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Banach-Steinhaus theorem for linear relations on asymmetric
normed spaces

Bouadjila K.1, Tallab A.2, Dahia E.3

We study the continuity of linear relations defined on asymmetric normed spaces with values in

normed spaces. We give some geometric charactirization of these mappings. As an application, we

prove the Banach-Steinhaus theorem in the framework of asymmetric normed spaces.
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Introduction

The properties of asymmetric normed spaces started with some papers (see [9–12]). Con-

cerning the continuity of linear operators between asymmetric normed spaces, in spite of the

existing differences, some results from the symmetric case have their counterparts in the asym-

metric one, a study that was initiated in [6]. Also, a first study of continuous multilinear oper-

ators on asymmetric normed spaces is given in [7].

In the present work, we extend the notion of continuity of linear operators between asym-

metric normed spaces to the linear relations (also known as multivalued linear operators) de-

fined on asymmetric normed spaces. As far as we know that is a first attempt in this regard.

After this introduction, in section two we extend to linear relations the concept of continuity in

asymmetric normed spaces. We give a characterization of these mappings in a way analogous

to that used to characterize linear relations between normed spaces. In Section 3, we establish

the Banach-Steinhaus theorem for linear relations in asymmetric normed spaces.

The notation used in the paper is in general standard. A function q : X → R+ on a real

linear space X is an asymmetric norm if for every x, y ∈ X and α ∈ R+ the following hold:

(1) q(x) = q(−x) = 0 if and only if x = 0,

(2) q(αx) = αq(x),

(3) q(x + y) ≤ q(x) + q(y).
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We say that the pair (X, q) is an asymmetric normed space.

The asymmetric norm conjugate to q is the function q : X → R+ defined by q(x) = q(−x).

As a consequence, the asymmetric norm q induces a norm qs defined on X by the formula

qs(x) = max {q(x), q(−x)}, this norm is referred to as the symmetrization of the asymmetric

norm q.

Let X be a nonempty set. A function ρ : X × X → R+, that satisfies the following condi-

tions:

(1) ρ(x, y) = ρ(y, x) = 0 if and only if x = y,

(2) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ X,

is called a quasi-metric on X.

If ρ is a quasi-metric on a set X, then the function ρ defined on X × X by ρ(x, y) = ρ(y, x)

for all x, y ∈ X, is also a quasi-metric on X called the conjugate with ρ, and the function ρs

defined on X × X by ρs(x, y) = max {ρ(x, y), ρ(x, y)} for all x, y ∈ X is a metric on X.

Each asymmetric norm q on a linear space X induces a quasi-metric ρq on X defined by

ρq(x, y) = q(y − x) for all x, y ∈ X.

The asymmetric norm q induces a T0 topology τq on X that is generated by the asymmetric

open balls Bq(x, ε) = {y ∈ X : q(y − x) < ε}, where x ∈ X and ε > 0. Moreover the collection

{Bq(x, ε) : x ∈ X and ε > 0} forms a fundamental system of neighborhoods for the topology

τq. However, in general this topology is not Hausdorff.

A sequence (xn)n in an asymmetric normed space (X, q) is convergent to x ∈ X with respect

to τq if and only if lim
n→+∞

q(xn − x) = 0.

Example 1. As an important example, let u be the asymmetric norm on the usual real linear

space R defined by

u(x) := x+ = max {x, 0} . (1)

In this case u = max {−x, 0} = x− and us = max {−x, x} = |x|. Obviously (R, u) is an

asymmetric normed space.

Let (X, q) and (Y, p) be asymmetric normed spaces. We denote by LC(X, Y) the set of all

continuous linear mappings from (X, q) to (Y, p) and by LCs(X, Y) the set of all continuous

linear mappings from (X, qs) to (Y, ps). The set LC(X, Y) is not necessarily a linear space but

it is a cone (or normed semilinear space) with LC(X, Y) ⊂ LCs(X, Y) (see [6]).

The next result and its consequences can be found in [5] and [6] and will be used in the

sequel.

Proposition 1. A linear mapping T belongs to LC(X, Y) if and only if there is a constant M > 0

such that p(T(x)) ≤ Mq(x) for all x ∈ X.

Following [6, Theorem 1], we can consider the asymmetric norm on the cone LC(X, Y) of all

linear continuous mappings T from (X, q) into (Y, p) defined by the formula

‖T| := sup {p(T(x)) : q(x) ≤ 1} ,

and one can easily show that

‖T| = inf {M > 0 : p(T(x)) ≤ Mq(x)} .
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For the general theory of asymmetric normed spaces we refer the reader to the monograph [1].

Regarding the normed linear relations, a linear relation (is also called a multivalued linear

operator) T between two real linear spaces X and Y is a mapping defined on a subspace D(T)

of X, called the domain of T, which takes on values in the collection of non-empty subsets of

Y such that

T(αx1 + βx2) = αT(x1) + βT(x2)

for all nonzero real numbers α, β and x1, x2 ∈ D(T). If T maps the points of its domain to

singletons, then T is said to be a single-valued or simply an operator. The class of all linear

relations from X to Y is denoted by LR(X, Y). In the case where X = Y, briefly by LR(X) we

denote LR(X, X). A linear relation T ∈ LR(X, Y) is uniquely determined by its graph G(T),

which is defined by

G(T) = {(x, y) ∈ X × Y : x ∈ D(T), y ∈ Tx},

so that we can identify T with G(T). The inverse of T is the linear relation T−1 defined by

G(T−1) = {(y, x) ∈ Y × X : (x, y) ∈ G(T)}.

If T−1 is single-valued, then T is called injective.

The image of A ⊂ X is given by

T(A) =
⋃

{Tx : x ∈ A ∩ D(T)} .

So the range of T is defined by R(T) := T(X). In particular, the multivalued part of T is

defined by

T(0) := {y : (0, y) ∈ G(T)}.

It is worth mentioning that T(0) is a linear subspace of Y (see [2, Corollary I.2.4]). Proposition

I.2.8 in [2] gives a formula that charactrize the elements y ∈ Tx for all x ∈ D(T), namely

Tx = y + T(0) (2)

If R(T) = Y, then T is called surjective.

For a non-empty subsets B ⊂ Y, set

T−1(B) = {x ∈ D(T) : B ∩ Tx 6= ∅}.

In particular, for y ∈ R(T),

T−1y = {x ∈ D(T) : y ∈ Tx}.

Note that T is injective if and only if its null space

N(T) := T−1(0) = {x ∈ D(T) : (x, 0) ∈ G(T)}

is reduced to {0} .

By [2, Proposition I.3.1], if B ⊂ Y with B 6= ∅ and A ⊂ X, then we have

T
(

T−1(B)
)

= B ∩ R(T) + T(0) (3)

and

T−1(T(A)) = A ∩ D(T) + T−1(0). (4)

All the other relevant terminology and preliminaries that we will use are given in corre-

sponding sections. For the theory of multivalued linear operators we refer to the book of

R.W. Cross [2].
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1 Continuous linear relations

Let T : (X, q) → (Y, p) be a relation between asymmetric normed spaces. For defining the

boundedness of T, we need the quotient space Y/T(0), but in the framework of asymmetric

normed spaces the closure T(0) may fail to be a linear subspace of Y (see [3, Example 2.1]). For

this reason, we consider linear relations acting from an asymmetric normed space to a normed

space only instead of those acting between two asymmetric normed spaces.

We give a characterization of continuous linear ralations defined on asymmetric normed

spaces with values in a normed spaces in a way analogous to that used to characterize it be-

tween normed spaces. The definition of a continuous linear relation is similar to that, given

for the case of topological spaces in [2, Definition II.3.1]. We write the definition for the aim of

completeness.

Definition 1. A linear ralation T ∈ RL(X, Y) between asymmetric normed space (X, q) and

normed space (Y, ‖·‖) is said to be continuous if for each neighbourhood V in R(T) the in-

verse image T−1(V) is a neighbourhood in D(T). Also T is called open if whenever U is a

neighbourhood in D(S), the image T(U) is a neighbourhood in R(T).

Let T ∈ LR(X, Y). Consider the quotient space Y/T(0) equiped with the norm

‖ȳ‖ = inf
k∈T(0)

‖y + k‖ .

It is easy to prove that if Q : Y −→ Y/T(0) is the quotient map, then QT is single-valued

(see [2, Proposition II.1.2]). Define

‖Tx‖ := ‖QTx‖ = inf
k∈T(0)

‖y + k‖

for all x ∈ D(T) and y ∈ Tx. Also we put ‖T|q := ‖QT|. Consequently, ‖T|q = sup
q(x)≤1

‖QTx‖.

If M is a subspace of X (or Y) and α is an asymmetric norm on X or a norm on Y we consider

BM = {x ∈ M : α(x) ≤ 1} , UM = {x ∈ M : α(x) < 1} .

These notations open the door to characterize the continuity of a linear relation

T ∈ LR(X, Y) by using the number ‖T|q . For the proof we need the following geometric

charactirization of ‖T|q .

Proposition 2. Let T ∈ RL(X, Y) be a relation between asymmetric normed space (X, q) and

normed space (Y, ‖·‖). The following statements are equivalent.

(i) ‖T|q < ∞.

(ii) There is a number λ > 0 such that

T
(

BD(T)

)

⊂ λBR(T) + T(0). (5)

Proof. (i) =⇒ (ii). Take y ∈ T(BD(T)), then there is x ∈ BD(T) such that y ∈ Tx. It follows from

‖T|q < ∞, that

‖Tx‖ = inf
k∈T(0)

‖y + k‖ = inf
k∈T(0)

‖y + k‖ < ∞.
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Note that the second equality is an immediate consequence of the continuity of the norm. Fix

ε > 0, choose k ∈ T(0) such that ‖y + k‖ < ‖T|q + ε. This means that y + k ∈ λBR(T) with

λ = ‖T|q + ε, therefore y ∈ λBR(T) + T(0).

(ii) =⇒ (i). Suppose that (5) holds for a given λ > 0. Let x ∈ BD(T) and y ∈ Tx. By the

hypothesis there exist y1 ∈ BR(T) and k1 ∈ T(0) such that y = λy1 + k1. Thus, by (2) we get

‖Tx‖ = ‖QTx‖ = ‖Qy‖ = inf
k∈T(0)

‖y + k‖ ≤ ‖y − k1‖ = λ ‖y1‖ ≤ λ.

Consequently, ‖T|q = sup
q(x)≤1

‖Tx‖ ≤ λ < ∞.

Theorem 1. Let (X, q) be an asymmetric normed space and (Y, ‖·‖) be a normed space. Then

the linear relation T : X → Y is continuous if and only if ‖T|q < ∞.

Proof. For the “if” part, suppose that ‖T|q < ∞. Let V be an open ball in R(T) with center

y. Then for some α > 0 we can write V − {y} = αUR(T). By (5) there exists λ > 0 such that

T(UD(T)) ⊂ λUR(T) + T(0). An application of equality (4) reveals that

UD(T) + T−1(0) ⊂ λT−1(UR(T)) =
λ

α
T−1(V − {y}).

Thus
α

λ
UD(T) + T−1(y) ⊂ T−1(V),

which means that T−1(V) is a neighbourhood in D(T). Therefore T is continuous.

To prove the “only if” part, assume that T is continuous. By using the preceding proposi-

tion, it is enough to show inclusion (5) for some λ > 0. There exists an open neighborhood O

in D(T) such that O ⊂ T−1UR(T). Hence

O − O ⊂ T−1
(

UR(T)

)

− T−1
(

UR(T)

)

.

On the other hand we have

T−1
(

UR(T)

)

− T−1
(

UR(T)

)

= T−1
(

UR(T) − UR(T)

)

= 2T−1
(

UR(T)

)

,

which means that 2T−1
(

UR(T)

)

is an open neighborhood of {0} in D(T). Consequently, there

exists λ > 0 such that
4

λ
UD(T) ⊂ 2T−1

(

UR(T)

)

.

It follows from BD(T) ⊂ 2UD(T) and UR(T) ⊂ BR(T) that

2

λ
BD(T) ⊂ 2T−1

(

BR(T)

)

.

By (3) we get
2

λ
T(BD(T)) ⊂ 2T

(

T−1
(

BR(T)

))

= 2BR(T) + T(0),

and we obtain

T(BD(T)) ⊂ λBR(T) + T(0).
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By CR(X, Y) we denote the set of all continuous linear relations between the asymmetric

normed space (X, q) and the normed space (Y, ‖·‖) and by CRs(X, Y) the normed linear space

of all linear relations between the normed linear spaces (X, qs) and (Y, ‖·‖).

Proposition 3. Let T ∈ CR(X, Y). Then

‖Tx‖ ≤ ‖T|q q(x) (6)

for all x ∈ X. Moreover, ‖T|q can be calculated also by the formula

‖T|q = inf {M : ‖Tx‖ ≤ Mq(x) for all x ∈ X} . (7)

Proof. For every x ∈ X such that q(x) 6= 0 from ‖T|q = sup
q(x)≤1

‖Tx‖ we get

∥

∥

∥

∥

T
x

q(x)

∥

∥

∥

∥

≤‖T|q ,

and we obtain inequality (6). If q(x)= 0, the inequality is obvious. On the other hand, if λ is

the right side member of equality (7), then it is clear that λ ≤ ‖T|q. For the reverse inequality,

if M > 0 satisfies ‖Tx‖ ≤ Mq(x) for all x ∈ X, it follows that ‖T|q = supq(x)≤1 ‖Tx‖ ≤ M and

so ‖T|q ≤ λ.

For the proof of the following corollary, we use Theorem 1.

Corollary 1. A linear relation T : X → Y is continuous from (X, q) to (Y, ‖·‖) if and only if it

is continuous from (X, q) to (Y, ‖·‖). Hence CR(X, Y) ⊂ CRs(X, Y).

Proof. The required equivalence follows from

sup
q(x)≤1

‖QTx‖ = sup
q(x)≤1

‖QT(−x)‖ = sup
q(x)≤1

‖QTx‖ .

With this we have ‖T|q = ‖T|q. Now let T ∈ CR(X, Y). For all x ∈ X such that

qs(x) = max {q(x), q(x)} ≤ 1,

we have ‖T‖ = sup
qs(x)≤1

‖T(x)‖ ≤ ‖T|q < ∞ and the proof follows.

Now we give an example of a continuous linear relation.

Example 2. We can define a linear relation T : (R, u) → (R2, ‖·‖) by

T(x) =
{

(a, b) ∈ R
2 : a + b = x

}

,

where u is the usual asymmetric norm on R defined by (1) and ‖·‖ is the norm on R
2 defined

by ‖(a, b)‖ = |a|+ |b|. Let us show that T is continuous. Firstly, it is easy to see that T(0) is a

closed subspace of R
2 and by simple calculation we can see that

‖T(x)‖ = inf
(k1,k2)∈T(0)

‖(a + k1, b + k2)‖ = inf
k∈R

{|a + k|+ |b − k|} = |a + b|

for all x ∈ R, (a, b) ∈ T(x). It follows that ‖T|u = sup
(a+b)+≤1

|a + b| ≤ 1.
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2 Banach-Steinhaus theorem

In this section, we present a Banach-Steinhaus theorem for continuous linear relations de-

fined on asymmetric normed spaces. Recall that an asymmetric normed space (X, q) is said

to be of the half second category if the condition X = ∪n≥1En implies intq
(

clq(Em)
)

6= ∅ for

some m ∈ N, where intq(A) is the interior of the set A in the topological space (X, τq) and

clq(A) is the closure of A in the topological space (X, τq). Note that if q is a norm on X, the

notion of space of the half second category coincides with the classical notion of a space of the

second category (see [4] or [8]).

The next result, an asymmetric version of the Banach-Steinhaus theorem for linear opera-

tors, can be found in [4] and will be generalized to the setting of linear relations.

Theorem 2 ([4, Theorem 2.6]). Let (X, p) and (Y, q) be two asymmetric normed spaces. Sup-

pose that (X, p) is of the half second category. If F is a family of continuous linear operators

such that sup
T∈F

q(T(x)) < ∞ for every x ∈ X, then

sup {q(T(x)) : p(x) ≤ 1} < ∞.

For the proof of the main theorem we need the following lemma.

Lemma 1 ([4, Lemma 2.4]). If (X, q) is an asymmetric normed space of the half second category

and F is a family of real valued lower semicontinuous functions on the quasi metric space

(X, ρ̄q) such that for each x ∈ X there exists bx > 0 such that f (x) ≤ bx for all f ∈ F , then

there exist a nonempty open set U in (X, q) and b > 0 such that f (x) ≤ b for all f ∈ F and

x ∈ U.

Theorem 3. Let (X, q) be an asymmetric normed space of the half second category, (Y, ‖·‖)

be a normed space and F be a family of continuous linear relations from (X, q) to (Y, ‖·‖).

Suppose that F is pointwise bounded, i.e. for each x ∈ X there exists bx > 0 with ‖Tx‖ ≤ bx

for all T ∈ F . Then sup
T∈F

‖T| < ∞.

Proof. For each T ∈ F consider the function fT : X → R+ defined by fT(x) = ‖QTx‖ , x ∈ X,

where Q : Y → Y/T(0) is the quotient map. Firstly, we show that fT is lower semicontinuous

on (X, ρ̄q). Let x ∈ X and (xn)n be a sequence in X such that ρ̄q(x, xn) → 0 if n → ∞. We have

fT(x)− fT(xn) = ‖QTx‖ − ‖QTxn‖ ≤ ‖QTx − QTxn‖ ≤ ‖T| q(x − xn) → 0 if n → ∞.

It follows that for each ε > 0 there is n0 ∈ N such that fT(x)− fT(xn0) < ε. This means that

the function fT is lower semicontinuous on (X, ρ̄q). An application of the previous lemma to

the family A = { fT : T ∈ F} reveals the existence of a nonempty open subset U of (X, q) and

a d > 0 such that fT(x) ≤ d for all T ∈ F and x ∈ U. Let Bq be an open ball with center z and

radius r contained in U. For x ∈ rBq, we have x + z ∈ Bq and

‖Tx‖ = ‖QTx‖ ≤ ‖QT(x + z)‖+ ‖QT(−z)‖ = fT(x + z) + fT(−z) ≤ d + b−z = b.

Therefore

sup
T∈F

‖T| ≤
b

r
.
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Springer Basel AG, Basel, 2013.

[2] Cross R.W. Multivalued Linear Operators. Marcel-Dekker, New York, 1998.

[3] Alegre C., Ferrando I. Quotient subspaces of asymmetric normed linear spaces. Bol. Soc. Mat. Mex. 2007, 3 (2),

357–365.

[4] Alegre C., Romaguera S., Veeramani P. The Uniform Boundedness Theorem in Asymmetric Normed Spaces. Abstr.

Appl. Anal. 2012, 1–8. doi:10.1155/2012/809626

[5] Ferrer J., Gregori V., Alegre C. Quasi-uniform structures in linear lattices. Rocky Mountain J. Math. 1993, 23 (3),

877–884. doi:10.1216/rmjm/1181072529
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Ми вивчаємо неперервнiсть лiнiйних вiдношень, що визначенi на асиметричних нормо-

ваних просторах iз значеннями у нормованих просторах. Ми даємо деяку геометричну ха-

рактеризацiю цих вiдображень. Як застосування ми доводимо теорему Банаха-Штейнгауза в

контекстi асиметричних нормованих просторiв.
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