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On families of twisted power partial isometries

Ostrovskyi V.L.!, Proskurin D.P.>*¢, Yakymiv R.Ya.?

We consider families of power partial isometries satisfying twisted commutation relations with
deformation parameters A;; € C, |A;j| = 1. Irreducible representations of such a families are de-
scribed up to the unitary equivalence. Namely any such representation corresponds, up to the
unitary equivalence, to irreducible representation of certain higher-dimensional non-commutative
torus.
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1 Introduction

Algebras generated by families of isometries and partial isometries satisfying various de-
formed commutation relations form an important part in the theory of operator algebras and
their representations. Among the central problems in the subject let us mention the classifica-
tion of x-representations of corresponding algebra up to the unitary equivalence, construction
of Wold type decomposition, describing the structure and dependence of isomorphism class
of corresponding C*-algebra with respect to deformation parameters, see e.g. [1,2,5-10].

In this paper we deal with the families of power partial isometries {s;, s¥, i = 1,...,d}
satisfying the commutation relations of the following form

sisj=Asjs{, sjsi=Asis;, 1<i<j<d. (1)

We give classification of such irreducible families up to the unitary equivalence, which can be
regarded as a generalization of classical Halmos-Wallen decomposition of single power partial
isometry, see [3].

Let us remind the definition of partial isometry.

Definition 1. We call an element S of x-algebra A a partial isometry if
(s*s)> =s*s, and (ss*)? = ss*.

It is easy to see from the definition above, that s € A is a partial isometry if and only if s*
is so.
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Remark 1. If S is an element of a C*-algebra 2, then for S to be a partial isometry is sufficient if
it satisfies one of the conditions presented above. Moreover, in this case S is a partial isometry
if and only if one of the following relations is satisfied

§*SS§* =5%, S§*S=S.

Definition 2 ([3]). An element s of a x-algebra A is called power partial isometry (centered
partial isometry) if and only if for any n € IN elements s" are partial isometries and the family
of orthogonal projections

T ={s"(s*)", (s*)"s™, m,n € N}
is commutative.

The key result in the description of single power partial isometry S, acting on the Hilbert
space H is the Halmos-Wallen theorem, see [3,4].

Theorem 1. Let S € B(H) be power partial isometry. Put
e P to be the orthogonal projection onto (;;_; S"H,

* Q to be the orthogonal projection onto (;._1(S*)"H.

Then PQ = QP and H can be decomposed into orthogonal sum of subspaces invariant with
respect to S, S*, namely
H="Hy®Hs ®Hp®P Hp,
p=1
where
H,=PQH, Hs=1-P)QH, Hy=(1-Q)PH
and )
sz — Z (Snfl(s*)nfl _ Sn(s*)n) ((S*)pfnspfn _ (S*)pfnqtlspfnqtl)rH_
n=1
Moreover, Hs = Hy = 1(Z+) ® F, for some Hilbert space F, Hp, = CP ® G, for some Hilbert
space G and

e the restriction of S onto H, is unitary;

e the restriction of S onto Hg has the form S = T ® 1, where
T: 12(Z+) — 12(Z+)
is unilateral shift;

e the restriction of S onto H;, has the from S = T* ® 1r;

* the restriction of S onto H, has the form S = ],(0), where ],(0) denotes the nilpotent
Jordan block of size p:

Jp(0)ex = exi1, k=1,...,p =1, J,(0)e, = 0.

In the following we call the decomposition of power partial isometry, given by Halmosh-
Wallen theorem, the HW decomposition.

The authors of [2,4] described finite families {S;, i = 1,...,d} of double-commuting power
partial isometries. In particular they gave the description of such families up to the unitary
equivalence. Our paper is natural continuation of this research.
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2 Irreducible representations of twisted commuting partial power isome-
tries

In this section, we give a description of families of power partial isometries {S;,i =1,...,d},
satisfying
SiS; = AijS;Si, SiSi=AijSiS;, i#], (2)
where )\ij = X]l eC, ‘)\1]’ =1.

Proposition 1. Let {S;, i = 1,...,d} be family of power partial isometries, satisfying (2) and
acting on Hilbert space H. Consider the HW-decomposition of Sq
H=H o on o PH.
p=1

Then any component of this decomposition is invariant with respect to S;, S]i", j=2,...,d
Proof. Put P; and Q; to be the orthogonal projections onto NS ;S{H and N7, (S7)"H respec-

tively. Relations (2) imply that any of S{H, (S7)"H, n > 1, is invariant with respect to Si, S;-“,

j=2,...,d. Hence N;>_;STH and N}?_; (S7)"H are invariant with respect to S;, S;‘,]' =2,...,d,
also. Thenforallj =2,...,d
P\S; = S, P1Sj = S5;P1, Q1S; = 5;Q1, Q1S] = 57 Q1

implying the invariance of 7—[1(41), 7—[5(,1) and Hél).

The invariance of H ;1) follows from

S1(81)"S; = S;51(S1)", (S1)"S1S; = S;(S1)"S1, n=>1,j=2,...,d.
O

Corollary 1. Let the family {S;, i = 1,...,d} of power partial isometries satisfying (2) be
irreducible. Then ‘H coincides with exactly one of the components of its HW-decomposition.

Theorem 2. Let {S;, i =1,...,d} be irreducible family of power partial isometries, satisfying
(2). Consider HW-realisation of S1.

1. In the case H = H, one has

S1=T®1r, S;j=d(Mj)®S;, j=2,...,d 3)
2. In the case H = H; one has

S$i=T"®1r, Sj=dM)®S;, j=2,...,.d. (4)

3. In the case H = H,, one has
S1=7Jp(0)®1g, S;=Dp(Ayj)®S),j=2,...,4d. (5)
Here
AdN): (Z1) = b(Zy), d(M)e, =Ale,, neZ.g,
D,(A): €7 = CP, Dp(Men=A""'e,, n=1,...,p,

and in all cases above {§], j =2,...,d} are families of irreducible power partial isome-
tries acting on the corresponding Hilbert space and satisfying (2) with d — 1 generators.
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4. If H = H,, then
S1=Uy, UiS;=AS;Uy, Sy =AU, j=2,...,4, (6)
where U, is unitary, operators S;, j = 2,...,d, satisfy (2) and the family {Uy, S;, j =
2,...,d} isirreducible.
Families, corresponding to different cases are non-equivalent, families corresponding to {gj(l) }

and {§](2)} inside the same case are equivalent if and only if the latter families are equivalent.

Proof. 1. Suppose H = Hs = h(Z+)® F and S; = T® 1x. Lete,, n € Z be standard basis
of [(Z4). Present [(Z) ® F as

L(Z )9 F =@ e F
i=0

and put H; = ¢; ® F,i € Z. Then operators
P =S1(S])" = 57 (s)" ™
are orthogonal projections onto ;. It is easy to see that

S]'Pi = PiSj, S;FPZ' = PZ-S;-*, i€ 7z, ] =2,...,d,

implying that operators S;, S]’-k, j = 2,...,d, leave any of H; invariant. Denote by S](i) the
restriction of S; onto H;. Evidently, we can identify S](i)
same symbol. Then for any x € F one has

with operator on F denoted by the

5]51 (el- ® X) =41 ® S;_H (JC), 515]'(61' ® X) =41 ® S](l)x

Then the relation S;S; = Ay;$15; gives S\ = AS\”, i € Z,, j = 2,...,d. Finally, put

17
S; = S](O). Obviously ~
Si=d(Mj)®S;, j=2,...,d

To deal with irreducibility we study a structure of operator C commuting with §;, S,
i =1,...,d. Namely, if

CS; = $,C, CSt = SIC, with S; = T® 1,

one has

C= 1z, ® C,
then CS; = S;C, CS;‘ = S;‘C,j =2,...,d,iff

C5;=8,C, C§ =S/C, j=2,...d

The Schur’s lemma implies that {S;, i = 1,...,d} is irreducible iff {§], j=2,...,d} isirre-
ducible. By the similar way one can show that two families {S 58), i=1,...,d},e=1,2, defined
by (3) are unitarily equivalent iff the corresponding families {S%, j = 2,...,d}, ¢ = 1,2, are
unitarily equivalent.

The remained cases can be considered analogously. O
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Now we are ready to formulate our classification result. Consider arbitrary decomposition
{1,2,...,d} =, U, UY U D,

where components are disjoint sets and

with finite number of non-empty components. Given such a decomposition, construct the
following family of operators acting on

7‘[ - ® lz(Z+) ® ® ZZ(Z+) &® ® CP@HL”

ic®, je®, p,®y£D
namely

Si= @ dA)®T @ lyz,) Qlyz,) @ la®ly, jE,
i<j,ic®, i>j,ic®, ic®, icd,, &, 40

S] = ® d()tl]) ® d()t]l) RT* ® 112(Z+) ® 1os ® 1H”, ] € @,
icd, i<j,ic®, i>j,ied, ic®,, ©, 40

Si=®dA) @ dhi) Q@ DiA)efp(0) ® la®ly, jedy#o, )
i€d; icd, icd,, icd,,

D, £D,i<] £ D, i>]

S] = ® d()\l]) ® d()\]l> ® Dq()\jj) ® U, ] € P,

i€ed; ied, €Dy, Oy #D

where {U;, j € ®,} is an irreducible family of unitary operators on H, satisfying
UZ*U] :)\ij U]Ul*, 175], i,j € P,

Theorem 3. Any irreducible family of power partial isometries {S;, i =1, ...,d} satisfying (2)
is unitarily equivalent to the family described above corresponding to certain decomposition

{1,2,...,d} =P, UP,U | @, UD,.
p=1

Families, corresponding to different decompositions are non-equivalent. Families correspond-
ing to the same decomposition are equivalent iff the related families {U;, i € ®,} are equiva-
lent.
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Mu BrBYaeMo HabOpPM IIEHTPOBAHNMX UaCTKOBMX i30MeTpili, IO 3aA0BOABHSIIOTE AedpOpMOBaHi
KOMYTaIIiliHi CITiBBiAHOIIIEHHSI, III0 BiATIOBiAQIOTD IapaMeTpaM AedpopMmariii )L,']' e C, |Ai]-| = 1. Ha-
AQHO OIVC BiATIOBIAHVIX He3BiAHMX HabOpiB, 3 TOUHICTIO AO YHiTapHOI eKBiBaAeHTHOCTI. A caMe, TIO-
KasaHo, III0 KOXHe He3BiaHe 3006pa’keHHsI BiATIOBiAA€, 3 TOUHICTIO AO VHiTapHOI eKBiBaA€HTHOCTI,
He3BiAHOMY 300pa’keHHIO IIeBHOTO 6araToBMMipHOrO HEKOMYTaTUBHOTO TOPY.

Kouosi ciosa i ppasu: gacTKOBa i30MeTpisl, HEHTPOBAHWI OIlepaTop, He3BiAHe 300pakeHHsI, He-
KOMYTaTUBHIIA TOP.



