
ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp

Carpathian Math. Publ. 2022, 14 (1), 238–246 Карпатськi матем. публ. 2022, Т.14, №1, С.238–246

doi:10.15330/cmp.14.1.238-246

Elements of high order in finite fields specified by binomials

Bovdi V.1, Diene A.1, Popovych R.2

Let Fq be a field with q elements, where q is a power of a prime number p ≥ 5. For any integer

m ≥ 2 and a ∈ F∗
q such that the polynomial xm − a is irreducible in Fq[x], we combine two different

methods to explicitly construct elements of high order in the field Fq[x]/〈xm − a〉. Namely, we find

elements with multiplicative order of at least 5
3√m/2, which is better than previously obtained bound

for such family of extension fields.
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1 Introduction

The problem of efficiently constructing a primitive element for a given finite field is noto-

riously difficult computational task of finite fields. That is why one considers a less restric-

tive question, namely to find an element with “high” or “large” multiplicative order. Based

on [5, p. 1615], by “large order” (high order, exponential order) of an element in the finite field

Fqm of qm elements we mean that the order of this element must be bigger than every polyno-

mial in log(qm) as qm → ∞. In general, we are not required to compute the exact order of such

an element, but it is sufficient to obtain its lower bound.

High order elements in finite fields are very useful in several applications, such as cryptog-

raphy, coding theory, pseudo random number generation and combinatorics.

S. Gao [5] provided an algorithm for constructing high order elements for many (conjec-

turally all) general extensions Fqm of a finite field Fq with the following lower bound

exp(Ω((log m)2/ log log m)) on the order. This bound was improved in [15]. J.F. Voloch [18]

proposed a method which constructs an element of order of at least exp(Ω((log m)2)). How-

ever, for some classes of finite fields it is possible to construct elements of much higher orders

(for example, see [1, 6, 13, 14, 17]). In these articles, extensions connected with cyclotomic poly-

nomials are considered and elements of order bounded by exp(Ω(
√

m)) are constructed. Note

that this bound is much better than the ones we mentioned previously.

Some another classes of extensions based on the Kummer or Artin-Schreier polynomials

were considered in [4,9,12]. The best known lower bound of the order (see [12, Theorem 1]) for

extensions, specified by Kummer polynomials, is 2⌊
3√2m⌋, where ⌊ 3

√
2m⌋ is the highest integer

less or equal to 3
√

2m. In our current article, we continue this line of investigation.
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2 Main Results

Let p, q, m, n ∈ N, where p is an odd prime, q = pn and m ≥ 2. Let Fq be a finite field of q

elements and let a ∈ F∗
q such that xm − a is an irreducible polynomial over Fq.

Let Fqm = Fq(θ) = Fq[x]/〈xm − a〉 be a field extension of Fq based on the irreducible bino-

mial (Kummer polynomial) xm − a, where 〈 f (x)〉 is an ideal of Fq[x] generated by f (x) ∈ Fq[x]

and θ is the coset of x in Fq[x]/〈xm − a〉.
We widely use (see Lemma 1) the following fact from [11]. Let Fq be a finite field of char-

acteristic p ≥ 5. There exist infinitely many natural numbers m and a = a(m) ∈ F∗
q , such that

xm − a ∈ Fq[x] is an irreducible polynomial. Such elements a = a(m) ∈ F∗
q are called m-related.

Our main results use the fact that the extension degree m = k · l is a product of two num-

bers, where k > 1 is a divisor of q − 1, and l ≥ 1 is the order of the number q modulo m.

Using a special representation of elements of the group 〈q (mod m)〉 (see [12, Lemma 4,

p. 88]), we deduce the following: if q − 1 has a “large” divisor k, we use for the construc-

tion of the method similar to the case Fq[x]/〈xm − a〉 with the condition q ≡ 1 (mod m) or

to the case Fp[x]/〈xp − x − a〉 (see [4, p. 363–365]); if q − 1 does not have a big divisor k,

then l = m/k is large, and we use for the construction of the method similar to the case

Fq[x]/〈xr−1 + · · ·+ x + 1〉 (see [1, 13]). We take in both cases a linear binomial in some power

of θ and all consecutive qth powers of it (the so called conjugates), that also belong to the group

generated by the binomial, and construct their distinct products.

In the first case, when q ≡ 1 (mod k), the conjugates of θl + b, b ∈ F∗
q , are linear binomials

in θl. The idea was introduced by P. Berrizbeitia [3] as an improvement of the AKS primality

proving algorithm and developed by several authors (see [4,13] and also the survey article [7]).

Our first result, which uses the first mentioned method, is the following.

Theorem 1. Let q = pn, where p ≥ 5 is a prime and let m = k · l ∈ N such that k > 1 is a

divisor of q− 1, and l ≥ 1 is the multiplicative order of q (mod m). Let a ∈ F∗
q be an m-related

element (i.e. xm − a ∈ Fq[x] is an irreducible polynomial) and let the element θ define the field

extension Fq(θ) = Fq[x]/〈xm − a〉.
If b ∈ F∗

q , then the multiplicative order of θl + b ∈ Fq(θ) is at least

d1 := max
0≤d−≤d<k

{(

k

d−

)(

d

d−

)(

2k − d − d− − 1

k − d − 1

)}

.

Moreover, if k ≥ 70, then d1 ≥ 5k.

Note that d1 ≥ 5,7556k

30k3/2 for k ≥ 8 by [16, Theorem 1, p. 23, Corollary 2, p. 25]. It is easy to see

that our lower bound is better for k ≥ 70.

Hence, we derive a lower bound on the order of θl + b, which depends on k.

In the second case, the conjugates of θ + b are non-linear polynomials in θ. The idea was

introduced by J. von zur Gathen and I. Shparlinski for the fields based on cyclotomic polyno-

mials [6], and developed in [1, 13, 14].

Let

T =
{

(u0, . . . , ul−1) ∈ Z
l :

l−1

∑
i=0

(i · k + 1)ui < m, 0 ≤ u0, . . . , ul−1 ≤ p − 1
}

. (1)

Our second result, which uses the second mentioned above method, is the following.
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Theorem 2. Let q = pn, where p ≥ 5 is a prime and let m = k · l ∈ N such that k > 1 is a

divisor of q− 1, and l ≥ 1 is the multiplicative order of q (mod m). Let a ∈ F∗
q be an m-related

element (i.e. xm − a ∈ Fq[x] is an irreducible polynomial) and let the element θ define the field

extension Fq(θ) = Fq[x]/〈xm − a〉.
If b ∈ F∗

q , then the multiplicative order of θ + b ∈ Fq(θ) is at least d2 := |T| ≥ 5
√

l/2.

Moreover:

(i) if l ≥ p2 + 1, then

d2 ≥
(

p(p − 1)

160(l − 1)

)

√
p

exp

(

2.5 ·
√

(1 − 1

p
)(l − 1)

)

;

(ii) if l < p + 1, then

d2 ≥ exp
(

2.5 ·
√

l − 1
)

13(l − 1)
.

Items (i) and (ii) of Theorem 2 are slightly better comparatively with 5
√

l/2 lower bounds

on d2, but not so explicit and not for all values of l. To prove these items we use Lemmas 4, 5

and 6. We take π
√

2/3 ≈ 2.5 to simplify formulas in (i) and (ii).

Hence, we obtain lower bounds on the order of the element θ + b, which depend on l or on

l and p.

Our third result, which takes together our first and second results, is the following.

Theorem 3. Let q = pn, where p ≥ 5 is a prime and let m = k · l ∈ N such that k > 1 is a

divisor of q− 1, and l ≥ 1 is the multiplicative order of q (mod m). Let a ∈ F∗
q be an m-related

element (i.e. xm − a ∈ Fq[x] is an irreducible polynomial) and let the element θ define the field

extension Fq(θ) = Fq[x]/〈xm − a〉.
It is always possible to construct explicitly in the field Fq(θ) an element of which the multi-

plicative order is at least max{d1, d2}.

Moreover, if k ≥ 70, then the multiplicative order is at least 5
3√m/2.

The best previously known lower bound on the order of elements for finite field extensions

defined by a binomial is equal to 2
3√2m = 2, 3948

3√m (see [12, Theorem 1, p. 87]). Our Theorem 3

gives a new bound 5
3√m/2 = 3, 5873

3√m, which is an improvement of 2
3√2m.

3 Lemmas and proofs

The multiplicative group F∗
qm of the finite field Fqm is cyclic of order qm − 1 with ϕ(qm − 1)

generators which are called primitive elements, where ϕ is the Euler totient function. For an

element g of a group G, we denote by 〈g〉 the cyclic subgroup generated by g.

Let c be a fixed positive integer. A partition P(c) of c is a sequence of non-negative integers

u1, . . . , uc such that

c =
c

∑
j=1

juj. (2)

We define the following three numbers

u(c), u(c, d), q(c, d) (3)

related to some subsets of the set of all partitions given by (2):
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(P1) u(c) is the number of all partitions P(c);

(P2) u(c, d) is the number of those partitions P(c) for which u1, . . . , uc ≤ d (i.e. each part

appears no more than d times);

(P3) q(c, d) is the number of those partitions P(c) for which uj = 0 if j ≡ 0 (mod d), (i.e. each

part of which is not divisible by d).

In a finite field of characteristic two, the polynomial xm − a is irreducible if and only if

m = 1. For a finite field of an odd characteristic the question when the polynomial xm − a

is irreducible was done by Panario and Thomson [11]. In the case p = 3 the only possible

extension is for m = 2, namely the irreducible polynomial x2 − 2. If p ≥ 5, then we can

construct the extensions for infinitely many m.

Lemma 1 ([11, Theorem 2, p. 3]). Let Fq be a finite field of characteristic p ≥ 5.

For m 6≡ 0 (mod 4) there exists an irreducible binomial over Fq of degree m if and only if

every prime factor of m is also a prime factor of q − 1.

For m ≡ 0 (mod 4) there exists an irreducible binomial over Fq of degree m if and only if

q ≡ 1 (mod 4) and every prime factor of m is also a prime factor of q − 1.

Note that [11] not only provides the possible degrees m such that irreducible binomials

xm − a exist, but also provides a procedure to construct the m-related elements a = a(m).

Lemma 2 ([12, Lemma 4, p. 88]). Let m ≥ 2 and let a ∈ F∗
q be an m-related element (i.e. xm − a ∈

Fq[x] is an irreducible polynomial). If m = k · l ∈ N, in which k is a divisor of q − 1 and l is the

order of q modulo m, then 〈q〉 ≤ Z
∗
m can be written as

〈q〉 = {i · k + 1 : i = 0, . . . , l − 1}.

The next result below is a typical tool how to construct high order elements (see [4, 5, 10]).

Lemma 3. Let m ≥ 2 and let f (x) ∈ Fq[x] be an irreducible polynomial of degree m. Let

g(x), h(x) ∈ Fq[x] such that g(x) 6= h(x). If deg(g(x)) and deg(h(x)) are less than m, then

g(x) + 〈 f (x)〉 6= g(x) + 〈 f (x)〉 ∈ Fq[x]/〈 f (x)〉.

Lemma 4 (Glaisher, 1883, see [2, Corollary 1.3, p. 6.]). The number of partitions P(n0) of

n0 ∈ N not containing d0 equal parts is equal to the number of partitions P(n0) of n0 with

no part divisible by d0, i.e.

u(n0, d0 − 1) = q(n0, d0).

Lemma 5 ([8, Theorem 5.1]). For all integers d0 > 1 and n0 ≥ d2
0, we have

(d0(d0 − 1)

160n0

)

√
d0

exp

(

2.5 ·
√

(1 − 1

d0
)n0

)

< q(n0, d0).

Lemma 6 ([8, Theorem 4.2]). For all integers n0 > 1

exp
(

2.5 · √n0

)

13n0
< u(n0).
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Proof of Theorem 1. Since k is a divisor of q− 1, then, according to Lemma 1, the binomial yk − a

is irreducible over Fq[y]. Set η = θl . Clearly, ηk = θm = a, and Fq(η) = Fq[y]/〈yk − a〉 is a

subfield of Fq(θ).

Consider η + b (a linear binomial in the power of η = θl) and consequential qth powers

(conjugates) of it that belong to the group generated by this binomial. Write q − 1 = kh for

some integer h. Then ηq + b = (ηk)hη + b = ahη + b and the conjugates of η + b are equal to

(η + b)qi
= ahiη + b, i = 0, . . . , k − 1.

Consider the subgroup H = 〈ahiη + b : i = 0, . . . , k − 1〉 ≤ 〈η + b〉 ≤ F∗
q (η). For a vector

α = (u0, . . . , uk−1) ∈ Z
k, we define the product

P(α) =
k−1

∏
i=0

(ahiη + b)ui ∈ H. (4)

The next combinatorial problem was introduced by J.F. Voloch in order to improve the

AKS primality proving algorithm and this method has been developed by several authors (see

surveys [7, p. 31–32] and [16]).

This problem consists of finding for a fix k ∈ N two non-negative integers 0 ≤ d− ≤ d < k

with maximal possible value of the product ( k
d−)(

d
d−)(

k−d−−d−1
k−d−1 ) of the following three binomial

coefficients ( k
d−), (

d
d−) and (k−d−−d−1

k−d−1 ).

It is easy to check that this product ( k
d−)(

d
d−)(

k−d−−d−1
k−d−1 ) is the cardinality of the set

S = {(u0, u1, . . . , uk−1) ∈ Z
k} with the following properties:

(i) the number of negative components equals d−,

(ii) the sum of absolute values of negative components ∑i,ui<0 |ui| ≤ d,

(iii) the sum of positive components ∑i,ui≥0 ui ≤ k − 1 − d,

where 0 ≤ d− ≤ d < k.

Indeed, to specify the element of this set, we choose at first places, where vector values are

negative: this takes into account the factor ( k
d−). Then we choose values of negative elements

so that the sum of their absolute values does not exceed d: this takes into account the factor

( d
d−). Finally, we choose non-negative vector values at k − d− places, so that their sum does not

exceed k − 1 − d: this takes into account the factor (k−d−+k−1−d
k−1−d ).

For each (u0, u1, . . . , uk−1) ∈ S we consider the product (4) and claim that two different

vectors (u0, u1, . . . , uk−1) and (v0, v1, . . . , vk−1) from S give different values of P.

Let α = (u0, . . . , uk−1), β = (v0, . . . , vk−1) ∈ S such that α 6= β and P(α) = P(β) (see (4)).

Since yk − a ∈ Fq[y] is the characteristic polynomial of η, therefore

k−1

∏
i=0

(ahiy + b)ui ≡
k−1

∏
i=0

(ahiy + b)vi (mod 〈yk − a〉)

and, as a consequence,

f1(y) ≡ f2(y) (mod 〈yk − a〉), (5)
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where

f1(y) : = ∏
0≤i≤k−1,

0≤ui

(ahiy + b)ui ∏
0≤i≤k−1,

0>vi

(ahiy + b)|vi|,

f2(y) : = ∏
0≤i≤k−1,

ui<0

(ahiy + b)|ui| ∏
0≤i≤k−1,

vi≥0

(ahiy + b)vi .

Using (5) and the facts that

deg( f1(y)) = ∑
0≤i≤k−1,

ui≥0

ui + ∑
0≤i≤k−1,

vi<0

|vi| ≤ (k − 1 − d) + d = k − 1,

deg( f2(y)) = ∑
0≤i≤k−1,

ui≤0

|ui|+ ∑
0≤i≤k−1,

vi≥0

vi ≤ d + (k − 1 − d) = k − 1,

we conclude that f1(y) = f2(y) from Lemma 3.

Moreover, each factor ahiy + b in f1(y) (= f2(y)) is irreducible and ahiy 6= ahjy for i 6= j.

Since Fq[y] is a unique factorization ring, we obtain a contradiction.

Hence, the number of α ∈ S such that P(α) ∈ H (see (4)) is equal to the cardinality of S. We

choose d− and d to obtain maximum of elements in S. As a result, η + b has the multiplicative

order at least d1.

Proof of Theorem 2. According to Lemma 2, for each z ∈ {0, . . . , l − 1} there exist unique

i ∈ {0, . . . , l − 1} and j = j(i) ∈ Z, such that qz = (i · k + 1) + j · m. Then conjugates of

element θ + b are equal to

(θ + b)qz
= θqz

+ b = (θm)jθi·k+1 + b = ajθi·k+1 + b ∈ 〈θ + b〉.

Similarly, as in the proof of Theorem 1 (see also (1)), for a vector α = (u0, . . . , ul−1) ∈ T we

define the product

P(α) = ∏
l−1
i=0(a

jθik+1 + b)ui ∈ 〈θ + b〉.
We claim that if β = (v0, . . . , vl−1) ∈ T is distinct from α ∈ T, then P(α) 6= P(β).

Indeed, let P(α) = P(β). Set

f1(x) :=
l−1

∏
i=0

(ajxi·k+1 + b)ui ∈ Fq[x] and f2(x) :=
l−1

∏
i=0

(ajxi·k+1 + b)vi ∈ Fq[x].

Clearly, deg( f1(x)) = ∑
l−1
i=0(ik + 1)ui < m and deg( f1(x)) = ∑

l−1
i=0(ik + 1)ui < m. Since xm − a

is the characteristic polynomial of θ, then

f1(x) ≡ f2(x) (mod 〈xm − a〉),

so f1(x) = f2(x) by Lemma 3.

Note that Fq[x] is a unique factorization ring. Let r be the smallest integer for which ur 6= vr

and, say ur > vr, in which ui ∈ α and vi ∈ β. After removing common factors on both sides of

the equation f1(x) = f2(x), we observe that

(ajr xr·k+1 + b)ur−vr

l−1

∏
i≥r+1

(aji xi·k+1 + b)ui =
l−1

∏
i≥r+1

(aji xir+1 + b)vi . (6)
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The absolute term for the polynomial ∏
l−1
i≥r+1(a

ji xi·k+1 + b)ui we denote by c. Then there is the

term (ur − vr)ajr bur−vr−1cxr·k+1 in the polynomial on the left side of (6) with the minimal non-

zero power of x. Since 0 ≤ ur, vr ≤ p − 1, ur 6= vr, a, b, c 6= 0, the term is non-zero. This term

does not occur on the right side, which makes the identity (6) impossible. Hence, products,

corresponding to distinct solutions, cannot be equal. Consequently, the multiplicative order of

θ + b in Fq(θ) = Fq[x]/〈xm − a〉 is at least d2 := |T|.
Let τ ∈ [2, p − 1] be an integer. Let us choose the largest integer α > 0 such that

α

∑
i=0

(i · k + 1)(τ − 1) < m, k ≥ 2.

Obviously,

α

∑
i=0

(i · k + 1)(τ − 1) =
(τ − 1)(αk + 2)(α + 1)

2
<

(τ − 1)k(α + 1)2

2
.

If α := ⌊
√

2l
τ−1 − 1⌋, then (τ − 1)k(α + 1)2 ≤ 2m and for integers

ui ∈
{

[0, τ − 1] for i = 0, . . . , α,

0 for i = α + 1, . . . , l − 1,

the vector (u0, . . . , ul−1) belongs to the set T. The number of such vectors is τα+1 ≤ τ

√

2l
τ−1 . To

choose τ we investigate the maximum value of the following function

f (τ) := τ

√

2l
τ−1 = exp

{

√

2l

τ − 1
· ln(τ)

}

, 2 ≤ τ ≤ p − 1.

Obviously, f ′(τ) = τ

√

2l
τ−1 ·

(

2l
τ−1

)
1
2 ·
(

1
τ − ln τ

2(τ−1)

)

and the function f (τ) reaches the maxi-

mum value at the point τ0 ∈ (4, 92155, 4, 921555). Moreover, f (τ) monotonically decreases for

τ ≥ 5 ≥ ⌈τ0⌉, so d2 = |T| ≥ 5
√

l/2.

(i) Let us show that d2 ≥ u(l − 1, p − 1) (see (3) and (P2)). Indeed ik + 1 < k(i + 1), so

l−1

∑
i=0

(ki + 1)ui < k
l−1

∑
i=0

(i + 1)ui < m, (7)

and ∑
l
i=1 iui−1 <

m
k = l.

If ul−1 6= 0, we obtain a contradiction. Hence, ul−1 = 0 and ∑
l−1
i=1 iui−1 = l − 1, so

(u0, . . . , ul−2) is a partition of l − 1 (see (2)) such that 0 ≤ u0, . . . , ul−2 ≤ p − 1 and (7) holds.

Explicit lower bounds on q(n0, d0) for n ≥ d2
0 and on u(n0) for all n0 ∈ Z are given in [8].

Note that u(n0, d0 − 1) = u(n0) for n0 < d0. Using Lemmas 4 and 5 for n0 := l − 1 and

d0 := p − 1 we obtain that

d2 ≥ u(l − 1, p − 1) = q(l − 1, p)

>

( p(p − 1)

160(l − 1)

)

√
p

exp
(

2.5 ·
√

(1 − 1
p )(l − 1)

)

.

(ii) Recall that if n0 < d0, then u(n0, d0 − 1) = u(n0). Consequently

d2 ≥ u(l − 1, p − 1) = u(l − 1) >
exp

(

2.5 ·
√

l − 1
)

13(l − 1)
,

where n0 = l − 1 and d0 = p by Lemmas 5 and 6.
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Proof of Corollary 3. Elements θl + b, θ + b ∈ Fq(θ) are different and their orders are at least d1

and d2, respectively by Theorems 1 and 2.

If k ≤
√

l/2, then the order of θ + b has a lower bound 5
√

l/2 by Theorem 1. If k >

√
l/2,

then we construct the element γ = θm2 + b with lower bound 5k on its order by Theorem 2.

Hence, one can explicitly construct in the field Fq[x]/〈xm − a〉 an element with the multiplica-

tive order of at least max{5k, 5
√

l/2}. In the worst case these lower bounds are equal 5k = 5
√

l/2.

Then k = 3
√

m2/2 and the order is at least 5
3√m/2.

Note that the two considered methods have two parts: the algebraic part and the combina-

torial calculation. An improvement in either (or both) of these parts results in an improvement

in the evaluation of the method and then in the approach. Generalizing the approach to other

classes of finite fields is an open problem.
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Бовдi В., Дieне А., Попович Р. Елементи великого порядку в скiнченних полях, заданих бiномами

// Карпатськi матем. публ. — 2022. — Т.14, №1. — C. 238–246.

Нехай Fq − скiнченне поле з q елементiв, де q є степенем простого числа p ≥ 5. Поєднуючи

два рiзних методи, для будь-якого цiлого числа m ≥ 2 i елемента a ∈ F∗
q таких, що полiном

xm − a є незвiдним над Fq[x], ми явно будуємо елементи великого порядку в полi Fq[x]/〈xm − a〉.
А саме, знаходимо елементи з мультиплiкативним порядком щонайменше 5

3√m/2, що краще,

нiж отримана ранiше оцiнка для такої сiм’ї розширень полiв.

Ключовi слова i фрази: скiнченне поле, мультиплiкативний порядок, елемент великого муль-

типлiкативного порядку, бiном.


