on the additive group R of real numbers
is 2-absolute.

Proof. Given any finite set F and sequence (x;);cr € RY, consider the sets F; = {i € F: x; > 0}
and F_ = F\ F;. It follows from

Ylxl =) wi— ) xi=| ) 4]} x|

icF i€F. icF_ icFy ieF_
that
Yo lxil <2max {| Y x|, le}}<2max‘2xl
icF icE, icF. ECF
witnessing that the norm | - | on R is 2-absolute. O

A result of I. Netuka and J. Vesely [10] implies the following general fact.

Example 4. For every positive integer n, the standard Euclidean norm || - || : R" — [0,00) on
the additive group R" is C-absolute for the constant

rs)
()

which is the best possible. Here I'(z) is the well-known gamma function, see [4, §2.1].

=2/ —"

As partial cases of Example 4 we have two next examples.

Example 5. The norm || - || : C — [0,00), || - || : z — |z]|, on the additive group of complex
numbers C is rt-absolute.

Example 6. The norm || - || : H — [0,00), || - || : g — |q|, on the additive group of quaternion
numbers H is 3t-absolute.

Lemma 6. Let G, H be two groups and || - ||, || - ||# be seminorms on G, H, respectively. If for
some positive real number C these seminorms are C-absolute, then the norm

[[:GxH—=1[0,00), |- :(gh)—max{lgllc, I}
is 2C-absolute.

Proof. Let F be a finite set and (z;);cr be a sequence in G x H. Write each z; as (x;, y;) for some
x; € Gandy; € H. Forthesets I = {i € F: ||xi|l¢c < |lyillg}and J = {i € F: ||xillc > llvillu}

we have
Yo llzill = Y max{||xllc, [lvilla} = Y lxille + Y [lvillm

ieF ieF i€f i€l
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and hence
max { ) [|xillc, ) lyillm} > Z zil-
ic] icl 2 it
Since the norms || - ||, || - ||z are C-absolute, there are subsets I’ C I and ]’ C | such that
| Zolo S Il and | Sl > £ Dl
iel ie]

Then

max| 3z = max{]| L vl ZyzHH} > max { L lxille, Yo lyille} = f 2 =il

ECF iel ief ieF
witnessing that the norm || - || on G x H is 2C-absolute. O

Lemma 6 implies the following result.

Corollary 2. Let G, H be two groups and || - ||, || - ||z be seminorms on G, H, respectively. If

the seminorms || - ||, || - ||z are absolute, then so is the seminorm
-1 GxH—=[0,00), [-[:(gh)— max{ligllc, |1}
Lemma 7. Let C be a positive real number, || - || : G — [0, 0) be a C-absolute seminorm on a

group G, and H be a subgroup of G such that {x € H : ||x||c < 5¢} = {0y} for somee > 0.
Then the seminorm

|-][:G/H = [0,00), ||-|l:y+— inf{[|x|c:x €y},
is C-absolute.

Proof. Replacing the number ¢ by a smaller number, if necessary, we can assume that for any
finite set F and any sequence (x;)icr € GF with M := maxscr H Yica xiHG < & we have
Yicr llxillc < CM. To show that the seminorm || - | on the group G/ H is C-absolute, take any
finite set F and sequence (y;)icr € (G/H)F such that M := maxacr || icrvil| < & By the
definition of the seminorm || - || on G/H, for every i € F there exists an element x; € y; such
that [|y;| < [|lxillec < [lyill + 3¢

Claim 3. Foreveryk € {0,...,|F|} and any set E C F of cardinality |E| = k we have

1Y xille = || Y will
i€E i€E
Proof. The claim will be proved by induction on k. For k = 0 and the empty set E = & we have
I} xillc = 10cllc = 0= [0/l = || Y vill-
i€E i€E

Now assume that the equality in the claim has been proved for some nonnegative integer
k < |F|. Take any set E C F of cardinality |E| = k + 1. Choose any index j € E and consider
the set E/ = HG = HZieE’yiH < M < &




On unconditionally convergent series in topological rings 275

Assuming that H YicE xiH c 7 H YicE yiH and taking into account that ) ;cp x; € Y ;cpvyi, we

conclude that || Yiep yil| < || Tieg i o- Then we can find an element i € H such that

i+ Tl <1 S el

i€cE

The triangle inequality implies that

Bl = I+ ) xi = Y xillg < [lh+ ) xll g + 11 X xill

i€E icE i€k icE
< Z%‘HG + || in”G <2([lxjllc + | Z xillc)
i€k i€E i€k’
<2(|lyll + 26+ || Yo will) <2(M+ 36+ M) < 5e.
icE’

Since {x € H : ||x||gc < 5¢} = {0y}, the element & equals 0y and we obtain a required

contradiction
I xillg = lIh+ L xillg < I X xill e
i€E i€E i€E
showing that || e x| = || ik i]| and completing the proof of the claim. 0
By Claim 3,
maxll L xill = max| Lwill =M =<e
Now the C-absoluteness of the seminorm || - || and the choice of ¢ ensure that
Yo llvill < ) llxille < CM,
icF icF
witnessing that the seminorm || - || on G/H is C-absolute. O

Example 3 and Proposition 7 imply the next assertion.

Lemma 8. The seminorm || - || : R/Z — [0,00), || - || : y = min{|x| : x € y}, on the compact
group T = R/Z is 2-absolute.

The following two lemmas can be easily deduced from the definitions.

Lemma 9. Let H be an open subgroup of a group G. If || - ||g : H — [0,00) is a C-absolute
seminorm on the group H, then the seminorm

min{1, ||x||g}, if x € H,

. : G — [0,00), X||lg =
I-lle [0,00), |Ixllc {1’ ifxeG\H
on the group G is C-absolute, too.

Lemma 10. Leth : H — G be a continuous homomorphism between groups. If a seminorm
| - || on the group G is C-absolute for some positive real number C, then the seminorm

|-l H—=[0,00), |- [l :x = [Ih(x)l|c,

is C-absolute.
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3.5 Locally Euclidean and locally compact groups

A group G is called locally Euclidean if some open neighborhood of Og in G is homeomor-
phic to the Euclidean space IR" for some n € w. In particular, every discrete group is locally
Euclidean.

Proposition 4. The topology of every locally Euclidean group G is generated by a locally
2-homogeneous absolute seminorm.

Proof. By [11, Example 75], the locally Euclidean group G contains an open subgroup H, which
is topologically isomorphic to the product R" x T* for some 1,k € w. By Examples 2 and 3,
the norm || - ||[r : R — [0,00), || - ||r : x — |x], is locally 2-homogeneous and absolute. By
Corollary 1 and Lemma 8, the seminorm || - || : T — [0,00), || - || : ¥ — min{|x| : x € y}, is
locally 2-homogeneous and absolute. By Lemma 3 and Corollary 2, the seminorms

|| ’ HR" :R" — [0,00), || ’ ||]R” : (xi)iEﬂ = nl’1€anx Hxl'”]R/
I llps s T = [0,00), - lls = (x)iex = max]lxif,
and
I 1 R T = [0,00), |+ (x,7) = max{||xl|re, 1y lxe}
are locally 2-homogeneous and absolute. It is clear that the topology of the group R" x T* is
generated by the seminorm || - ||. Since H is topologically isomorphic to R" x T¥, the topol-
ogy of the group H is generated by a locally 2-homogeneous absolute seminorm || - ||y. By

Lemmas 5 and 9, the seminorm

min{1, ||x||g}, if x € H,
Ille:G—=1[000), |-llg:xw .
1, if xe G\H
is locally 2-homogeneous and absolute. It remains to observe that the seminorm || - || gener-
ates the topology of the group G. O

An actogroup A ~ G is locally compact if the group G is locally compact, that is every
element of G has a compact neighborhood in G.

Proposition 5. The topology of any locally compact actogroup A ~ G is generated by a family
of contracting absolute seminorms.

Proof. Let U C G be a neighborhood of Og in G. Since G is locally compact, we can replace
U by a smaller neighborhood, if necessary, and assume that U has compact closure U in G.
By [9, Corollary 7.54], there exists a surjective continuous homomorphism # : G — L onto
a locally Euclidean group L such that h1~1[V] C U for some neighborhood V C L of 0.
By Proposition 4, the topology of the locally Euclidean group L is generated by a locally 2-
homogeneous absolute seminorm || - || : L — [0,00). So, {x € L : ||x||L < ¢} C V for some
e > 0. By Lemmas 2 and 10, the seminorm

I-lle:G = [0,00), - llg:x = [R(x)]l
on the group G is locally 2-homogeneous and absolute. Since the closed neighborhood
{xeG:|xllc<e}C{xeG:|h(x)||p <e} C{xeG:h(x)eV}CUCU

is compact, we can apply Theorem 1 and conclude that the seminorm || - || is contracting. [
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3.6 Obsolete seminorms

Definition 7. A seminorm || - || : G — [0,0) on a group G is defined to be obsolete if for every
unconditionally convergent series Y ;c., X; in G the series Y ;c,, || xi|| converges.

Lemma 11. Each absolute seminorm || - || on a group G is obsolete.

Proof. Being absolute, the seminorm || - || is C-absolute for some positive real number C. This
means that there exists ¢ > 0 such that such that for any finite set F and sequence (x;);cr € GF
with M := maxgcr || Liep Xil| < e we have Y ;cr ||x;|| < CM.

To show that || - || is obsolete, fix any unconditionally convergent series }_;c., x; in G. The
unconditional convergence of } ;. , x; yields a finite set K C w such that H YicF Xi H < ¢ for any
finiteset F C w \ K.

Suppose for a contradiction that the series Y ;c,, ||x;|| diverges in the real line. Then we can
find a finite set F C w \ K such that };r ||x;|| > Ce. The choice of the sets K and F ensures
that

M = | <
max|| L] <
and hence Y ;cr ||xi|| < CM < Cg, a contradiction. O

The obsoleteness is preserved by standard operations over seminorms.

Lemma 12. Leth : H — G be a continuous homomorphism between groups. If || - || is an
obsolete seminorm on the group G, then the seminorm

-1l s H = [0,00), |- |l s x = [I(x)lg
is an obsolete seminorm on the group H.

Proof. To prove that the seminorm || - ||y is obsolete, take any unconditionally convergent se-
ries Y jc,, X; in the group H. The continuity of the homomorphism % implies that Y., 1(x;)
is an unconditionally convergent series in the group G. Since the seminorm || - || is obso-
lete, the series Y ;c., [|1(xi)|lc = Licw ||Xil| # converges, witnessing that the seminorm || - || is
obsolete. O

Lemma 13. For two obsolete seminorms || - || : G — [0,00) and || - ||g : H — [0, 00) on groups
G, H, the seminorm

[-[[:GxH—=[0,00), |-[:(gh)—max{|gllc, |Ihlx}
on G x H is obsolete.

Proof. Let) ;¢ zi be any unconditionally convergent series in the group G x H. Forevery i € w
write the element z; € G x H as a pair (x;,y;) for some x; € G and y; € H. The unconditional
convergence of the series ) ;. z; implies the unconditional convergence of the series ) ., ;
and Y ;c,, vi- By the obsoleteness of the seminorms || - || and || - || g, the series Y <, ||xi||c and
Y icw llVill g converge in the real line. Then

Yo lzill = Y max{||xille, lvilla} < ) (lxille + lvilla) < Y lxille + Y lyilla < oo,
icw icw icw icw icw
which means that the series ) ;c,, ||zi|| converges, and therefore the seminorm || - || on G x H
is obsolete. O
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3.7 Unconditional seminorms on actogroups
Definition 8. A seminorm || - || : G — [0,00) on an actogroup A ~ G is called
¢ C-unconditional for some real number C if there exist a positive real number ¢ and a neigh-

borhood V' C A of 04 such that for any finite set F and sequences (x;)jcr € G' and
(a;)icr € VF with M := max H Y xiH < & we have H Y aixiH < CM;
ECF “icE icF

e unconditional if || - || is C-unconditional for some positive real number C.
Lemma 14. If a seminorm || - || on an actogroup A ~ G is absolute and Lipschitz, then || - || is
unconditional.
Proof. Assuming that || - || is absolute and Lipschitz, find positive real numbers L, C, ¢ and a

neighborhood V' C A of 04 such that

* Yicrllxill < C-maxgcr|| Licg xi]| for any finite set F and sequence (x;)icr € G with
maxgcr || iep Xil| < &

* |lax|| < L|jx|| forany a € V and x € G with ||x|| <e.

Then for any finite set F and sequences (x;);cr € G' and (t;);er € VF with max H Y xiH <e
icE

ECF
we have
H ZtixiH < Z [tixi]| < ZL”xi” < LCmax H in ’
icF icF icF ESF VicE
which means that the seminorm || - || is LC-unconditional and hence unconditional. O

3.8 Absolutely and unconditionally seminormable actogroups

Definition 9. An actogroup A ~ G is called

1) absolutely seminormable if the topology of G is generated by a family of Lipschitz absolute
seminorms;

2) obsoletely seminormable if the topology of G is generated by a family of Lipschitz obsolete
seminorms;

3) unconditionally seminormable if the topology of G is generated by a family of unconditional
seminormes.

Lemmas 11 and 14 imply the following result.

Lemma 15. Every absolutely seminormable actogroup is obsoletely and unconditionally semi-
normable.

Theorem 2. A actogroup A ~ G is Hirsch if one of the following conditions holds:
1) A ~ G is unconditionally seminormable;
2) A ~ G is obsoletely seminormable;

3) A ~ G is absolutely seminormable.
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Proof. To prove that the actogroup A ~ G is Hirsch, fix any unconditionally convergent series
Y ncw Xi in G and any neighborhood U of O¢ in G.

1) First we assume that A ~ G is unconditionally seminormable. Then there exists an
unconditional seminorm || - || on G such that {x € G : ||x|| < 2¢e} C U for some ¢ > 0.
Since || - || is unconditional, there exist positive numbers C,é and a neighborhood V C A of
04 such that for every finite set F and any sequences (v;)icr € GF and (a;)ier € VF with
M = maxgcr || Ziep yill < 6, wehave || Licpaiyi|| < CM.

Since the series ) <, x; is unconditionally convergent, there exists a finite set E C w such
that || Cicr xi|| < min{é, &} for every finite set F C w \ E.

By the continuity of the action A x G — G, for every i € E, there exists a neighborhood V; C
A of 04 such that sup,y, [lax;|| < \_185| Replacing the neighborhood V by the neighborhood
V N Nice Vi, we can additionally assume that max;cg sup, .y ||ax;|| < ‘E|
Now observe that for every finite set F C w and a sequence (4;)icr € VF we have

|Sonl < & laml+| T anll< £ e me | ull < LoH ol <o

icF i€FNE i€F\E i€FNE KCF\E

and hence ) ;cpa;x; € U.

2) Next, assume that A ~ G is obsoletely seminormable. Then there exists a Lipschitz
obsolete seminorm || - || on G such that {x € G : ||x|| < 2¢} C U for some ¢ > 0. By the
obsoleteness of || - ||, we have }_,,c, ||x;|| < oo. Since the seminorm || - || is Lipschitz, there exist
positive numbers L > 1, ¢ < e and a neigborhood V' C A of 04 such that |lax|| < L|x|| for
every a € V' and x € G with ||x]| < €. Since ¥, ||xi]| < oo, there exists a nonempty finite
set E C w such that e\ [|%i] < % For every i € w \ E we have ||x;|| < YCjco\gllxjll <€
and hence sup .- [lax;|| < L||x;||. By the continuity of the seminorm || - || and continuity of
the action A x G — G, for every i € E, there exists a neighborhood V; C A of 04 such that
sup,ey, [laxil| < \_El We claim that the neighborhood V' = V' N N;cg Vi witnesses that G is

Hirsch. Take any finite set F C w and any sequence (4;);cr € VF. It follows that
e|F NE|

I o] < ¥ ol + ¥ llaxil < ¥ %+ L Ll < =5 +Lr <2
E

icF ieFNE ieF\E ieFN ieF\E

and hence ) ;cra;x; € U.

3) If A ~ G is absolutely seminormable, then by Lemma 15, A ~ G is both obsoletely
seminormable and unconditionally seminormable and hence A ~ G is Hirsch by any of the
preceding cases. O

Lemmas 11, 14 and Theorem 2 imply that for any actogroup we have the following implica-
tions.

absolutely seminormable === obsoletely seminormable

ﬂ ﬂ

unconditionally seminormable === Hirsch

Since every contracting seminorm of an actogroup is Lipschitz, Proposition 5 and Theo-
rem 2 imply the next result.

Theorem 3. Every locally compact actogroup is absolutely seminormable and Hirsch.
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3.9 Tychonoff products of actogroups

Definition 10. The Tychonoff product [T;c;(A; ™~ G;) of a nonempty family of actogroups
(A; ~ Gj)jcg is the group [];c; G; endowed with the action

[TAXTIG = 116G, ((@)ier (xi)ier) = (aixi)ier
iel iel iel
of the topological space | |;c; A; whose distinguished point is the unique point of the singleton

[Ticr{04,}-
If all the actogroups A; ~ G; are equal to some tixed actogroup A ~ G, then the product
[Tic1(Ai ~ G;) will be denoted by (A ~ G)I.

Theorem 4. The Tychonoff product [];c;(Ai ™~ G;) of a nonempty family of absolutely
(resp. obsoletely) seminormable actogroups is absolutely (resp. obsoletely) seminormable and
Hirsch.

Proof. For a subset F C Ilet Gk = [];cr G; and prp : G — Gr, prp : (x;)ier = (%i)icF be the
projection homomorphism. It follows that [];c; G; = Gj. Given any neighborhood U C Gj of
Og,, find a finite set F C I and a neighborhood W of O, in the group Gr such that prz'[W] C
U. For every i € F find a neighborhood W; of O¢, in G; such that [J;cp W; € W. Since the
actogroup A; ~ G; is absolutely (resp. obsoletely) seminormable, there exists a Lipschitz
absolute (resp. obsolete) seminorm || - ||; : G; — [0, 00) such that {x € G; : ||x||; < ¢;} C W; for
some ¢; > 0. By Lemma 6 (resp. 13), the seminorm

I+ llr s GF = [0,00), [~ [ = (xi)iep = max|lx]};
is absolute (resp. obsolete). By Lemma 10 (resp. 12), the seminorm
|1+ Gr = [0,00), |||l : x = [[pre(x)llF
is absolute (resp. obsolete). It is clear that

{x € Gy ||x]| < r%i;lei} C prg! [Hwi] C pry[W] C U.
1

i€F
It remains to prove that the seminorm || - || is Lipschitz. For every i € I the Lipschitz property
of the seminorm || - ||; yields positive numbers L;, §; and a neighborhood V; C A; of 04, such

that supgevi Hllei < Li”-x”i for any x Gi with ||JCH1 < 51'. Let L = maX;cr Li/ 6= miniepéi
and V = Nicr{(aj)jer € Iljes Aj : a; € Vi}. Itis easy to see that for every a = (a;)jc; € V and
x = (xj)jer € G with || (x})jerl| = maxier [|xi|; < 0 = min;cf é; we have

|ax|| = max [|a;x;|; < max Li[|x;||; < Lmax|[x;[|; = L||x[|,
icF icF icF
which means that the seminorm || - || is Lipschitz. Therefore, the actogroup [1;c;(A; ~ G;) is
absolutely (resp. obsoletely) seminormable. By Theorem 2, this actogroup is Hirsch. O

Corollary 3. For every nonempty set I and every absolutely (resp. obsoletely) seminormable
actogroup A ~ G the actogroup (A ~ G)! is absolutely (resp. obsoletely) seminormable and
Hirsch.

Theorem 5. For any nonempty set I and any locally compact actogroup A ~ G, the actogroup
(A ~ G)! is absolutely seminormable and Hirsch.
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3.10 Function actogroups

A family K of compact subsets of a topological space X is called an ideal of compact sets if for
any sets A, B € K and any closed subset K C A U B we have K € K.

For topological spaces X,Y and an ideal K of compact subsets of X, let Cx:(X,Y) be the
space of continuous functions from X to Y, endowed with the topology generated by the sub-
base consisting of the sets

[K;U] = {f € Cx(X,Y) : f(K) C U},

where K € K and U is an open subset of Y.

If K is the ideal of all compact (finite) subsets of X, then the space Ci(X,Y) is denoted by
Ck(X,Y) (resp. Cp(X, Y)).

If X is a discrete space then C, (X, Y) is equal to the power Y¥, endowed with the Tychonoff
product topology.

Let X be a topological space and K be an ideal of compact Hausdorff subspaces of X.
Given topological spaces Y,Z,T and a continuous map « : Y x Z — T, consider the map
&:Cr(X,Y) x Cx(X,Z) = Cx(X, T) assigning to every pair of functions (f,g) € Cr(X,Y) x
Ci (X, Z) the function &(f,g) € Cx(X,T) defined by &(f,g)(x) = a(f(x),g(x)) for x € X.
Since the family K consists of compact Hausdorff subspaces of X, we can apply Proposition 4.2
of [3] and conclude that the map & is continuous. This implies that for every actogroup A ~ G
we can consider the actogroup Ci (X, A) ~ Cx (X, G) endowed with the action

C}C(X,A) X C;C(X, G) — C}C(X, G), (a,g) —ag,

where ag : x — a(x)g(x). The distinguished point of the topological space Cx (X, A) is the
constant function X — {04} C A.

Theorem 6. Let X be a topological space and K be an ideal of compact Hausdorff subspaces of
X. If A ~ G is an unconditionally seminormable actogroup, then the actogroup Ci (X, A)
Ci (X, G) is unconditionally seminormable and Hirsch.

Proof. Given any neighborhood U of zero in the group Cx(X,G), find a set K € K and a
neighborhood U of zero in G such that [K,U] C U. Since the actogroup A ~ G is un-
conditionally seminormable, there exists an unconditional seminorm || - || on G such that
{x € G : ||x|l¢c < ¢} C U for some ¢ > 0. By the unconditionality of || - ||, there exist
positive real numbers C,J and a neighborhood V' C A of zero 04 such that for any finite set
F and any sequences (x;)icr € G' and (a;);cr € VF with maxgcr H YiceXill~ < 6 we have
| Eiepaixi]lg < € maxpcr || Ticp xill 6.
Consider the seminorm

le

I llx = Ce(X,G), -l f = (Ifllk = Slelgllf(x)llc

on the group Cx:(X, G). The compactness of K implies that the seminorm || - ||g is well-defined
and continuous. Observe that

{f e C(X,G):[Iflk <€} C KU CU.
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It remains to show that the seminorm || - || is unconditional. The definition of the topology
on the space Cx (X, T) ensures that [K; V] = {f € C(X,A) : f[K] C V} is a neighborhood of
zero in the acting topological space Cx (X, A).

Now take any finite set F and sequences (f;)icr € Cx(X,G)f and (a;)icr € [K; V]F such
that M := maxgcr || Licr fillk < €. Observe that for every x € K we have {a;(x)}icr C V and

x| DA o < max | Al =M <

ECF ECF
and hence
I aix)fi(x)][g < €-max|[ ) fi(x)]|g < CM.
icF = icE
Then
ifill . = [(x) fi <CM=C ‘
I L aifill = maxl| Laix)fi) | = paxl X il

witnessing that the seminorm || - ||x on Cx(X, G) is unconditional.

Therefore, the topology of the group Cx (X, G) is generated by unconditional seminorms
and by Theorem 2, the actogroup Cx (X, A) ~ Cx(X, G) is Hirsch. O

Theorem 7. Let X be a topological space and K be an ideal of compact Hausdortf subspaces
of X. For every locally compact actogroup A ~ G, the actogroup Cx (X, A) ~ Cx(X,G) is
unconditionally seminormable and Hirsch.

Proof. By Theorem 3 and Lemma 15, the actogroup A ~ G is absolutely seminormable and
unconditionally seminormable. By Theorem 6, the actogroup Cx (X, A) ~ Cx (X, G) is uncon-
ditionally seminormable and Hirsch. O

4 Applications to Hirsch topological rings

In this section, we apply the results of the preceding section to topological rings. First we
write down Definition 9 (item 3)) for the partial case of topological rings.

Definition 11. A topological ring R is unconditionally seminormable if for every neighborhood
U C R of O there exist a seminorm || - || : R — [0, %) on the additive group of R, a neighbor-
hoodV C R ofOg, and positive real numbers C, ¢ such that {x € R : ||x|| < ¢} C U and for any
finite set F and sequences (x;)icr € Rf and (a;);cr € VI with M := maxgcr H YicE xiH < ewe
have
| Sa] < cm
icF
The following theorems are partial cases of Theorems 2, 3, 6 and 7, respectively.
Theorem 8. Every unconditionally seminormable topological ring is Hirsch.

Theorem 9. Every locally compact topological ring is unconditionally seminormable and
Hirsch.

Theorem 10. Let X be a topological space, K be an ideal of compact Hausdorff subspaces of X,
and R be a topological ring which is either unconditionally seminormable or locally compact.
Then the topological ring C:(X, R) is unconditionally seminormable and Hirsch.
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Theorem 10 has two corollaries.

Corollary 4. For every locally compact topological ring R and any nonempty set I the topolog-
ical ring R! is unconditionally seminormable and Hirsch.

Corollary 5. For every Hausdortf topological space X and any locally compact topological ring
R the topological rings Cy(X, R) and C(X, R) are unconditionally seminormable and Hirsch.

5 Banach actospaces

A Banach actospace A ~ X is a Banach space X endowed with a continuous bilinear action
Ax X — X, (a,x) — ax, of a Banach space A. All Banach spaces considered in this paper
are over the field IF of real or complex numbers. It is clear that each Banach actospace is an
actogroup. Banach actospaces with the Hirsch property admit a nice characterization.

Theorem 11. For a Banach actospace A ~ X the following conditions are equivalent:
(1) A ~ X is Hirsch;
(2) the norm of X is unconditional;

(3) there exists a positive real constant C such that for every finite set F and sequences
(an)ner € AF and (xy)ner € XF we have | ¥ ayx,|| < C-max ||ay|| - max| ¥ xu|;
neF nck ECF " neE
4) for any unconditionally convergent series Y x, in X and any bounded seguence
y y 8! new y q
(an)new In A, the series Y, c., anX, converges (unconditionally) in X.

Proof. We shall prove the implications (3) = (2) = (1) = (3) & (4).

(3) = (2) Assume that condition (3) is satistied for some positive real constant C. We claim
that the norm of the Banach space X is C-uncounditional. Given a positive real number ¢,
consider the neighborhood V = {a € A : ||a|]| < 1} of zero in the Banach space A. By the
choice of C, for any finite set F and sequences (a,),cr € VF and (x)ner € X' we have

| X mall < Comaxlail - max | ) < Copax]] X5 o

4

witnessing that the norm of X is C-unconditional.
The implication (2) = (1) follows from Theorem 2 (item 1)).

(1) = (3) Assume that the Banach actogroup A ~ X is Hirsch. Consider the linear space
X of all sequences (X, )ncw in X that have finite norm

[(xn)newllex = sup || Y xn

Felw]<¥ mneF

4

where [w]<% is the family of finite subsets of w. Repeating the standard proof [5, 1.16 (i)] of
the completeness of the Banach space ¢+, one can easily show that 2.X is a Banach space with
respect to the norm || - ||gx. Let £oX be the (closed) subspace of XX consisting of sequences
(Xn)new for which the series Y, ¢, x» converges unconditionally in X. Let ¢o[A] be the Ba-
nach space of all bounded sequences (@ )new in A, endowed with the norm || (ax )new|lr (4] =
SUp,,c,, ||@n]| o- By the Hirsch property of X, the bilinear operator

T . goo[A] X ZOX _> ZX, T . ((a;q)new, (x;q)new) '_> (an.Xn)new
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is well-defined. The operator T has closed graph

{((@n)new, (Xn)new, Yn)new) € loo[A] X ZoX X X : V1 € w (anXy =yn)}

and hence is continuous by the Closed Graph Theorem of Fernandez [6]. Then T has bounded
norm

ITI| = sup{l[T(a, x)||zx : (a,x) € loo[A] X ZoX, max{|alls,a}, [¥[lzox} <1}

and hence
I anxall < ITI -sup llan]l - sup || Y x|

new new Felw]<¥ neF
for any sequences (ay)ncw € lo]A] and (xy)new € LoX. The latter inequality implies that
condition (3) holds with the constant C = ||T||.
The equivalence (3) < (4) is proved in [2, Theorem 3.2]. O

Theorem 11 and [2, Theorem 4.1] imply the following result.

Theorem 12. A Banach actospace A ~ X is Hirsch if A is a Hilbert space possessing an
orthonormal basis (e, )ne such that for every x € X the series Y, c., enX converges uncondi-
tionally in X.

For a number p € [1, co] let £, be the Banach space of all functions x : w — [ to the field IF
of real or complex numbers such that the norm

1
x(n)|P)?, if p < oo,
”ngp: {(Znéw ( )‘ ) p

SUP,c, |X(n)|,  if p=oo

is finite. For any p,q € [1,00] and functions x € ¢, and y € /;, the function xy : w — F,
xy : n — x(n)y(n), belongs to {;, witnessing that the Banach actospace £, ~ /¢, is well-
defined. The Hirsch properties of this actospace are described in the following corollary of
Theorem 11 and [2, Theorem 1.2].

Theorem 13. For any numbers p,q € [1, co] the Banach actospace £, ~ {; is Hirsch if and only
ifp<2orp<gqorq=c.

6 Banach rings

In this section, we recognize Hirsch rings among Banach rings and also present examples
of Banach rings which are not Hirsch.

A Banach ring is a Banach space X endowed with a binary operation - : X x X — X turning
X into a topological ring.

6.1 Hirsch Banach rings

For a Banach ring R and a compact Hausdorff space K, let C(K, R) be the Banach ring
endowed with the norm || - [|x : C(K,R) — [0,00), || - ||k : f > sup,x ||f(x)]|, where || - || is
the norm of the Banach space R.
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Theorem 14. For every finite-dimensional Banach ring R and compact Hausdorff space K, the
Banach ring C(K, R) is Hirsch.

Proof. Being finite-dimensional, the Banach space R is locally compact. Now Corollary 5 im-
plies that the Banach ring C(K, R) = Ci(K, R) is Hirsch. O

By R, C,H we denote the Banach rings of real, complex and quaternion numbers, respec-
tively. Theorem 14 implies the following assertion.

Corollary 6. For any compact Hausdorff space K the Banach rings C(K,R), C(K,C) and
C(K,H) are Hirsch.

Let / be the Banach ring of all bounded sequences of real (or complex) numbers, endowed
with the sup-norm || (x;)icw s, = Sup;c,, |Xi| and the operation of coordinatewise multiplica-
tion. Let c be the Banach subring of /o, consisting of all convergent sequences and cy be the
Banach subring of ¢, consisting of all sequences that converge to zero.

Theorem 15. The Banach rings c, ¢, and ¢, are Hirsch.

Proof. Let Bw be the Stone-Cech compactification of the discrete space w of finite ordinals and
F be the topological field of real (or complex) numbers. It is well-known (and easy to see)
that the restriction operator C(Bfw,F) — le, f +— fI,, is a topological isomorphism of the
Banach rings C(K, F) onto {«. By Corollary 6, the Banach ring C(K, FF) is Hirsch and so is its
isomorphic copy /w. Since the Hirschness is inherited by subrings, the subrings c and ¢¢ of the
Hirsch ring /o, are Hirsch. O

Observe that for every real number p € [1,00) the Banach space ¢, endowed with the
pointwise multiplication of functions is a Banach ring. Theorem 13 implies the next result.

Corollary 7. Let p € [1,00|. The Banach ring ¢, is Hirsch if and only if p € [1, p] U {o0}.

By a Hilbert ring we understand a Hilbert space H endowed with a continuous associative
operation - : H x H — H turning H into a topological ring. An example of a Hilbert ring is
the Banach ring ¢», which is Hirsch by Corollary 7.

Problem 3. Is every (commutative) Hilbert ring Hirsch?

6.2 Non-Hirsch Banach rings of operators

Let p € [1,00] and L(/;) be the Banach space of bounded linear operators on £, endowed
with the operator norm |[la|| = sup{|la(x)|| : x € ¢, with x|, < 1}. Let L°({) (resp.
L*(¢y)) be the Banach space L(/,) endowed with the multiplication o (resp. e) defined by
(aob)(x) = a(b(x)) (resp. (aeb)(x) = b(a(x))) forany a,b € L({y) and x € {,. Itis easy to
check that both L°(¢,) and L*(¢,) are Banach rings.

Proposition 6. For any p € [1,0), the Banach ring L*({;) is not Hirsch.

Proof. Let (e;)ic. be the standard basis of the Banach space /;,. For every i € w leta; : £, — £,
.. ; . 1
be the operator assigning to each (X, )necw € ¢ p the vector Ii_e;. Since the sequence ( Vi

Virl )iew

converges to zero, the series )<, 4; is unconditionally Cauchy in L(¢,), so it unconditionally
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converges by Proposition 2. Now let U = {a € L(¢,) : ||a|]| < 1} and V be any open neighbor-
hood of 0in L(¢;). Find ¢ > 0 such that eU C V. Smce the harmonic series ¥;c,, 7 77 diverges,
there exists a positive integer N such thate? YN - +1 > 1. Foreachi < N, let f; : £, — {, be the
linear operator assigning to each (X, )new € £p the vector expe;. Observe that { f; }fi CeUCV
but

N N N
H ;)fz‘oai P> H(;}fi‘m) (eo)H:p = spl;;) < ﬁ)p > 1.
So YN, fiea; ¢ U and the Banach ring L*(¢,) is not Hirsch. O

Proposition 7. For any p € (1, 0], the ring L°(¢,) is not Hirsch.

Proof. Let (e;)ic., be the standard basis of the Banach space /,. For every i € w, let az by — Ly

be the operator assigning to each sequence x = (X, )new € £p the vector a;(x) = e +2)6Z Since

the sequence (ﬁ) ic CONVerges to zero, the series } ;¢ , 4; is unconditionally Cauchy, so it
unconditionally converges by Proposition 2.

Let U = {f € L({p) : [[f]] < 1} be the closed unit ball in the Banach space L(¢,). Given
any neighborhood of zero V C L(¢,), find ¢ > 0 such that U C V.

Lete =Y ,co 7’1—10-26" Since p >1,e € £, see, for instance, [7, 367.5].

Since the series } > dlverges (see, for instance, [7, 367.6]), there exists an integer num-
ber N such that ezzzom > |le[l¢,. Foreachi < N let f; : £{, — £, be the operator

assigning to each vector x = (x,,) € ¢, the vector f;(x) = ex;ep. Then {f;}N ; C e C V and

l 211nz

H igfioai . Heng > H <i§,ﬁoai) H = SZZ: z+2 (T2 > |le ng

S0 Yicw fica; U and hence L°(¢}) is not Hirsch. O
Question 1. Are the Banach rings [*({«) and L°(¢1) Hirsch?

6.3 Non-Hirsch commutative Banach rings

In this subsection, we present a simple example of a commutative Banach ring, which is
not Hirsch. For a real number p € [1,00) we denote by ¢, the real Banach space of functions
x : w — R with finite norm

Il = (X 1x0) < o

kew

Let Re : C — R and Im : C — IR be functions of taking the real and imaginary parts of a
complex number, respectively.
Given two real numbers p, g € [1, c0), consider the subring

Uy ®ily ={z € C¥:Reoz €y, Imoz € {4}

of the commutative ring C“ of all complex-valued sequences. The ring £, @ i/, is a Banach
ring with respect to the norm

[|2[] = max{]| Re oz]|, || Tm oz{|}.



On unconditionally convergent series in topological rings 287

Theorem 16. For any distinct real numbers p, q € [1, ), the commutative Banach ring ¢ p D iﬂq
is not Hirsch.

Proof. For every n € w lete, : w — {0,1} be the unique function such that e, 1(1) = {n}.
Let m = min{p, g} and M = max{p, q}. Let
{1, if p<y,

0, if g <p.

Theni® =iif p < gandi® =1ifq < p.
Observe that the series Y ¢, (k + 1) ~1/™e; converges unconditionally in the Banach space
£y but diverges in ¢,. The choice of b ensures that the series

Z X = Z ib(k+ 1)71/m€k

kew kew

converges unconditionally in the Banach space ¢, @ i/;.

Assuming for a contradiction that the Banach ring ¢, ® i/, is Hirsch, for the neighborhood
U={zel,®ily: |z]| < 1} of zero, find a neighborhood V' C ¢, @ il,; of zero such that
for every n € w and elements (a;)re, € V" we have ) i, axxx € U. Find ¢ > 0 such that
{z€t,®il,: ||z|]| <€} C V. Since the series Y, (k +1)~! diverges, there exists n € w such

that )
( Z(k+1)—1)ﬁ > %

ken

For every k € nlet ay = eiey € V. Then

H Zakka = H Z(eiek)(ib(k%—l)*l/mek)H = H Zeib“(k—l— 1)71/m€kH

ken ken ken
1
= || et + 1) mel|, =e( Y(k+1)71)" >1
ken " ken
and hence ) ., axx; ¢ U, which contradicts the choice of the neighborhood V. O
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Mu byaeMo HasmBaTM TOIOAOTiUHe KiAblle R KiablieM [ipuia, SIKIO AAST 6YAB-SIKMX Ge3yMOB-
HO 301KHOTO PSIAY Y ,c Xi B R i oxoay U Hyast 0 xinbus R icHye Takmit okia V' C R Hyas 0, mo
YucpanXn € U Ans 6yAb-sikux ckiHueHHOI MHOXMEM F C w Ta mocaiaosrOCTI (a,),er € VFE.
Mwu posmisHaemo xiabus [ipima cepea meBHMX BiAOMMX KAACiB TOINOAOTIUHMX KiAellb. AASI IILOTO
MM BIPOBaAXYEMO Ta PO3BMBAEMO TEXHIKY HaliBHOPM Ha akTorpymax. Mu A0BOAMMO, 30KpeMa, 110
TomoAoriuHe Kiable R € kiabuem Iipina, sxmo R € AOKaABHO KOMIIAKTHMM abo R Mae 6a3y B HyAI,
KOTpa CKAAAAETHCSI 3 BIAKpUTHX iAeariB abo R € 3aMxHeHMM miakiabuem 6anaxosoro kiasust C(K),
Ae K € KOMITaKTHMM XayCAOPOGPOBYM IIPOCTOPOM. 3 IIbOTO BUIIAMBAE, III0 baHaX0Be KirbIle (o i ii0-
TO MAKIABIIA Cp i ¢ € Kiabmsamu I'ipira. Bukopucrosyroun HoBuit pesyabTar banaxa ta Kaaens, mu
AOBOAVIMO, IO AASI AOBIABHOTO AIVICHOTO uMcAa p > 1 KoMyTaTuBHe b6aHaxoBe Kiablle ¢ p € KiAbLIEM
I'ipma ToAl i TiabKY TOAL KoAM p < 2. TakoX AASI KOXKHOIO p € (1,00) (HexOMyTaTVBHe) 6baHaxOBe
xinbe L(£,) HemepepBHMX eHAOMOPi3MiB 6aHAXOBOTO KiABII £, He € KirbieM [ipma.

Kntouosi csi06a i hpasu: TOMOAOTIUHe KiAblle, 6e3yMOBHA 361KHICTh, AOKaABHO KOMITaKTHE TOIIO-
AOTiYHe KiAblle, AOKAABHO KOMITaKTHA abeAbOBa TOIIOAOTIYHA IpyTIa.



