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Asymptotic solutions of boundary value problem for
singularly perturbed system of differential-algebraic equations
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This paper deals with the boundary value problem for a singularly perturbed system of differ-

ential algebraic equations of the second order. The case of simple roots of the characteristic equation

is studied. The sufficient conditions for existence and uniqueness of a solution of the boundary

value problem for system of differential algebraic equations are found. Technique of constructing

the asymptotic solutions is developed.
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Introduction

The boundary value problems for singularly perturbed differential equations of the

second order began to be intensively studied in the middle of the last century. Note, that

in R. Mises [17], O.A. Oleinik and A.I. Zhizhina [19], W. Wasow [26] theorems on the existence

and uniqueness of solution x = x(t, ε) of the next scalar two-pointed boundary value problem

were proved

ε2x′′ = f (x, x′ , t), (1)

x(t0, ε) = x0, x(t1, ε) = x1. (2)

Moreover, it was found conditions under which x(t, ε) → x(t), ε → 0, where x(t) is the solu-

tion of the corresponding degenerated problem

f (x, x′, t) = 0, (3)

x(t0, 0) = x0, x(t1, 0) = x1. (4)

R.E. O’Malley [16] and J.W. Searl [22] used the method of multiple scales for construction

of the asymptotic solution of the problem (1)–(2) in powers of parameter ε. An overview of

the results of using this method for construction of the asymptotic solutions of the singularly

perturbed differential-algebraic equations (DAEs) can be found in [14].

Another classical method of studying boundary value problems is the method of matched

asymptotic expansions or the closely related method of boundary functions. According to this
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technique, the formal solution of the problem (1)–(2) can be found as a sum of a regular se-

ries and two boundary layer series [12, 24]. The presence of boundary layer series allows us to

construct a uniform asymptotic solution of the problem (1)–(2) on the segment [t0; t1]. In or-

der to prove the asymptotic properties of the constructed formal solutions the barrier function

method was used [2, 13, 18, 25]. Note that under certain conditions imposed on the coefficients

of the equation (1), the barrier function method can be used for the estimate the difference be-

tween the solution of the problem (1)–(2) and the solution of the corresponding degenerated

problem (3)–(4), when the boundary function method is not applicable [3]. This idea allows us

to study boundary value problems, for example, when their solutions are oscillating. The sig-

nificant limitation of using the method of barrier functions is the impossibility of its effective

application in researching of boundary value problems for systems of singularly perturbed

equations [4, 6, 10].

This paper deals with the two-point boundary value problem

ε2A(t, ε)
d2x

dt2
= f (x, t, ε), t ∈ [0; T], (5)

x(0, ε) = x0, x(T, ε) = xT, (6)

where x(t, ε) is an n-dimensional vector, A(t, ε) is an (n × n)-matrix, f (x, t, ε), x0, xT are

n-dimensional vectors with real or complex-valued elements, ε is a small parameter. Using

the method of boundary functions, the formal solution of the problem (5)–(6) is constructed.

Moreover, it is proved the asymptotic properties of the obtained solution.

Necessary and sufficient conditions for the existence and uniqueness of the solution of the

boundary value problem for the DAEs (5) in case where ε = 1 was obtained in [1, 15]. The

estimates for the exact solution were found as well. There was investigated the structure of the

fundamental matrix in linear case [15,20]. This result has been used for the construction of the

solution of the given boundary value problem. Similar results for the DAEs with an irregular

point one can found in [5].

The two-point boundary value problem for a singularly perturbed system of the first

order with the identity matrix A(t, ε) and special boundary conditions was considered by

A.B. Vasil’eva and V.F. Butuzov [24]. Moreover, the boundary conditions for the components

of the solution were agreed with the sign of the real parts of the eigenvalues of the matrix
(

∂ fi(x0(t), t, 0)

∂xj

)

i,j=1,n

,

where x0(t) is the solution of the equation f (x, t, 0) = 0. We generalize the results, obtained

by A.B. Vasil’eva and V.F. Butuzov to the case of the differential algebraic system (5).

The boundary value problem (5)–(6) in such form is considered for the first time.

1 Formal solutions

Assume that the following conditions are satisfied.

1. Elements of matrix A(t, ε) are infinitely continuously differentiable functions with re-

spect to variables t and ε (A(t, ε) ∈ C∞(G)) on the set

G = {(t, ε) : 0 ≤ t ≤ T, 0 ≤ ε ≤ ε0}.
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2. Components of vector-function f (x, t, ε) are infinitely continuously differentiable func-

tions with respect to variables x, t and ε ( f (x, t, ε) ∈ C∞(K)) on the set

K = {(x, t, ε) : ‖x‖ ≤ c, 0 ≤ t ≤ T, 0 ≤ ε ≤ ε0}, ‖x0‖ < c, ‖xT‖ < c.

3. Equation f (x, t, 0) = 0 has the solution x = x0(t), which satisfies the conditions:

(i) x0(t) ∈ C[0; T];

(ii) the root x = x0(t) is isolated on the segment [0; T], that is, there is such η > 0, that

f (x, t, 0) 6= 0, when 0 < ‖x − x0(t)‖ < η, t ∈ [0; T].

4. det A(t, 0) ≡ 0, t ∈ [0; T].

5. Pencil of matrices f ′x(x0(t), t, 0)− λA(t, 0), t ∈ [0; T], where

f ′x(x0(t), t, 0) =

(
∂ fi(x0(t), t, 0)

∂xj

)

i,j=1,n

is regular. Moreover, it has n − 1 distinct eigenvalues.

Then there exist such nonsingular smooth matrices P(t, ε), Q(t, ε), that

P(t, ε) f ′x(x0(t), t, 0)Q(t, ε) = Ω(t, ε) ≡ diag{e(t, ε), Wn−1(t, ε)},

P(t, ε)A(t, ε)Q(t, ε) = H(t, ε) ≡ diag{a(t, ε), In−1(t, ε)},

where e(t, 0) = 1, Wn−1(t, ε) = diag{λ1(t, ε), λ2(t, ε), . . . , λn−1(t, ε)}, λi(t, ε), i = 1, n − 1, are

the roots of the characteristic equation

det( f ′x(x0(t), t, 0)− λA(t, ε)) = 0;

a(t, 0) = 0, In−1(t, 0) = In−1, In−1 is identity matrix of the (n − 1)th order [21,23]. Without loss

of generality [8, 21], we can assume that

f ′x(x0(t), t, 0) = Ω(t, 0), A(t, 0) = H(t, 0).

Formal solution of the problem (5)–(6) we will find in the form

x(t, ε) = x(t, ε) + Πx(τ, ε) + Qx(ξ, ε), (7)

where x(t, ε) = ∑
∞
s=0 εsxs(t) is a regular part of the asymptotics, Πx(τ, ε) = ∑

∞
s=0 εsΠsx(τ),

τ = t/ε, and Qx(ξ, ε) = ∑
∞
s=0 εsQsx(ξ), ξ = (t − T)/ε, is a singular part of the asymptotics.

Substituting representation (7) into the system (5), we get

ε2A(t, ε)
d2x(t, ε)

dt2
+ A(ετ, ε)

d2Πx(τ, ε)

dτ2
+ A(ξε + T, ε)

d2Qx(ξ, ε)

dξ2

= f (x(t, ε) + Πx(τ, ε) + Qx(ξ, ε), t, ε).

Then we find the functions x(t, ε), Πx(τ, ε), Qx(ξ, ε), solving the following systems

ε2 A(t, ε)
d2x

dt2
= f (t, ε), (8)

A(ετ, ε)
d2Πx

dτ2
= Π f (τ, ε), (9)

A(ξε + T, ε)
d2Qx

dξ2
= Q f (ξ, ε), (10)
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where

f (t, ε) = f (x(t, ε), t, ε),

Π f (τ, ε) = f (x(ετ, ε) + Πx(τ, ε), ετ, ε)− f (x(ετ, ε), ετ, ε),

Q f (ξ, ε) = f (x(ξε + T, ε) + Qx(ξ, ε), ξε + T, ε)− f (x(ξε + T, ε), ξε + T, ε).

Let

f (t, ε) =
∞

∑
s=0

εs f s(t), Π f (τ, ε) =
∞

∑
s=0

εsΠs f (τ), Q f (ξ, ε) =
∞

∑
s=0

εsQs f (ξ).

Here, in particular

f 0(t) = f (x0(t), t, 0), Π0 f (τ) = f (x0(0) + Π0x(τ), 0, 0)− f (x0(0), 0, 0),

Q0 f (ξ) = f (x0(T) + Q0x(ξ), T, 0) − f (x0(T), T, 0),

f s(t) = f ′x(x0(t), t, 0)xs(t) + gs(t),

Πs f (τ) = f ′x(x0(0) + Π0x(τ), 0, 0)Πsx(τ) + gs(τ),

Qs f (ξ) = f ′x(x0(T) + Q0x(ξ), T, 0)Qs x(ξ) + hs(ξ), s ∈ N,

the functions gs(t), gs(τ) and hs(ξ) are expressed recursively through xk(t), Πkx(τ) and Qk(ξ),

k < s.

Note that, generally speaking,

f (x(t, ε) + Πx(τ, ε) + Qx(ξ, ε), t, ε) 6= f (t, ε) + Π f (τ, ε) + Q f (ξ, ε). (11)

But since in a neighborhood of t = 0 function Qx(ξ, ε) should be as small as, like a func-

tion Πx(τ, ε) in a neighborhood of t = T [24], then (11) can be considered as an approximate

equality.

Substituting (7) in boundary conditions (6), we can write

x(0, ε) + Πx(0, ε) = x0, x(T, ε) + Qx(0, ε) = xT. (12)

Assume that the following conditions are satisfied:

A(t, ε) =
∞

∑
s=0

εs As(t) ≡
∞

∑
s=0

εs 1

s!

∂s A(t, 0)

∂εs
,

A(ετ, ε) =
∞

∑
s=0

εsΠs A(τ) ≡
∞

∑
s=0

εs
s

∑
i=0

τs−i

i!(s − i)!

∂s A(0, 0)

∂ts−i∂εi
,

A(ξε + T, ε) =
∞

∑
s=0

εsQs A(ξ) ≡
∞

∑
s=0

εs
s

∑
i=0

ξs−i

i!(s − i)!

∂s A(T, 0)

∂ts−i∂εi
.

Let us equate coefficients at the similar powers of ε in (8)–(10). For the leading terms of the

asymptotics (x0(t), Π0x(τ) and Q0x(ξ)), we obtain

f (x0(t), t, 0) = 0,

A(0, 0)
d2Π0x

dτ2
= f (x0(0) + Π0x, 0, 0)− f (x0(0), 0, 0), (13)

A(T, 0)
d2Q0x

dξ2
= f (x0(T) + Q0x, T, 0)− f (x0(T), T, 0). (14)
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In view of condition 3 systems (13)–(14) will have the form

A(0, 0)
d2Π0x

dτ2
= f (x0(0) + Π0x, 0, 0),

A(T, 0)
d2Q0x

dξ2
= f (x0(T) + Q0x, T, 0).

Let us denote through Π01x, f1(x0(0) + Π0x, 0, 0), Q01x, x01(t), x01 and xT1 the first compo-

nents of the vectors Π0x, f (x0(0) + Π0x, 0, 0), Q0x, x0(t), x0 and xT respectively, and through

Π02x, f2(x0(0) + Π0x, 0, 0), Q02x, x02(t), x02 and xT2 we denote the vectors, containing other

components of vectors Π0x, f (x0(0) + Π0x, 0, 0), Q0x, x0(t), x0 and xT.

Further we make the following assumptions.

6. The equations f1(x0(0) + Π0x, 0, 0) = 0 and f1(x0(T) + Q0x, T, 0) = 0 have the solu-

tions Π01x = Π01x(Π02x) and Q01x = Q01x(Q02x), which are continuous in the field of

parameters change Π02x, Q02x respectively, and

Π01x(x02 − x02(0)) = x01 − x01(0); Π01x(Π02x) → 0, Π02x → 0,

Q01x(xT2 − x02(T)) = xT1 − x01(T); Q01x(Q02x) → 0, Q02x → 0.

7. The problems

d2Π02x

dτ2
= f2(x0(0) + Π0x, 0, 0), (15)

Π02x(0) = x02 − x02(0); Π02x(τ) → 0, τ → ∞,

and

d2Q02x

dξ2
= f2(x0(T) + Q0x, T, 0),

Q02x(0) = xT2 − x02(T); Q02x(ξ) → 0, ξ → −∞,

have such solutions Π02x = Π02x(τ), Q02x = Q02x(ξ), that

‖x0(t) + Π0x(t/ε)‖ < c, t ∈ [0; T],

and

‖x0(t) + Q0x((t − T)/ε)‖ < c, t ∈ [0; T].

8. { f ′x(x0(0) + Π0x(τ), 0, 0)}11 6= 0, τ ≥ 0; { f ′x(x0(T) + Q0x(ξ), T, 0)}11 6= 0, ξ ≤ 0,

where, for example, { f ′x(x0(0)+Π0x(τ), 0, 0)}11 is a corresponding element of the matrix

f ′x(x0(0) + Π0x(τ), 0, 0).

9. Re λi(t, 0) > 0, t ∈ [0; T], i = 1, n − 1.

Then we can assume that Re
√

λi(t, 0) > 0, t ∈ [0; T], i = 1, n − 1. From the Conditions 6–8

it follows, that Π0x(τ) ∈ C∞[0; ∞) and Q0x(ξ) ∈ C∞(−∞; 0] [9].

Let us show that there are constants α0, c0, for which

‖Π0x(τ)‖ ≤ c0 exp(−α0τ), τ ≥ 0.
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For this purpose we will represent the system (15) in the following form

d2Π02x

dτ2
= Wn−1(0, 0)Π02x + G2(Π0x),

where G2(Π0x) = f2(x0(0)+Π0x, 0, 0)− f ′2x(x0(0), 0, 0)Π02x, f ′2x = (∂ f2i/∂xj)i,j=2,n. Note that

G2(0) = 0.

Suppose that τ ≥ τ0, where τ0 will be defined below. The solution of the problem

d2yi

dτ2
− λi(0, 0)yi = {G2(y)}i , (16)

yi(τ0) = {Π02x(τ0)}i; yi(τ) → 0, τ → ∞,

i = 2, n, satisfies the integral equation

yi(τ) = e−
√

λi(0,0) (τ−τ0)

(
{Π02x(τ0)}i − e

√
λi(0,0) τ0

∫ τ0

∞

{G2(y)}i

2
√

λi(0, 0)
e−

√
λi(0,0) sds

)

− e−
√

λi(0,0) τ
∫ τ

τ0

{G2(y)}i

2
√

λi(0, 0)
e
√

λi(0,0) sds + e
√

λi(0,0) τ
∫ τ

∞

{G2(y)}i

2
√

λi(0, 0)
e−

√
λi(0,0) sds.

(17)

According to the Lagrange finite-increments formula we get ‖G2(y) − G2(0)‖ ≤ δ‖y‖,

where δ = δ(y(τ)), δ(y(τ)) → 0, τ → ∞.

Consider an equation

zi = Φiyi, i = 2, n, (18)

where the operator Φi is determined by the right-hand side of the formula (17) on the set

T = {yi(τ) ∈ C[τ0;+∞) : |yi(τ)| ≤ c1 exp(−α0(τ − τ0))}, 0 < α0 < Re
√

λi(0, 0), i = 2, n.

For a sufficiently large τ0 the mapping zi = Φiyi is a contraction mapping of the set T

into itself. That is why the equation (18) has a unique solution on the set T [11]. Therefore,

|yi(τ)| ≤ c1 exp(−α0(τ − τ0)), τ ≥ τ0.

For 0 ≤ τ ≤ τ0 the solution of the equation (16) satisfying the condition yi(0) = {x02}i −
{x02(0)}i is bounded by some constant c2, |yi(τ)| ≤ c2, 0 ≤ τ ≤ τ0.

We set c0 = max{c1 exp(α0τ0), c2 exp(α0τ0)}. Then according to the construction we get

|yi(τ)| ≤ c0 exp(−α0τ), τ ≥ 0, i = 2, n. Thus, ‖Π0x(τ)‖ ≤ c0 exp(−α0τ), τ ≥ 0.

Similarly, we prove the existence of such a constant β0, 0 < β0 < Re
√

λi(0, 0), i = 2, n, that

‖Q0x(ξ)‖ ≤ c0 exp(β0ξ), ξ ≤ 0.

Equating the coefficients of like powers of ε in the equations (8)–(10), we obtain

f ′x(x0(t), t, 0)xs =
s−2

∑
i=0

Ai(t)
d2xs−i−2(t)

dt2
− gs(t),

A(0, 0)
d2Πsx

dτ2
= f ′x(x0(0) + Π0x(τ), 0, 0)Πs x(τ) + rs(τ), (19)

A(T, 0)
d2Qsx

dξ2
= f ′x(x0(T) + Q0x(ξ), T, 0)Qs x(ξ) + qs(ξ), (20)
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where xi(t) ≡ 0, t ∈ [0; T], i < 0,

rs(τ) = gs(τ)−
s

∑
i=1

ΠiA(τ)
d2Πs−ix(τ)

dτ2
,

qs(ξ) = hs(ξ)−
s

∑
i=1

QiA(ξ)
d2 Qs−ix(ξ)

dξ2
.

From the Conditions 5 and 9 it follows, that det f ′x(x0(t), t, 0) 6= 0, t ∈ [0; T]. That is why

xs(t) = ( f ′x(x0(t), t, 0))−1

( s−2

∑
i=0

Ai(t)
d2xs−i−2(t)

dt2
− gs(t)

)
, s ∈ N.

We set

f ′x(x0(0) + Π0x(τ), 0, 0) =

(
C1(τ) C2(τ)

C3(τ) C4(τ)

)
,

where C4(τ) is the square matrix of the (n − 1)th order. Note that

f ′x(x0(0) + Π0x(τ), 0, 0) → f ′x(x0(0), 0, 0), τ → ∞.

Let us consider the system (19):

Πs1x = − 1

C1(τ)
(C2(τ)Πs2x + rs1(τ)),

d2Πs2x

dτ2
=

(
C4(τ)−

C3(τ)C2(τ)

C1(τ)

)
Πs2x(τ) +

C3(τ)rs1(τ)

C1(τ)
+ rs2(τ), (21)

where Πs1x, rs1(τ) are the first components of the vectors Πsx, rs(τ), and Πs2x, rs2(τ) are the

rest components of the vectors Πsx, rs(τ).

Equating the coefficients at the similar powers of ε in the first identity (12), we get initial

conditions for the solution of the system (21)

Πs2x(0) = −xs2(0). (22)

Moreover, the functions Πsx(τ) are boundary functions. That is Πsx(τ) → 0, τ → ∞.

Thinking as in the case of proving an exponential estimate for Π0x(τ), using the method

of mathematical induction, we show that the problem (21)–(22) has a solution Πs2x = Πs2x(τ)

for which ‖Πs2x(τ)‖ ≤ c0 exp(−α0τ), τ ≥ 0. According to the construction of the solution we

get the estimate

‖Πsx(τ)‖ ≤ c0 exp(−α0τ), τ ≥ 0, s ∈ N,

where constants c0, α0 are different than in previous estimates.

10. Suppose the following xs1(0) + Πs1x(0) = 0, s ∈ N.

Then xs(0) + Πsx(0) = 0, s ∈ N.

Remark. For example, the conditions

∂sa(0, 0)

∂εs
= 0,

∂s f1(x0, 0, 0)

∂εs
= 0, s ∈ N.

are sufficient for the fulfilling the condition 10.
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Let us consider the system (20) with the initial conditions

Qs2x(0) = −xs2(T), Qsx(ξ) → 0, ξ → −∞.

11. Suppose, that xs1(T) + Qs1x(0) = 0, s ∈ N.

We prove that the system (20) has the solution Qsx = Qsx(ξ) such that xs(T) + Qsx(0) = 0,

s ∈ N. Besides,

‖Qsx(ξ)‖ ≤ c0 exp(β0ξ), ξ ≤ 0, s ∈ N.

2 Investigation of the asymptotic behaviour of the constructed formal

solution

Let us prove that the constructed formal solution of the problem (5)–(6) has the asymptotic

properties. For this purpose we make the substitution x(t, ε) = xm(t, ε) + y(t, ε) in system (5),

where xm(t, ε) = ∑
m
s=0 εs(xs(t) + Πsx(τ) + Qs(ξ)), and y(t, ε) is a new unknown function.

Then system (5) can be written in the form

ε2 A(t, ε)
d2y

dt2
= f (xm(t, ε) + y, t, ε)− ε2A(t, ε)

d2xm(t, ε)

dt2
. (23)

Then boundary conditions for the system (23) take the form

y(0, ε) = −
m

∑
s=0

εsQsx(−T/ε), y(T, ε) = −
m

∑
s=0

εsΠsx(T/ε).

Thus, we can state that

y(0, ε) = O(εm+1), y(T, ε) = O(εm+1), ε → 0 + . (24)

We put

xm(t, ε) =
m

∑
s=0

εsxs(t), Πmx(τ, ε) =
m

∑
s=0

εsΠs(τ), Qm(ξ, ε) =
m

∑
s=0

εsQs(ξ).

Then

f (xm(t, ε) + Πmx(τ, ε) + Qmx(ξ, ε), t, ε) = f (xm(t, ε), t, ε) + ( f (xm(t, ε) + Πmx(τ, ε), t, ε)

− f (xm(t, ε), t, ε)) + ( f (xm(t, ε) + Qmx(ξ, ε), t, ε)− f (xm(t, ε), t, ε))

+ f (xm(t, ε) + Πmx(τ, ε) + Qmx(ξ, ε), t, ε)− f (xm(t, ε) + Πmx(τ, ε), t, ε)

− f (xm(t, ε) + Qmx(ξ, ε), t, ε) + f (xm(t, ε), t, ε).

Considering this expression on the segments [0; T/2] and [T/2; T], we obtain

f (xm(t, ε) + Πmx(τ, ε) + Qmx(ξ, ε), t, ε) = f (xm(t, ε), t, ε) + ( f (xm(t, ε) + Πmx(τ, ε), t, ε)

− f (xm(t, ε), t, ε)) + +( f (xm(t, ε) + Qmx(ξ, ε), t, ε)− f (xm(t, ε), t, ε)) + O(εm+1)

=
m

∑
s=0

εs( f s(t) + Πs f (τ) + Qs f (ξ)) + O(εm+1).
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Thus, the system (23) can be written as

ε2A(t, ε)
d2y

dt2
= f ′x(x0(t), t, 0)y + g(y, t, ε),

where g(y, t, ε) = f (xm(t, ε) + y, t, ε)− f (xm(t, ε), t, ε)− f ′x(x0(t), t, 0)y + O(εm+1). Note, that

‖g(y(1) , t, ε)− g(y(2), t, ε)‖ ≤ d1(ε + exp(−α0t/ε) + exp(β0(t − T)/ε))‖y(1) − y(2)‖ (25)

and

‖g(0, t, ε)‖ ≤ d2εm+1, t ∈ [0; T], (26)

for all y(1), y(2) ∈ Dm+1, Dm+1 = {y(t, ε) ∈ C[0; T] : ‖y(t, ε)‖ ≤ kεm+1}.

Suppose the following

y(t, ε) = z(t, ε) +
ϕ(ε)

T
(T − t) +

ψ(ε)

T
t,

where the functions ϕ(ε) = y(0, ε), ψ(ε) = y(T, ε) are defined from the conditions (24). Then

we have

ε2 A(t, ε)
d2z

dt2
= f ′x(x0(t), t, 0)z + q(z, t, ε), (27)

z(0, ε) = 0, z(T, ε) = 0. (28)

It should be noted, that function q(z, t, ε) has asymptotic estimates (25), (26).

Setting z(t, ε) = Q(t, ε)u(t, ε), the problem (27)–(28) can be represented in the form

ε2H(t, ε)
d2u

dt2
= Ω(t, ε)u + r(u, t, ε), (29)

u(0, ε) = 0, u(T, ε) = 0, (30)

where r(u, t, ε) = P(t, ε)q(Q(t, ε)u, t, ε)− ε2H(t, ε)Q−1(t, ε)(Q′′(t, ε)u + 2Q′(t, ε)u′). Note, that

P(t, 0) = En, Q(t, 0) = En and Q′(t, 0) = 0 [21, 23].

12. Suppose that a(t, ε) = εsa1(t, ε), s ∈ N, where Re a1(t, 0) > 0, t ∈ [0; T]. We also suppose,

that u
(1)
i (t, ε) and u

(2)
i (t, ε) are the linearly independent solutions of the equation

ε2hi(t, ε)
d2ui

dt2
= ωi(t, ε)ui, (31)

where hi(t, ε), ωi(t, ε) are diagonal matrix elements H(t, ε) and Ω(t, ε).

According to the construction of the solutions we have [7]

u
(1)
i (t, ε) = θ−1/4

i (t, ε) exp
(
− 1

ε

∫ t

0

√
θi(t, ε) dt

)
e
(1)
i (t, ε),

u
(2)
i (t, ε) = θ−1/4

i (t, ε) exp
(1

ε

∫ t

0

√
θi(t, ε) dt

)
e
(2)
i (t, ε),

where θi(t, ε) = ωi(t, ε)/hi(t, ε), i = 1, n; e
(j)
i (t, ε) = 1 + O(ε), ε → 0+, j = 1, 2.
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The functions

v
(1)
i (t, ε) = u

(1)
i (t, ε)e

(2)
i (0, ε)− u

(2)
i (t, ε)e

(1)
i (0, ε),

v
(2)
i (t, ε) = u

(1)
i (t, ε)e

(2)
i (T, ε)− u

(2)
i (t, ε) exp

(
− 2

ε

∫ T

0

√
θi(t, ε) dt

)
e
(1)
i (T, ε)

are the solutions of the equation (43) and

v
(1)
i (0, ε) = 0, v

(2)
i (T, ε) = 0. (32)

The Wronskian of the functions v
(1)
i (t, ε), v

(2)
i (t, ε) is ∆(t, ε) = (2/ε)(1 + O(ε)), ε → 0 + .

Then the solution of the problem (29)–(30) satisfies the system of integral equations

u1(t, ε) =
1

ε2+s

∫ T

0
G1(t, s, ε)r1(u, s, ε) ds, (33)

ui(t, ε) =
1

ε2

∫ T

0
Gi(t, s, ε)ri(u, s, ε) ds, i = 2, n, (34)

where

Gi(t, s, ε) =
1

∆(t, ε)

{
v
(1)
i (t, ε)v

(2)
i (s, ε), 0 ≤ t ≤ s,

v
(2)
i (t, ε)v

(1)
i (s, ε), s ≤ t ≤ T,

is the Green’s function for the boundary-value problem (31)–(32). According to the construc-

tion we get

|Gi(t, s, ε)| ≤ ε

2
θ−1/4

i (t, ε)θ−1/4
i (s, ε) exp

(1

ε

∫ t

s

√
θi(t, ε) dt

)
(1 + O(ε)), 0 ≤ t ≤ s,

and

|Gi(t, s, ε)| ≤ ε

2
θ−1/4

i (t, ε)θ−1/4
i (s, ε) exp

(1

ε

∫ s

t

√
θi(t, ε) dt

)
(1 + O(ε)), s ≤ t ≤ T.

Let d3 and d4 be constants such that

εs/2 Re
√

θ1(t, ε) ≥ d3 > 0, ε−s/2|θ−1/4
1 (t, ε)θ−1/4

1 (s, ε)| ≤ d4

and

Re
√

θi(t, ε) ≥ d3 > 0, |θ−1/4
i (t, ε)θ−1/4

i (s, ε)| ≤ d4, i = 2, n; t, s ∈ [0; T].

13. Suppose that d1d4 < 2d3.

For sufficiently large k the operator

Tϕ =
1

ε2

∫ T

0
G̃(t, s, ε)r(ϕ, s, ε)ds,

where G̃(t, s, ε) = diag{(1/εs)G1(t, s, ε), G2(t, s, ε), . . . , Gn(t, s, ε)}, maps the set Dm+1 into it-

self. This mapping is a contraction mapping. Consequently, the systems (33)–(34) has one and

only one solution on the set Dm+1. That is why the problem (29)–(30) has unique solution

u = u(t, ε) as well. Besides, ‖u(t, ε)‖ ≤ kεm+1, t ∈ [0; T].

Thus, the main result of the paper can be formulated as follows.

Theorem 1. If A(t, ε) ∈ Cm+1(G), f (x, t, ε) ∈ Cm+1(K) and the assumptions 3–13 are satis-

fied, then there exists a unique solution x = x(t, ε) of the boundary-value problem (5)–(6) for

sufficiently small ε, 0 < ε ≤ ε1 ≤ ε0, such that

‖x(t, ε)− xm(t, ε)‖ = O(εm+1), t ∈ [0; T], ε → 0 + . (35)
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3 The special case

Suppose, that

f (x, t, ε) = B(t)(x − ψ(t)) + ε f̃ (x, t, ε), (36)

where B(t) is an (n × n)-matrix [2, 25]. Thus, f ′x(x, t, 0) = B(t) and x0(t) = ψ(t).

14. Assume, that the pencil B(t) − µA(t, 0), t ∈ [0; T], is regular and it has n − 1 distinct

eigenvalues.

Then, without loss of generality, we can state that B(t) = Ω(t, 0), A(t, 0) = H(t, 0). Ac-

cording to (36) the equations f1(x0(0) + Π0x(τ), 0, 0) = 0 and f1(x0(T) + Q0x(ξ), T, 0) = 0 are

solvable for Π01x(τ) and Q01x(ξ) respectively, and Π01x = 0, Q01x = 0.

15. Suppose, that x01 = x01(0) and xT1 = x01(T).

Note, that in this case constant d1 is determined from inequality

‖g(y(1) , t, ε)− g(y(2) , t, ε)‖ ≤ εd1‖y(1) − y(2)‖.

Theorem 2. If A(t, ε) ∈ Cm+1(G), f (x, t, ε) ∈ Cm+1(K),

f (x, t, ε) = B(t)(x − ψ(t)) + ε f̃ (x, t, ε)

and conditions 4, 9–12, 14, and 15 are satisfied, then, for sufficiently small ε, 0 < ε ≤ ε1 ≤ ε0,

there exists a unique solution x = x(t, ε) of the boundary-value problem (5)–(6), for which the

asymptotic estimate (35) is valid.
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У роботi розглядається крайова задача для сингулярно збуреної диференцiально-алгебра-

їчної системи рiвнянь другого порядку. Розглянуто випадок простих коренiв характеристи-

чного рiвняння. Отримано достатнi умови iснування та єдиностi розв’язку крайової задачi

для диференцiально-алгебраїчної системи рiвнянь. Розроблено метод побудови асимптоти-

чних розв’язкiв поставленої задачi.

Ключовi слова i фрази: крайова задача, асимптотичний розв’язок, диференцiально-алгебра-

їчна система, сингулярно збурена система.


