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Fixed point theorems on an orthogonal metric space using
Matkowski type contraction

Singh B.1, Singh V.1, Uddin I.2, , Acar Ö.3

The purpose of this paper is to prove Boyd-Wong and Matkowski type fixed point theorems in

orthogonal metric space which was defined by M.E. Gordji in 2017 and is an extension of the metric

space. Some examples are established in support of our main results. Finally, we apply our results

to establish the existence of a unique solution of a periodic boundary value problem.

Key words and phrases: fixed point, orthogonal set, orthogonal metric space, metric space.

1 Guru Jambheshwar University of Science and Technology, 125001, Hisar, India
2 Jamia Millia Islamia, 110025, New Delhi, India
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Introduction

The Banach contraction principle has become one of the most well-known and important

discoveries in mathematics during the last century because of its simple structure and util-

ity. Numerous researchers have expanded and generalized Banach’s fixed point theorem from

many viewpoints. One common approach to reinforce the Banach contraction principle is to

replace the metric space with other generalized metric spaces.

The contraction condition in metric spaces was improved by D.W. Boyd, J.S.W. Wong [2] by

using a control function. Y.I. Alber and S. Guerre-Delabriere pioneered the φ-weak contraction

condition in Hilbert spaces [1]. In metric spaces, every φ-weak contractive map has a unique

fixed point, as B.E. Rhoades has shown in [9]. J. Matkowski developed the idea to generalize

the Banach contraction principle [8].

Recently, for the first time, M.E. Gordji et al. [3] expanded the literature on metric space

by introducing the concept of orthogonality and establishing the fixed point result. There are

several uses for this novel idea of an orthogonal set as well as numerous forms of orthogonality.

M.E. Gordji and H. Habibi [4, 5] proved the fixed point and related results in (generalized)

orthogonal metric spaces. For more information, we refer the reader to [6, 10–13].

This article is organized as follows. Section 2 contains some basic definition of orthogonal

set from the literature. In Section 3, we established fixed point theorems in the settings of

orthogonal metric spaces. Section 4 containes an application of our main result from Section 3

for the existence and uniqueness of solution to differential equation of first order with periodic

boundary conditions.
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128 Singh B., Singh V., Uddin I., Acar Ö.

1 Preliminaries

Definition 1 ([3]). Let E be a non-empty set and ⊥ be a binary relation defined on E. If binary

relation ⊥ fulfils the criteria

∃ ς0 [(∀ ϑ ∈ E, ϑ ⊥ ς0) or (∀ ϑ ∈ E, ς0 ⊥ ϑ)],

then pair (E,⊥) known as an orthogonal set. The element ς0 is called an orthogonal element.

Definition 2. Let (E,⊥) be an orthogonal set (O-set). Any two elements ς, ϑ ∈ E such that

ς ⊥ ϑ are said to be orthogonally related.

An orthogonal set is illustrated in the following non-trivial examples.

Example 1. Let E = 2Z and set a binary relation ⊥ on 2Z as m ⊥ n if m.n = 0. Then (2Z,⊥)

is an orthogonal set with 0 as an orthogonal element.

Example 2. Let E be set of all matrices of order n over R, i.e. E = Mn(R). We define ⊥ on

Mn(R) as A ⊥ B if AB = BA. Then (Mn(R),⊥) is an orthogonal set since SA = AS for a

scalar matrix S ∈ Mn(R).

Remark. A orthogonal set may have unique, more than one or infinite many orthogonal ele-

ments.

Consider a non-empty set E( 6= ∅) and define a binary relation ⊥ on set E with usual metric

d defined on set E, then triplet (X,⊥, d) is called orthogonal metric space (or O-metric space).

Some basic definition and properties of an orthogonal set and orthogonal metric space are

given below. For more information and examples the reader is suggested to see [3, 7].

Definition 3 ([3]). Consider a non-empty set E. Let ⊥ be a binary relation defined on E. A

sequence {ςn} is called an orthogonal sequence (briefly O-sequence) if

(∀ n ∈ N, ςn ⊥ ςn+1) or (∀ n ∈ N, ςn+1 ⊥ ςn).

Definition 4 ([3]). Let (E,⊥, d) be an orthogonal metric space. Then E is said to be an

O-complete if every Cauchy O-sequence converges in X.

Remark 1 ([3]). Every complete metric space is O-complete and the converse is not true.

Definition 5 ([3]). Let (E,⊥, d) be an orthogonal metric space. A function f : E → E is

said to be ⊥-continuous in ς ∈ E if for each O-sequence {ςn}n∈N converging to ς we have

f (ςn) → f (ς) as n → ∞. Also, f is said to be ⊥-continuous on E if f is ⊥-continuous in each

ς ∈ E.

Remark 2. The authors of [3] found, that O-continuity in conventional metric spaces is weaker

than classical continuity.

Definition 6 ([3]). Let a pair (E,⊥) be an O-set, where E( 6= ∅) is a non-empty set and ⊥ is a

binary relation on E. A mapping f : E → E is said to be ⊥-preserving if f (ς) ⊥ f (ϑ) whenever

ς ⊥ ϑ and weakly ⊥-preserving if f (ς) ⊥ f (ϑ) or f (ϑ) ⊥ f (ς) whenever ς ⊥ ϑ.
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2 Main Results

Theorem 1. Let (E, d,⊥) be an O-complete metric space and suppose that f : E → E be

⊥-continuous and ⊥-preserving, satisfying

d( f (ς), f (ϑ)) ≤ φ(d(ς, ϑ)), ∀ ς, ϑ ∈ E with ς ⊥ ϑ,

where φ : R
+ → [0, ∞) is upper semi-continuous from right, i.e. for any sequence

tn → t ≥ 0 ⇒ lim
n→∞

sup φ(tn) ≤ φ(t),

and satisfies 0 ≤ φ(t) < t for t > 0. Then f has unique fixed point ς∗. Also f is a Picard

operator, that is lim
n→

f n(ς) = ς∗ for all ς ∈ E.

Proof. Let ς0 ∈ E be an orthogonal element in E, then by definition

(∀ ϑ ∈ E, ς0 ⊥ ϑ) or (∀ ϑ ∈ E, ϑ ⊥ ς0).

It follows that (ς0 ⊥ f (ς0)) or ( f (ς0) ⊥ ς0). Let

ς1 = f (ς0), ς2 = f (ς1) = f 2(ς0), ςn+1 = f (ςn) = f n+1(ς0), ∀ n ∈ N.

Since f is ⊥-preserving, {ςn} is an O-sequence.

Set an = d(ςn−1, ςn). Observe that {an} is a bounded below monotonically decreasing

sequence, then {an} is convergent to a, i.e. lim
n→∞

an = a. If a > 0, we have an+1 ≤ φ(an), so that

a ≤ lim
t→a+

sup φ(t) ≤ φ(a),

which is a contradiction. Contrary, assume that O-sequence {ςn} is not Cauchy O-sequence,

then ∃ ǫ > 0 and sequences {mk}, {nk} of integers with mk ≥ nk ≥ k such that

dk = d(ςmk
, ςnk

) ≥ ǫ, d(ςmk−1
, ςnk

) < ǫ, k = 1, 2, 3, . . . .

Now, ǫ ≤ dk = d(ςmk
, ςnk

) ≤ d(ςmk
, ςmk−1

) + d(ςmk−1
, ςnk

) < amk
+ ǫ, which implies that

dk → ǫ+ as k → ∞. But, now

dk = d(ςmk
, ςnk

) ≤ d(ςmk
, ςmk+1

) + d(ςmk+1
, ςnk+1

) + d(ςnk+1
, ςnk

) ≤ 2ak + φ(dk).

Thus, we have ǫ ≤ φ(ǫ) as k → ∞, which is a contradiction. Hence our assumption is wrong,

so O-sequence {ςn} is a Cauchy O-sequence. Since E is O-complete, then there exists ς∗ ∈ E

such that {ςn} → ς∗. Since orthogonal continuity of f implies that f (ςn) → f (ς∗), then

f (ς∗) = f ( lim
n→∞

ςn) = lim
n→∞

f (ςn) = lim
n→∞

ςn+1 = ς∗.

For uniqueness, assume that ϑ∗ ∈ E such that f (ϑ∗) = ϑ∗. Also f n(ϑ∗) = ϑ∗, now for choice

of ς0 ∈ E, we have [ς0 ⊥ ς∗ or ς∗ ⊥ ς0] and [ς0 ⊥ ϑ∗ or ϑ∗ ⊥ ς0], since f is ⊥-preserving, we

have [ f n(ς0) ⊥ f n(ς∗) or f n(ς∗) ⊥ f n(ς0)] and [ f n(ς0) ⊥ f n(ϑ∗) or f n(ϑ∗) ⊥ f n(ς0)] for all

n ∈ N. Therefore, by φ(t) < t, t > 0,

d(ς∗, ϑ∗) = d( f n(ς∗), f (ϑ∗)) ≤ φ(d( f n−1(ς∗), f n−1(ϑ∗)))

< d( f n−1(ς∗), f n−1(ϑ∗)) < . . . < d(ς∗, ϑ∗).
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It is a contraction, thus it follows that ς∗ = ϑ∗. Finally, let ς ∈ E be arbitrary. Similarly, we have

[ς0 ⊥ ς∗ and ς0 ⊥ ς] or [ς∗ ⊥ ς0 and ς ⊥ ς0], and [ f n(ς0) ⊥ f n(ς∗) and f n(ς0) ⊥ f n(ς)] or

[ f n(ς∗) ⊥ f n(ς0) and f n(ς) ⊥ f n(ς0)] for all n ∈ N. Hence, for any n ∈ N we get

d(ς∗, f n(ς)) = d( f n(ς∗), f n(ς)) ≤ φ(d( f n−1(ς∗), f n−1(ς)))

≤ φ2(d( f n−2(ς∗), f n−2(ς))) ≤ . . . ≤ φn(d(ς∗ , ς)) → 0

as n → ∞. Hence, proof is complete.

Example 3. Let ([0, 1],⊥, d) be an O-complete metric space, where ς ⊥ ϑ if ς − ϑ > 0 and with

metric

d(ς, ϑ) =

{

|ς − ϑ|, ς, ϑ ∈ [0, 1),

ς + ϑ, ς = 1 or ϑ = 1.

Let a self map f on E be defined as

f (ς) =

{

ς2/4, ς, ϑ ∈ [0, 1),

ς − 1, ς = 1 or ϑ = 1.

Now, if we define

φ(t) =

{

t2/2, 0 ≤ t < 1,

t − 1, 1 ≤ t < ∞,

then the hypothesis of Boyd and Wong’s theorem is violated, since f is not continuous. As a

result, Theorem 1 is useful extension of Boyd and Wong’s fixed point theorem.

Theorem 2. Let (E, d,⊥) be an O-complete metric space and suppose that f : E → E be

⊥-continuous and ⊥-preserving, satisfying

d( f (ς), f (ϑ)) ≤ φ(d(ς, ϑ)), ∀ ς, ϑ ∈ E with ς ⊥ ϑ,

where φ : R
+ → R

+ is monotonic non-decreasing function, that satisfies lim
n→∞

φn(t) = 0,

∀ t > 0. Then f has unique fixed point ς∗. Also f is a Picard operator, that is lim
n→∞

f n(ς) = ς∗

for all ς ∈ E.

Proof. By the definition of orthogonality, there exists an orthogonal element ς0 ∈ E such that

(∀ ϑ ∈ E, ς0 ⊥ ϑ) or (∀ ϑ ∈ E, ϑ ⊥ ς0). It follows that (ς0 ⊥ f (ς0)) or ( f (ς0) ⊥ ς0). Let

ς1 = f (ς0), ς2 = f (ς1) = f 2(ς0), ςn+1 = f (ςn) = f n+1(ς0), ∀ n ∈ N. Since f is ⊥-preserving,

{ςn} is an O-sequence. Let an = d(ςn−1, ςn), then

d(ςn+1, ςn) = d( f (ςn), f (ςn−1)) ≤ φ(d(ςn , ςn−1)) = φ( f (ςn−1), f (ςn−2))

≤ φ2(ςn−1, ςn−2) ≤ φn(ς1, ς0)

as n → ∞, then by the definition of φ we get lim
n→∞

d(ςn+1, ςn) = 0. Now, we show that

O-sequence {ςn} is a Cauchy sequence. Also we note that for any ǫ > 0, φ(ǫ) < ǫ. Since

lim
n→∞

an = 0, so for ǫ > 0, we can choose n ∈ N such that an ≤ ǫ − φ(ǫ). Now define

M = {ς ∈ E : d(ς, ςn) < ǫ} with ς ⊥ ϑ, then for any ϑ ∈ M we have

d( f (ϑ), ςn) ≤ d( f (ϑ), f (ςn )) + d( f (ςn), ςn)≤ φ(d(ϑ, ςn)) + d(ςn−1, ςn)≤ φ(ǫ) + ǫ − φ(ǫ) ≤ ǫ,
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this implies that f (ϑ) ∈ M, i.e. f (M) ⊂ M. It follows that d(ςm, ςn) ≤ ǫ, ∀n ≥ m. By the

completeness of X, there exists ς∗ ∈ E such that lim
n→∞

ςn = ς∗. Since f is ⊥-continuous, hence

f (ςn) → f (ς∗), then

f (ς∗) = f ( lim
n→∞

ςn) = lim
n→∞

f (ςn) = lim
n→∞

ςn+1 = ς∗.

Therefore, ς∗ is a fixed point. To prove uniqueness of the fixed point, let ϑ∗ ∈ E be another

fixed point of f different from ς∗ such that f n(ϑ∗) = ϑ∗, then d(ς∗, ϑ∗) > 0. Now, for choice of

ς0 ∈ E, we have [ς0 ⊥ ϑ∗] or [ϑ∗ ⊥ ς0], since f is ⊥-preserving, we have [ f n(ς0) ⊥ f n(ϑ∗)] or

[ f n(ϑ∗) ⊥ f n(ς0)] for all n ∈ N. Then

d(ς∗, ϑ∗) = d( f n(ς∗), f n(ϑ∗)) ≤ φ(d( f n−1(ς∗), f n−1(ϑ∗))) ≤ . . . ≤ φn(d(ς∗, ϑ∗)),

lim
n→∞

d( f (ς∗), ϑ∗) = 0 this implies that ς∗ = ϑ∗.

Finally, let ς ∈ E be arbitrary. Similarly, we have

[ς0 ⊥ ς∗ and ς0 ⊥ ς] or [ς∗ ⊥ ς0 and ς ⊥ ς0],

and

[ f n(ς0) ⊥ f n(ς∗) and f n(ς0) ⊥ f n(ς)] or [ f n(ς∗) ⊥ f n(ς0) and f n(ς) ⊥ f n(ς0)]

for all n ∈ N. Hence, for all n ∈ N, we get

d(ς∗, f n(ς)) = d( f n(ς∗), f n(ς)) ≤ φ(d( f n−1(ς∗), f n−1(ς)))

≤ φ2(d( f n−2(ς∗), f n−2(ς))) ≤ . . . ≤ φn(d(ς∗ , ς)) → 0

as n → ∞. This completes the proof.

Example 4. Given a function

f (ς) =

{

ς/5, ς ∈ [0, 1/2),

ς/6, ς ∈ [1/2, 1].

It satisfies the condition of Theorem 2, where ς ⊥ ϑ if ς ≥ ϑ ≥ 0 with usual metric d and φ is

given by φ(t) = t/5. Hence, the hypothesis of Matkowski’s theorem is violated, since f is not

continuous. As a result, Theorem 2 is a useful extension of Matkowski’s fixed point theorem.

Remark 3. The main result of M.E. Gordji et. al. [3] is the extension of Banach contraction

principle. In this case, if we use φ(t) = αt, the number α ∈ [0, 1) is such that d( f (ς), f (ϑ)) ≤

αd(ς, ϑ) with x ⊥ y.

3 Application

Here, in this part, we discuss usefulness of our main result discussed in previous section

of the article by investigating the existence and uniqueness of solution of differential equation

of first order with periodic boundary condition.

Consider

µ′(t) = g(t, µ(t)), t ∈ [0, λ], (1)

µ(0) = µ(λ),

where λ > 0 and g : [0, λ] × R → R is continuous function. Let E = C[0, λ] be the set

of all continuous functions and the metric is d(µ, ν) = supt∈[0,λ] |µ(t) − ν(t)| with µ ⊥ ν if

µ(t) ≤ ν(t), ∀ t ∈ [0, λ].
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Theorem 3. Consider a first order differential equation with boundary condition mentioned

in equation (1) and suppose that there exists some K > 0 such that for s1, s2 ∈ R with s1 ≥ s2

0 ≤ g(t, s1) + Ks1 − [g(t, s2) + Ks2] ≤ Kφ(s1 − s2),

where φ is a function given in Theorem 2. If there exists a lower solution for differential equa-

tion (1), then this implies that differential equation (1) has unique solution.

Proof. It is possible to rewrite problem (1) as

µ′(t) + Kµ(t) = g(t, µ(t)) + Kµ(t), t ∈ [0, λ],

µ(0) = µ(λ),

then it is identical to the integral equation of the form

µ(t) =
∫ λ

0
G(t, s)[g(s, µ(s)) + Kµ(s)]ds,

where

G(t, s) =

{

eK(λ+s−t)/eKλ−1, 0 ≤ s < t ≤ λ,

eK(s−t)/eKλ−1, 0 ≤ t < s ≤ λ.

Let a mapping T : E → E be defined by

(Tµ)(t) =
∫ λ

0
G(t, s)[g(s, µ(s)) + Kµ(s)]ds.

It is evident that a fixed point of T is a solution to the preceding problem (1). Now we will

demonstrate that the hypothesis in Theorem 3 is satisfied.

As µ ⊥ ν if µ(t) ≤ ν(t), ∀ t ∈ [0, λ], from the hypothesis we obtain

g(t, µ(t)) + Kµ(t) ≤ g(t, ν(t)) + Kν(t), ∀ t ∈ [0, λ].

As G(t, s) > 0, ∀ t, s ∈ [0, λ], we have

(Tµ)(t) =
∫ λ

0
G(t, s)[g(s, µ(s)) + Kµ(s)]ds ≤

∫ λ

0
G(t, s)[g(s, ν(s)) + Kν(s)]ds = (Tν)(t).

Hence, T is ⊥-preserving.

Let {µn} be an O-Cauchy sequence converging to µ ∈ E. Then

µ0(t) ≤ µ1(t) ≤ µ2(t) ≤ µ3(t) ≤ . . . ≤ µn(t) ≤ . . . ≤ µ(t), ∀ t ∈ [0, λ],

this implies that µn ⊥ µ, ∀t ∈ [0, λ]. As T is ⊥-preserving, then f (µn) → f (µ). Therefore, T is

O-continuous.

Now, assume that there exists a lower solution, say µ0 ∈ X, such that µ′
0(t) ≤ g(t, µ0(t)),

which may be rewritten in the following way

µ′
0(t) + Kµ0(t) ≤ g(t, µ0(t)) + Kµ0(t) for t ∈ [0, λ].

Multiplying eKt to above inequality, gives

(µ0(t)e
Kt)′ ≤ [g(t, µ0(t)) + Kµ0(t)]e

Kt for t ∈ [0, λ],
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and thus, we have

µ0(t)e
Kt ≤ µ0(0) +

∫ t

0
[g(s, µ0(s)) + Kµ0(s)]e

Ksds for t ∈ [0, λ], (2)

which implies that

µ0(0)e
Kλ ≤ µ0(λ)e

Kλ ≤ µ0(0) +
∫ λ

0
[g(s, µ0(s)) + Kµ0(s)]e

Ksds,

thereby yielding

µ0(0) ≤
∫ λ

0

eKs

eKλ−1
[g(s, µ0(s)) + µ0(s)]ds.

Using the inequality (2), we get that

µ0(t)e
Kt ≤

∫ t

0
[g(s, µ0(s)) + µ0(s)]e

Ksds +
∫ λ

0

eKs

eKλ−1
[g(s, µ0(s)) + µ0(s)]ds

=
∫ t

0

eK(s+λ)

eKλ−1
[g(s, µ0(s)) + µ0(s)]ds +

∫ 0

t

eKs

eKλ−1
[g(s, µ0(s)) + µ0(s)]ds

+
∫ λ

0

eKs

eKλ−1
[g(s, µ0(s)) + µ0(s)]ds

=
∫ t

0

eK(s+λ)

eKλ−1
[g(s, µ0(s)) + µ0(s)]ds +

∫ λ

t

eKs

eKλ−1
[g(s, µ0(s)) + µ0(s)]ds.

Hence,

x0(t) ≤
∫ t

0

eK(s+λ−t)

eKλ−1
[g(s, µ0(s)) + µ0(s)]ds +

∫ λ

t

eK(s−t)

eKλ−1
[g(s, µ0(s)) + µ0(s)]ds,

i.e.

x0(t) ≤
∫ t

0
G(t, s)[g(s, µ0(s)) + µ0(s)]ds = (Tµ0(t)).

Hence, T possesses a fixed point in E.
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[5] Gordji M.E., Habibi H. Fixed point theory in ǫ-connected orthogonal metric space. Sahand Commun. Math. Anal.

2019, 16 (1), 35–46. doi:10.22130/scma.2018.72368.289

[6] Gungor N.B., Turkoglu D. Fixed point theorems on orthogonal metric spaces via altering distance functions. AIP

Conf. Proc. 2019, 2183, 040011. doi:10.1063/1.5136131

[7] Hamid B., Gordji M.E., Rameani M. Orthogonal sets: The exiom of choice and proof of a fixed point theorem. J.

Fixed Point Theory Appl. 2016, 18 (3), 465–477. doi:10.1007/s11784-016-0297-9

[8] Matkowski J. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Amer. Math. Soc. 1977

62 (2), 344–348. doi:10.2307/2041041

[9] Rhoades B.E. Some theorem on weakly contractive maps. Nonlinear Anal. Theory Methods Appl. 2001, 47 (4),

2683–2693. doi:10.1016/S0362-546X(01)00388-1

[10] Sawangsup K., Sintunavarat W. Fixed point results for orthogonal Z-contraction mappings in O-complete metric

space. Int. J. Appl. Phys. Math. 2020, 10 (1), 33–40. doi:10.17706/ijapm.2020.10.1.33-40

[11] Sawangsup K., Sintunavarat W., Cho Y.J. Fixed point theorems for orthogonal F-contraction mappings on

O-complete metric spaces. J. Fixed Point Theore Appl. 2020, 22, 10. doi:10.1007/s11784-019-0737-4
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У цiй роботi доведено теореми Бойда-Вонга та Матковського про нерухомi точки в ортого-

нальному метричному просторi, який був означений М.Е. Горджi у 2017 роцi i є розширенням

метричного простору. Наведено кiлька прикладiв на пiдтвердження основних результатiв. За-

стосовано отриманi результати для встановлення iснування єдиного розв’язку перiодичної

крайової задачi.

Ключовi слова i фрази: нерухома точка, ортогональна множина, ортогональний метричний

простiр, метричний простiр.


