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Banach-Steinhaus theorem for linear relations on asymmetric
normed spaces

Bouadjila K.}, Tallab A.2, Dahia E.3

We study the continuity of linear relations defined on asymmetric normed spaces with values in
normed spaces. We give some geometric charactirization of these mappings. As an application, we
prove the Banach-Steinhaus theorem in the framework of asymmetric normed spaces.
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Introduction

The properties of asymmetric normed spaces started with some papers (see [9-12]). Con-
cerning the continuity of linear operators between asymmetric normed spaces, in spite of the
existing differences, some results from the symmetric case have their counterparts in the asym-
metric one, a study that was initiated in [6]. Also, a first study of continuous multilinear oper-
ators on asymmetric normed spaces is given in [7].

In the present work, we extend the notion of continuity of linear operators between asym-
metric normed spaces to the linear relations (also known as multivalued linear operators) de-
fined on asymmetric normed spaces. As far as we know that is a first attempt in this regard.
After this introduction, in section two we extend to linear relations the concept of continuity in
asymmetric normed spaces. We give a characterization of these mappings in a way analogous
to that used to characterize linear relations between normed spaces. In Section 3, we establish
the Banach-Steinhaus theorem for linear relations in asymmetric normed spaces.

The notation used in the paper is in general standard. A function g: X — R4 on a real
linear space X is an asymmetric norm if for every x,y € X and « € R the following hold:

(1) g(x) =g(—x) =0if and only if x = 0,
(2) g(ax) = aq(x),

3) g(x+y) <q(x) +4q(y).
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We say that the pair (X, q) is an asymmetric normed space.

The asymmetric norm conjugate to g is the functiong: X — R, defined by g7(x) = g(—x).
As a consequence, the asymmetric norm g induces a norm 4° defined on X by the formula
7°(x) = max {g(x),g(—x)}, this norm is referred to as the symmetrization of the asymmetric
norm g.

Let X be a nonempty set. A function p: X x X — R4, that satisfies the following condi-
tions:

(1) p(x,y) =p(y,x) =0ifand only if x =y,
(2) p(x,y) <p(x,z)+p(z,y) forall x,y,z € X,

is called a quasi-metric on X.

If p is a quasi-metric on a set X, then the function p defined on X x X by p(x,y) = p(y, x)
for all x,y € X, is also a quasi-metric on X called the conjugate with p, and the function p?
defined on X x X by p*(x,y) = max {p(x,y),p(x,y)} for all x,y € X is a metric on X.

Each asymmetric norm g on a linear space X induces a quasi-metric p; on X defined by
pq(x,y) = q(y —x) forall x,y € X.

The asymmetric norm g induces a Ty topology 7, on X that is generated by the asymmetric
open balls B;(x,¢) = {y € X : q(y — x) < e}, where x € X and & > 0. Moreover the collection
{B4(x,e) : x € X and € > 0} forms a fundamental system of neighborhoods for the topology
7;. However, in general this topology is not Hausdorff.

A sequence (X, ), in an asymmetric normed space (X, g) is convergent to x € X with respect
to 7, if and only if nlirqu(xn —x) =0.

Example 1. As an important example, let u be the asymmetric norm on the usual real linear
space R defined by

u(x) := x" = max {x,0}. (1)
In this case 1 = max{—x,0} = x~ and v°* = max{—x,x} = |x|. Obviously (R,u) is an
asymmetric normed space.

Let (X,q) and (Y, p) be asymmetric normed spaces. We denote by LC(X,Y) the set of all
continuous linear mappings from (X, ¢) to (Y, p) and by LC*(X,Y) the set of all continuous
linear mappings from (X, ¢°) to (Y, p®). The set LC(X,Y) is not necessarily a linear space but
it is a cone (or normed semilinear space) with LC(X,Y) C LC*(X,Y) (see [6]).

The next result and its consequences can be found in [5] and [6] and will be used in the
sequel.

Proposition 1. A linear mapping T belongs to LC(X,Y) if and only if there is a constant M > 0
such that p(T(x)) < Mg(x) forall x € X.

Following [6, Theorem 1], we can consider the asymmetric norm on the cone LC(X,Y) of all
linear continuous mappings T from (X, q) into (Y, p) defined by the formula

IT] == sup {p(T(x)) : q(x) <1},
and one can easily show that

IT| = inf{M > 0: p(T(x)) < Mq(x)}.
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For the general theory of asymmetric normed spaces we refer the reader to the monograph [1].
Regarding the normed linear relations, a linear relation (is also called a multivalued linear
operator) T between two real linear spaces X and Y is a mapping defined on a subspace D(T)
of X, called the domain of T, which takes on values in the collection of non-empty subsets of
Y such that
T(ax1 + Bxz) = aT(x1) + BT(x2)

for all nonzero real numbers «, 8 and x1,x; € D(T). If T maps the points of its domain to
singletons, then T is said to be a single-valued or simply an operator. The class of all linear
relations from X to Y is denoted by LR(X, Y). In the case where X =Y, briefly by LR(X) we
denote LR(X, X). A linear relation T € LR(X,Y) is uniquely determined by its graph G(T),
which is defined by

G(T)={(x,y) e XxY:xeD(T), y € Tx},
so that we can identify T with G(T). The inverse of T is the linear relation T~! defined by
G(T™) ={(y,x) eYxX:(x,y) € GT)}

If T~! is single-valued, then T is called injective.
The image of A C X is given by

T(A) = J{Tx:x€e AND(T)}.

So the range of T is defined by R(T) := T(X). In particular, the multivalued part of T is
defined by

T(0) :={y: (0,y) € G(T)}.
It is worth mentioning that T(0) is a linear subspace of Y (see [2, Corollary 1.2.4]). Proposition
1.2.8 in [2] gives a formula that charactrize the elements y € Tx for all x € D(T), namely

Tx =y + T(0) )

If R(T) =Y, then T is called surjective.
For a non-empty subsets B C Y, set

T '(B)={x € D(T): BNTx # o}.
In particular, for y € R(T),
T ly={xe D(T):ye Tx}.
Note that T is injective if and only if its null space
N(T) := T~10) = {x € D(T) : (x,0) € G(T)}
is reduced to {0} .
By [2, Proposition 1.3.1], if B C Y with B # @ and A C X, then we have
T (T’l(B)> — BAR(T) + T(0) 3)

and

T-YT(A)) = AnND(T) 4+ T~ 0). (4)

All the other relevant terminology and preliminaries that we will use are given in corre-
sponding sections. For the theory of multivalued linear operators we refer to the book of
R.W. Cross [2].
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1 Continuous linear relations

Let T: (X,q) — (Y, p) be a relation between asymmetric normed spaces. For defining the
boundedness of T, we need the quotient space Y/ W, but in the framework of asymmetric
normed spaces the closure T(0) may fail to be a linear subspace of Y (see [3, Example 2.1]). For
this reason, we consider linear relations acting from an asymmetric normed space to a normed
space only instead of those acting between two asymmetric normed spaces.

We give a characterization of continuous linear ralations defined on asymmetric normed
spaces with values in a normed spaces in a way analogous to that used to characterize it be-
tween normed spaces. The definition of a continuous linear relation is similar to that, given
for the case of topological spaces in [2, Definition I1.3.1]. We write the definition for the aim of

completeness.

Definition 1. A linear ralation T € RL(X,Y) between asymmetric normed space (X, q) and
normed space (Y, ||-||) is said to be continuous if for each neighbourhood V in R(T) the in-
verse image T~1(V) is a neighbourhood in D(T). Also T is called open if whenever U is a
neighbourhood in D(S), the image T(U) is a neighbourhood in R(T).

Let T € LR(X,Y). Consider the quotient space Y/T(0) equiped with the norm

7] = inf |y + K.
keT(0)

It is easy to prove thatif Q : Y — Y/T(0) is the quotient map, then QT is single-valued
(see [2, Proposition I1.1.2]). Define

[Tx|| == [|QTx[| = inf |y + K]
keT(0)

forallx € D(T) and y € Tx. Also we put ||T|, := [[QT|. Consequently, ||T|, = sup [[QTx]|.
q(x)=1
If M is a subspace of X (or Y) and « is an asymmetric norm on X or a norm on Y we consider

By={xeM:a(x) <1}, Uy={reM:a(x) <1}.

These notations open the door to characterize the continuity of a linear relation
T € LR(X,Y) by using the number |[T|, . For the proof we need the following geometric
charactirization of || T, .

Proposition 2. Let T € RL(X,Y) be a relation between asymmetric normed space (X, q) and
normed space (Y, ||-||). The following statements are equivalent.

@) 1T, < .

(ii) There is a number A > 0 such that
T <BD(T)) C ABgry + T(0). 5)

Proof. (i) = (ii). Take y € T(Bpr)), then there is x € Bp(r) such that y € Tx. It follows from
IT|, < oo, that
Tx|| = inf +k|| = inf + k|| < oo.
[Tl = inf K] = inf ly+k|
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Note that the second equality is an immediate consequence of the continuity of the norm. Fix
¢ > 0, choose k € T(0) such that ||y + k|| < [|T|, +&. This means thaty + k € ABg(r) with
A = ||T|, + ¢, therefore y € ABg(r) + T(0).

(i) = (i). Suppose that (5) holds for a given A > 0. Let x € Bp(ryand y € Tx. By the
hypothesis there exist y; € Bg(r)and k; € T(0) such that y = Ay; + kq. Thus, by (2) we get

ITx|] = [QTx|| = [|Qull = inf [ly+k| <y —kill = Aljsa]] < A.
keT(0)

Consequently, ||T|, = sup |[Tx[| <A < eo. O
q(x)=1

Theorem 1. Let (X, q) be an asymmetric normed space and (Y, ||-||) be a normed space. Then
the linear relation T: X — Y is continuous if and only if || T\q < 0.

Proof. For the “if” part, suppose that || T|, < co. Let V be an open ball in R(T) with center
y. Then for some & > 0 we can write V — {y} = algr). By (5) there exists A > 0 such that
T(Up(r)) C AUg(r) + T(0). An application of equality (4) reveals that

_ _ A
Up(r)+ T71(0) C AT ! (Ug(r)) = i vV —{y}).

Thus
@

A
which means that T~!(V) is a neighbourhood in D(T). Therefore T is continuous.
To prove the “only if” part, assume that T is continuous. By using the preceding proposi-
tion, it is enough to show inclusion (5) for some A > 0. There exists an open neighborhood O
in D(T) such that O C T’luR(T). Hence

Upr)+T ' (y) c T1(V),

O-0cT! (Um)) — 711 (uR(T)> .

On the other hand we have
7! (uR(T)) 7! (Um)) =71 (Um) - uR(T)) =271 (Um)) ,

which means that 27! <LIR(T)) is an open neighborhood of {0} in D(T). Consequently, there

exists A > 0 such that A

-1
XUD(T) Cc 2T <UR(T)> .
It fOHOWS from BD(T) C ZUD(T) and UR(T) C BR(T) that

%BD(T) c2T! <BR(T)> :

By (3) we get
2 -1
ST(Bp(ry) € 2T (T~ (Brn)) ) = 2Bx(r) + T(0),

and we obtain



Banach-Steinhaus theorem for linear relations on asymmetric normed spaces 235

By CR(X,Y) we denote the set of all continuous linear relations between the asymmetric
normed space (X, q) and the normed space (Y, ||-||) and by CR*(X, Y) the normed linear space
of all linear relations between the normed linear spaces (X, ¢°) and (Y, ||-||)-

Proposition 3. Let T € CR(X,Y). Then
ITx]) < 11T, q(x) ©)
for all x € X. Moreover, || T|, can be calculated also by the formula
IT|; = inf {M: || Tx[| < Mq(x) forallx € X}. (7)

Proof. For every x € X such that g(x) # 0 from ||T|, = sup [|Tx| we get
q(x)=1

X
T—| <|T],,
|real<im
and we obtain inequality (6). If g(x)= 0, the inequality is obvious. On the other hand, if A is
the right side member of equality (7), then it is clear that A < ||T| ;- For the reverse inequality,
if M > 0 satisfies || Tx|| < Mg(x) for all x € X, it follows that ||T|, = sup, )< || Tx|| < M and
so [|T[, < A. O

For the proof of the following corollary, we use Theorem 1.

Corollary 1. A linear relation T: X — Y is continuous from (X, q) to (Y, ||-||) if and only if it
is continuous from (X,q) to (Y, ||||). Hence CR(X,Y) C CR*(X,Y).

Proof. The required equivalence follows from

sup [|QTx|| = sup [[QT(—x)[| = sup [[QTx].
g(x)<1 g(x)<1 7(x)<1

With this we have || T|, = [|T|;. Now let T € CR(X,Y). Forall x € X such that

g°(x) = max{q(x), g(x)} <1,

we have [|T|| = sup |[T(x)[| <[|T[, < ecand the proof follows. O
7°(x)<1

Now we give an example of a continuous linear relation.

Example 2. We can define a linear relation T: (R,u) — (R?, ||-||) by
T(x) = {(u,b) € Rzza+b:x},

where u is the usual asymmetric norm on R defined by (1) and ||-|| is the norm on IR? defined
by ||(a,b)|| = |a| + |b|. Let us show that T is continuous. Firstly, it is easy to see that T(0) is a
closed subspace of R? and by simple calculation we can see that

(k1,k2)€T(0)

forallx € R, (a,b) € T(x). It follows that ||T|, = sup |a+Db| <1
(a+b)T<1

ITCI = inf_[[(a+ky,b+k)ll = inf {Ja+k| +[b—k|} = |a+b]
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2 Banach-Steinhaus theorem

In this section, we present a Banach-Steinhaus theorem for continuous linear relations de-
fined on asymmetric normed spaces. Recall that an asymmetric normed space (X, q) is said
to be of the half second category if the condition X = U,,>1E, implies int, (clz(Ex)) # @ for
some m € IN, where int;(A) is the interior of the set A in the topological space (X, ;) and
clz(A) is the closure of A in the topological space (X, 7). Note that if 7 is a norm on X, the
notion of space of the half second category coincides with the classical notion of a space of the
second category (see [4] or [8]).

The next result, an asymmetric version of the Banach-Steinhaus theorem for linear opera-
tors, can be found in [4] and will be generalized to the setting of linear relations.

Theorem 2 ([4, Theorem 2.6]). Let (X, p) and (Y, q) be two asymmetric normed spaces. Sup-
pose that (X, p) is of the half second category. If F is a family of continuous linear operators

such that sup (T (x)) < oo for every x € X, then
TeF

sup {4(T(x)) : p(x) <1} < co.
For the proof of the main theorem we need the following lemma.

Lemma 1 (4, Lemma 2.4]). If (X, q) is an asymmetric normed space of the half second category
and F is a family of real valued lower semicontinuous functions on the quasi metric space
(X, p4) such that for each x € X there exists by > 0 such that f(x) < by for all f € F, then
there exist a nonempty open set U in (X,q) and b > 0 such that f(x) < b forall f € F and
x e U.

Theorem 3. Let (X, q) be an asymmetric normed space of the half second category, (Y, ||-|)
be a normed space and F be a family of continuous linear relations from (X, q) to (Y, ||-]).
Suppose that F is pointwise bounded, i.e. for each x € X there exists by > 0 with || Tx|| < by
forall T € F. Then sup ||T| < 0.

TeF

Proof. For each T € F consider the function fr: X — R, defined by fr(x) = ||QTx||, x € X,

where Q: Y — Y/T(0) is the quotient map. Firstly, we show that fr is lower semicontinuous
on (X, 0;). Let x € X and (x,), be a sequence in X such that g;(x, x,) — 0if n — co. We have

fr(x) — fr(xa) = 1QTx] ~ |QTxa| < |QTx — QTxu || < I T|q(x — x) = 0 if 1 — co.

It follows that for each € > 0 there is ny € IN such that fr(x) — fr(x,,) < e. This means that
the function fr is lower semicontinuous on (X, g;). An application of the previous lemma to
the family A = {fr : T € F} reveals the existence of a nonempty open subset U of (X, ¢) and
ad > Osuch that fr(x) < dforall T € F and x € U. Let B; be an open ball with center z and
radius r contained in U. For x € rB;, we have x + z € B; and

ITx[| = [[QTx[| < [|QT(x + 2)|| + [QT(=2)|| = fr(x +2) + fr(-z) <d+b.=b.

Therefore

[yl

sup ||T| < -
TeF
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Mu BrBUaEeMO HelepepBHICTh AiHIVHMX BiAHOIIEHb, IIIO BM3HA4YeHi Ha acCMMETPWYHMX HOPMO-
BaHMX MPOCTOpax i3 3HAUEHHSIMM Y HOPMOBaHMX MPOCTOpax. My AaeMO AesIKy reOMeTpUYHY Xa-
pakTepu3aliifo mix BiaobpakeHsb. SIK 3aCTOCYBaHHS M AOBOAVMMO TeopeMy baraxa-IlITeitrraysa B
KOHTEKCTi aCMMeTpUUYHIX HOPMOBAHMX IIPOCTOPIB.

Kntouosi cnosa i ¢ppasu: AiHiliHe BiAHOIIEHHS, 6araTO3HAYHMI AiHIVHWIT OTlepaTop, acMMeTpIIHA
HOpMa.



