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SUPEREXTENSIONS OF CYCLIC SEMIGROUPS

Given a cyclic semigroup S we study right and left zeros, singleton left ideals, the minimal ideal,

left cancelable and right cancelable elements of superextensions λ(S) and characterize cyclic semi-

groups whose superextensions are commutative.
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INTRODUCTION

This paper is devoted to describing the structure of superextensions of cyclic semigroups.

The thorough study of algebraic properties of superextensions of semigroups was started in

[1, 2, 3, 4, 10], where we focused at describing of superextensions of groups, and continued

in [5, 6], where we studied the structure of superextensions of semilattices and inverse semi-

groups.

A family F of nonempty subsets of a set X that is closed under taking supersets and finite

intersections is called a filter. A filter U is called an ultrafilter if U = F for any filter F containing

U . A family of subsets of a set X is called a linked system if intersection of any two elements is

nonempty. A linked system M is said to be a maximal linked system if M = L for any linked

system L containing M. The family β(X) of all ultrafilters on a set X is called the Stone-Čech

compactification, and the family λ(X) of all maximal linked systems is well-known [11, 12] as

the superextension of a set X.

Each map f : X → Y induces a map (see [8])

λ f : λ(X) → λ(Y), λ f : M 7−→
〈

f (M) ⊂ Y : M ∈ M
〉

.

Here for a family B of nonempty subsets of a set Y by 〈B ⊂ Y : B ∈ B〉 we denote the family
〈

B ⊂ Y : B ∈ B
〉

= {A ⊂ Y : ∃B ∈ B (B ⊂ A)}. An ultrafilter 〈{x}〉, generated by a singleton

{x}, x ∈ X, is called principal. We consider X ⊂ β(X) ⊂ λ(X) if each point x ∈ X is identified

with the principal ultrafilter 〈{x}〉 generated by the singleton {x}.

It was shown in [9] that any associative binary operation ∗ : S × S → S can be extended to

an associative binary operation ◦ : λ(S)× λ(S) → λ(S) by the formula

L ◦M =
〈
⋃

a∈L

a ∗ Ma : L ∈ L, {Ma}a∈L ⊂ M
〉
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for maximal linked systems L,M ∈ λ(S). In this case the Stone-Čech compactification β(S) is

a subsemigroup of the superextension λ(S).

A nonempty subset I of a semigroup (S, ∗) is called an ideal (resp. a right ideal, a left ideal) if

I ∗ S ∪ S ∗ I ⊂ I (resp. I ∗ S ⊂ I, S ∗ I ⊂ I). An element z of a semigroup (S, ∗) is called a zero

(resp. a left zero, a right zero) in S if a ∗ z = z ∗ a = z (resp. z ∗ a = z, a ∗ z = z) for any a ∈ S. It

is clear that z ∈ S is a zero (resp. a left zero, a right zero) in S if and only if the singleton {z}

is an ideal (resp. a right ideal, a left ideal) in S. An ideal I ⊂ S is called minimal if any ideal of

S that lies in I coincides with I. By analogy we define minimal left and minimal right ideals

of S. The union K(S) of all minimal left (right) ideals of S coincides with the minimal ideal of

S, see [11, theorem 2.8]. A semigroup (S, ∗) is said to be a right zeros semigroup if a ∗ b = b for

any a, b ∈ S. A map ϕ : S → T between semigroups (S, ∗) and (T, ◦) is called a homomorphism

if ϕ(a ∗ b) = ϕ(a) ◦ ϕ(b) for any a, b ∈ S. A homomorphism ϕ : S → I from a semigroup S

into an ideal I ⊂ S is called a retraction if ϕ(a) = a for any element a ∈ I. An element a of a

semigroup S is called left cancelable (resp. right cancelable) if for any points x, y ∈ S the equation

ax = ay (resp. xa = ya) implies x = y. This is equivalent to saying that the left (resp. right)

shift la : S → S, la : x 7→ a ∗ x, (resp. ra : S → S, ra : x 7→ x ∗ a) is injective. A semigroup S is

called left (right) cancellative if all elements of S are left (right) cancelable. A semigroup that is

both left and right cancellative is said to be cancellative.

A semigroup 〈a〉 = {an}n∈N generated by a single element a is called cyclic. If a cyclic

semigroup is infinite, then it is isomorphic to the additive semigroup N. A finite cyclic semi-

group S = 〈a〉 also has very simple structure (see [7]). There are positive integer num-

bers r and m called the index and the period of S such that: (i) S = {a, a2, . . . , am+r−1} and

m + r − 1 = |S|; (ii) for any i, j ∈ ω the equality ar+i = ar+j holds if and only if i ≡ j mod m;

(iii) Cm = {ar , ar+1, . . . , am+r−1} is the minimal ideal, a cyclic and maximal subgroup of S with

the neutral element e = an ∈ Cm, where m divides n.

From now on we denote by Cr,m a finite cyclic semigroup of index r and period m, and

maximal subgroup of Cr,m is denoted by Cm.

1 HOMOMORPHISMS, RIGHT, LEFT ZEROS AND MINIMAL (LEFT) IDEALS

Proposition 1.1. For any homomorphism ϕ : S → T between semigroups (S, ∗1) and (T, ∗2)

the induced map λϕ : λ(S) → λ(T) is a homomorphism of the semigroups (λ(S), ◦1) and

(λ(T), ◦2).

Proof. Given two maximal linked systems L,M ∈ λ(S) observe that

λϕ(L ◦1 M) = λϕ
(〈

⋃

x∈L

x ∗1 Mx : L ∈ L, {Mx}x∈L ⊂ M
〉)

=
〈

ϕ
(
⋃

x∈L

x ∗1 Mx

)

: L ∈ L, {Mx}x∈L ⊂ M
〉

=
〈
⋃

x∈L

ϕ(x) ∗2 ϕ(Mx) : L ∈ L, {Mx}x∈L ⊂ M
〉

=
〈

⋃

x∈ϕ(L)

x ∗2 ϕ(Mx) : L ∈ L, {ϕ(Mx)}x∈ϕ(L) ⊂ λϕ(M)
〉

=
〈

ϕ(L) : L ∈ L
〉

◦2

〈

ϕ(M) : M ∈ M
〉

= λϕ(L) ◦2 λϕ(M).
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Let us note that for a subsemigroup T of a semigroup S the homomorphism i : λ(T) →

λ(S), i : A → 〈A〉S is injective, and thus we can identify the semigroup λ(T) with the sub-

semigroup i(λ(T)) ⊂ λ(S).

Lemma 1.1. Let I be an ideal of a semigroup S. If a map ϕ : S → I is a retraction, then the map

λϕ : λ(S) → λ(I) is a retraction too.

Proof. Indeed, let A ∈ λ(I), M ∈ λ(S), then A ◦ M =
〈

⋃

a∈A a ∗ Ma : A ∈ A, A ⊂ I,

{Ma}a∈A ⊂ M
〉

=
〈

⋃

a∈A a ∗ Ma : A ∈ A, {Ma}a∈A ⊂ M,
⋃

a∈A a ∗ Ma ⊂ I
〉

∈ λ(I). By

analogy M◦A ∈ λ(I), and therefore λ(I) is an ideal of the semigroup λ(S). If A ∈ λ(I), then

λϕ(A) = 〈ϕ(A) : A ⊂ I, A ∈ A〉 = 〈A ⊂ I : A ∈ A〉 = {A ⊂ I : A ∈ A} = A and hence λϕ

is a retraction.

Lemma 1.2. Let I be an ideal of a semigroup S and a map ϕ : S → I is a retraction. The

semigroup S has a right (left) zero if and only if the semigroup I has a right (left) zero, and all

right and left zeros of the semigroup S are contained in I.

Proof. Let z be a right (left) zero of the semigroup S, that is sz = z (zs = z) for any s ∈ S.

Since ϕ is a homomorphism, ϕ(s)ϕ(z) = ϕ(z) (ϕ(z)ϕ(s) = ϕ(z)). Specifically for any s ∈ I

the equality ϕ(s) = s holds, and then sϕ(z) = ϕ(s)ϕ(z) = ϕ(z) (ϕ(z)s = ϕ(z)ϕ(s) = ϕ(z)).

Consequently, ϕ(z) is a right (left) zero of the semigroup I.

Let z ∈ I be a right (left) zero of the semigroup I. Since I is an ideal, then for any s ∈ S we

have that sz, zs ∈ I, and hence sz = ϕ(sz) = ϕ(s)ϕ(z) = ϕ(s)z = z (zs = ϕ(zs) = ϕ(z)ϕ(s) =

zϕ(s) = z). Consequently, z is a right (left) zero of the semigroup S.

If z is a right (left) zero of the semigroup S, then z = sz ∈ I (z = zs ∈ I), where s ∈ I.

Therefore, all right (left) zeros of the semigroup S are contained in I.

Let e be the neutral element of the maximal subgroup Cm of a cyclic semigroup Cr,m.

Lemma 1.3. The map ϕ : Cr,m → Cm, ϕ(x) = ex is a retraction and ϕ(x)y = xy for any x ∈ Cr,m

and y ∈ Cm.

Proof. Since the semigroup Cm is an ideal of the semigroup Cr,m, ϕ(x) = ex ∈ Cm. Conse-

quently, ϕ(xy) = exy = eexy = exey = ϕ(x)ϕ(y) for any x, y ∈ Cr,m and ϕ(x) = ex = x for

x ∈ Cm. Hence the map ϕ : Cr,m → Cm is a retraction. Further for any x ∈ Cr,m and y ∈ Cm we

have that xy ∈ Cm, and therefore ϕ(xy) = xy. On the other hand, ϕ(xy) = ϕ(x)ϕ(y) = ϕ(x)y,

since y ∈ Cm.

Combining Lemmas 1.1–1.3 we get

Proposition 1.2. The semigroup λ(Cr,m) contains a right (left) zero if and only if its subgroup

λ(Cm) contains a right (left) zero. Each right (left) zero of λ(Cr,m) belongs to λ(Cm).

It was proved in [1] that the semigroup λ(G) possesses a right zero if and only if the group

G is periodic and each element of G has odd order. Since each element of a finite group G

has odd order if and only if the group G has odd order, Proposition 1.2 implies the following

characterization of superextensions of finite cyclic semigroups that have right zeros.

Theorem 1. The superextension λ(Cr,m) of a finite cyclic semigroup Cr,m has a right zero if and

only if the period m of the cyclic semigroup Cr,m is an odd number.
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Proposition 1.3. The superextension of the infinite cyclic semigroup has neither right nor left

zeros.

Proof. Let 〈a〉 = {a, a2, . . . , an . . .} be the infinite cyclic semigroup and M ∈ λ(〈a〉). First ob-

serve that if 〈a〉 = A∪ B is any partition of the set 〈a〉, then either A ∈ M or B ∈ M. Indeed, if

A /∈ M, then M ∩ B 6= ∅ for any M ∈ M, and thus the maximality of M implies that B ∈ M.

Consider the partition 〈a〉 = A ∪ B, where A = {a, a3, . . . , a2k−1, . . .}, B = {a2, a4, . . . , a2k, . . .}.

Assume that a maximal linked system M is a right (left) zero of the semigroup 〈a〉. Then for

any x ∈ 〈a〉 we have 〈{x}〉 ◦M = M (M◦ 〈{x}〉 = M), and therefore xM ∈ M (Mx ∈ M)

for any M ∈ M. If A ∈ M, then B = aA = Aa ∈ M, that is impossible, since A ∩ B = ∅. By

analogy, if B ∈ M, then A ⊃ aB = Ba ∈ M. This contradiction implies that the superexten-

sion of the infinite cyclic semigroup contains neither right nor left zeros.

It was proved in [1] that for the semigroup λ(G) has a (left) zero if and only if a group G is

of order |G| ∈ {1, 3, 5}.

Consequently, Proposition 1.2 implies the following characterization of superextensions of

finite cyclic semigroups that have (left) zeros.

Theorem 2. The superextension λ(Cr,m) of a cyclic semigroup Cr,m has a (left) zero if and only

if m ∈ {1, 3, 5}.

Now we shall characterize cyclic semigroups whose superextensions have one-point mini-

mal left ideals.

If Cr,m is a finite cyclic semigroup of odd period m and Cm is the maximal subgroup of Cr,m,

then the superextension λ(Cr,m) contains a right zero, in particular the maximal linked system

L = 〈A ⊂ Cm : |A| > m/2〉

is a right zero of the semigroup λ(Cr,m). A maximal linked system Z ∈ λ(Cr,m) is a right zero

of the semigroup λ(Cr,m) if and only if the one-point set {Z} is a minimal left ideal of λ(Cr,m).

Taking into account that all minimal left ideals are isomorphic and the union K(λ(Cr,m)) of all

minimal left ideals in λ(Cr,m) coincides with the minimal ideal of λ(Cr,m) (see [11, Theorem

2.8]), Theorem 1 and Proposition 1.3 imply the following theorem.

Theorem 3. A finite cyclic semigroup Cr,m has odd period m if and only if all minimal left

ideals of the semigroup λ(Cr,m) are singletons. In this case the minimal ideal K(λ(Cr,m)) of the

semigroup λ(Cr,m) is the subsemigroup of right zeros of λ(Cr,m). The infinite cyclic semigroup

has no one-point minimal left (right) ideals.

2 COMMUTATIVITY OF SUPEREXTENSIONS OF CYCLIC SEMIGROUPS

Theorem 4. A finite cyclic semigroup Cr,m = {a, a2, . . . , ar, . . . , am+r−1|ar+m = ar} of order

m + r − 1 has commutative superextension if and only if

(r, m) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1)}.

The superextension of the infinite cyclic semigroup is not commutative.
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Proof. It was proved in the paper [1] that the superextension of a group G is commutative if

and only if |G| ≤ 4. Since for m > 4 the superextension λ(Cr,m) contains a noncommutative

subsemigroup λ(Cm), λ(Cr,m) is not commutative. So it is sufficient to consider only cyclic

semigroups of period m ≤ 4.

If index r = 1, then Cr,m is a cyclic group of order m, and thus for r = 1 the semigroup

λ(Cr,m) is commutative if and only if m ≤ 4.

If |Cr,m| ∈ {1, 2}, then the superextension λ(Cr,m) is isomorphic to the semigroup Cr,m,

and λ(Cr,m) is commutative. In the case |Cr,m| = 3 the superextension λ(Cr,m) contains only

one maximal linked system, which is not a principal ultrafilter. Since all principal ultrafilters

commute with maximal linked systems, the superextension λ(Cr,m) is commutative.

It follows that for

(r, m) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1)}

the superextension λ(Cr,m) is commutative.

If r = 2, m ∈ {3, 4}, then the product xy of any two elements x, y ∈ Cr,m is contained in

the maximal subgroup Cm, and thus xy = ϕ(xy) = ϕ(x)ϕ(y), where ϕ : Cr,m → Cm is the

retraction ϕ : s → es. Since superextensions of groups of order 3 and 4 are commutative,

A ◦ B = λϕ(A) ◦ λϕ(B) = λϕ(B) ◦ λϕ(A) = B ◦A for any A,B ∈ λ(Cr,m). Consequently,

the semigroups λ(C2,3) and λ(C2,4) are commutative.

Let r = 3. The case m = 1 was considered before.

For the semigroup C3,2 = {a, a2, a3, a4|a5 = a3} the semigroup λ(C3,2) contains 12 elements:

Uk = 〈{ak}〉, ∆k = 〈A ⊂ C3,2 : |A| = 2, ak /∈ A〉

and

�k = 〈C3,2 \ {ak}, A : A ⊂ C3,2, |A| = 2, ak ∈ A〉, where k ∈ {1, 2, 3, 4}.

The following table implies the commutativity of λ(C3,2):

◦ ∆1 ∆2 ∆3 ∆4 �1 �2 �3 �4

∆1 U4 U3 U4 U3 U3 U4 U3 U4

∆2 U3 ∆1 U3 ∆1 ∆1 U3 ∆1 U3

∆3 U4 U3 U4 U3 U3 U4 U3 U4

∆4 U3 ∆1 U3 ∆1 ∆1 U3 ∆1 U3

�1 U3 ∆1 U3 ∆1 ∆1 U3 ∆1 U3

�2 U4 U3 U4 U3 U3 U4 U3 U4

�3 U3 ∆1 U3 ∆1 ∆1 U3 ∆1 U3

�4 U4 U3 U4 U3 U3 U4 U3 U4

If m ∈ {3, 4}, then C3,m = {a, a2, . . . , am+2|am+3 = a3}. Consider maximal linked systems

A = 〈{a, a2}, {a, a3}, {a2, a3}〉 and B = 〈{a, a2}, {a, am+1}, {a2, am+1}〉. Observe that {a2, a3} =

a{a, a2} ∪ a2{a, am+1} ∈ A ◦ B, but {a2, a3} /∈ B ◦ A. Therefore, A ◦ B 6= B ◦ A and the

semigroup C3,m is not commutative.

Let r ≥ 4. First consider the case of the semigroup C4,1 = {a, a2, a3, a4|a5 = a4}. Each max-

imal linked system different from the principal ultrafilter 〈{a}〉 contains the set {a2, a3, a4}.
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Since {a2, a3, a4}{a2, a3, a4} = {a4}, the product of such maximal linked systems is the princi-

pal ultrafilter 〈{a4}〉. The fact that the principal ultrafilter 〈{a}〉 commutes with all maximal

linked systems implies the commutativity of the semigroup λ(C4,1).

Put A = 〈{a, a2}, {a, a3}, {a2, a3}〉, B = 〈{a, a2}, {a, am+r−2}, {a2, am+r−2}〉. We have that

{a3, a4} = a{a2, a3} ∪ a2{a, a2} ∈ B ◦ A, but {a3, a4} /∈ A ◦ B, since the equality am+r+1 = a4

holds only if r = 4 and m = 1, which we considered before. Consequently, A ◦ B 6= B ◦ A and

a semigroup λ(Cr,m) for (r, m) 6= (4, 1) is not commutative.

Let 〈a〉 = {a, . . . , an, . . .} be the infinite cyclic semigroup. Put A = 〈{a, a2}, {a, a3}, {a2, a3}〉,

B = 〈{a, a2}, {a, a4}, {a2, a4}〉. Let us observe that {a3, a4} = a{a2, a3} ∪ a2{a, a2} ∈ B ◦ A, but

{a3, a4} /∈ A ◦ B. Therefore, A ◦ B 6= B ◦ A and the semigroup λ(〈a〉) is not commutative.

3 RIGHT (LEFT) CANCELABLE ELEMENTS

In this section we shall detect right (left) cancelable elements of superextensions of cyclic

semigroups.

Proposition 3.1. The superextension λ(Cr,m) has (left, right) cancelable elements if and only if

index r of a cyclic semigroup Cr,m is equal to 1.

Proof. Let r > 1 and a be the generator of a semigroup Cr,m. Consider the map ϕ : Cr,m → Cm,

ϕ : x → ex, where e is the neutral element of the cyclic group Cm. According to Lemma

1.3 this map is a retraction. Since ar−1x ∈ Cm = {ar, . . . ar+m−1} for any x ∈ Cr,m, ar−1x =

ϕ(ar−1x) = ϕ(ar−1)ϕ(x). On the other hand, since Cm is an ideal of Cr,m, ϕ(ar−1)x ∈ Cm and

ϕ(ar−1)x = ϕ(ϕ(ar−1)x) = ϕ(ϕ(ar−1))ϕ(x) = ϕ(ar−1)ϕ(x). Consequently, ϕ(ar−1)x = ar−1x

for any x ∈ Cr,m.

Let M be a maximal linked system on a semigroup Cr,m. Then we obtain 〈{ar−1}〉 ◦M =
〈

⋃

a∈{ar−1} a ∗ Ma : {Ma}a∈L ⊂ M
〉

=
〈

ar−1M : M ∈ M
〉

=
〈

ϕ(ar−1)M : M ∈ M
〉

=

〈{ϕ(ar−1)}〉 ◦M and M◦ 〈{ar−1}〉 =
〈

⋃

a∈M a ∗ {ar−1} : M ∈ M
〉

=
〈

Mar−1 : M ∈ M
〉

=
〈

Mϕ(ar−1) : M ∈ M
〉

= M◦ 〈{ϕ(ar−1)}〉. Since ar−1 6= ϕ(ar−1), the maximal linked system

M is neither left nor right cancelable.

If r = 1, then a cyclic semigroup C1,m = Cm is a group. Let e be the neutral element

of the group Cm. Then 〈{e}〉 ◦M = M = M◦ 〈{e}〉 for any M ∈ λ(Cm), and equalities

X ◦ 〈{e}〉 = Y ◦ 〈{e}〉, 〈{e}〉 ◦ X = 〈{e}〉 ◦ Y imply that X = Y . Consequently, the principal

ultrafilter 〈{e}〉 is a cancelable element of the semigroup λ(C1,m).

If G is a group, then the formula

L ◦M =
〈
⋃

a∈L

a ∗ Ma : L ∈ L, {Ma}a∈L ⊂ M
〉

implies that the product L ◦M of any two maximal linked systems L and M is a principal

ultrafilter if and only if both L and M are principal ultrafilters. Therefore, we deduce the

following proposition.

Proposition 3.2. For a group G the set λ(G) \ {〈{g}〉 : g ∈ G} is an ideal in λ(G).

Lemma 3.1. A semigroup S is a left (right) cancellative semigroup if and only if all principal

ultrafilters are left (right) cancelable elements in the superextension λ(S).
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Proof. If an element a ∈ S is not left (right) cancelable in the semigroup S, then it is clear that

the principal ultrafilter generated by the element a is not cancelable in λ(S).

Let S be a left (right) cancellative semigroup, a ∈ S and X ,Y ∈ λ(S), X 6= Y , then

X ∩ Y = ∅ for some X ∈ X , Y ∈ Y . Since each element of S is left (right) cancelable, then

aX ∩ aY = ∅ (Xa ∩ Ya = ∅), and thus 〈{a}〉 ◦ X 6= 〈{a}〉 ◦ Y (X ◦ 〈{a}〉 6= Y ◦ 〈{a}〉). Con-

sequently, the left l〈{a}〉 (right r〈{a}〉) shift is injective and the principal ultrafilter 〈{a}〉 is left

(right) cancelable.

Proposition 3.3. An element M ∈ λ(C1,m) is left (right) cancelable if and only if M is a prin-

cipal ultrafilter.

Proof. Since in any group, in particular in the cyclic group C1,m, all elements are cancelable,

according to Lemma 3.1 all principal ultrafilters are right cancelable in the superextension

λ(C1,m).

Assume that some maximal linked system M ∈ λ(C1,m) \ {〈{g}〉 : g ∈ C1,m} is left can-

celable. This means that the left shift lM : λ(C1,m) → λ(C1,m), lM : A 7→ M ◦A, is injective.

According to Proposition 3.2, the set λ(C1,m) \ {〈{g}〉 : g ∈ C1,m} is an ideal in λ(C1,m). Con-

sequently, lM(λ(C1,m)) = M◦ λ(C1,m) ⊂ λ(C1,m) \ {〈{g}〉 : g ∈ C1,m}. Since λ(C1,m) is finite,

lM cannot be injective.

For the right cancelable elements the proof is analogous.

Since the infinite cyclic semigroup is a cancellative semigroup, then Lemma 3.1 implies the

following proposition.

Proposition 3.4. All principal ultrafilters are cancelable elements in the superextension of the

infinite cyclic semigroup.

Proposition 3.5. Let S be the infinite cyclic semigroup and L ∈ λ(S). A maximal linked system

L is right cancelable in λ(S) provided for every s ∈ S there is a set Ls ∈ L such that the family

{s ∗ Ls : s ∈ S} is disjoint.

Proof. Assume that {Ls}s∈S ⊂ L is a family such that {s ∗ Ls : s ∈ S} is disjoint. To prove that

L is right cancelable, take two maximal linked systems A,B ∈ λ(S) with A ◦ L = B ◦ L. It is

sufficient to show that A ⊂ B. Take any set A ∈ A and observe that the set
⋃

a∈A a ∗ La belongs

to A ◦ L = B ◦ L. Consequently, there is a set B ∈ B and a family of sets {Mb}b∈B ⊂ L such

that
⋃

b∈B

b ∗ Mb ⊂
⋃

a∈A

a ∗ La.

It follows from Lb ∈ L that Mb ∩ Lb is not empty for every b ∈ B.

Since the sets a ∗ La i b ∗ Lb are disjoint for different a, b ∈ S, the inclusion

⋃

b∈B

b ∗ (Mb ∩ Lb) ⊂
⋃

b∈B

b ∗ Mb ⊂
⋃

a∈A

a ∗ La

implies B ⊂ A and hence A ∈ B.
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Гаврилкiв В.М. Суперрозширення циклiчних напiвгруп // Карпатськi математичнi публiкацiї. —

2013. — Т.5, №1. — C. 36–43.

У статтi вивчаються правi i лiвi нулi, одноточковi лiвi iдеали, мiнiмальний iдеал, скоро-

тнi злiва i скоротнi справа елементи суперрозширення λ(S) циклiчної напiвгрупи S, а також

характеризуються циклiчнi напiвгрупи, суперрозширення яких є комутативними.

Ключовi слова i фрази: циклiчна напiвгрупа, максимальна зчеплена система, суперрозши-

рення.

Гаврилкив В.М. Суперрасширения циклических полугрупп // Карпатские математические пуб-

ликации. — 2013. — Т.5, №1. — C. 36–43.

В работе изучаются правые и левые нули, одноточечные левые идеалы, минимальный иде-

ал, сократимые слева и сократимые справа элементы суперрасширения λ(S) циклической по-

лугруппы S, а также характеризуются циклические полугруппы, суперрасширения которых

коммутативны.

Ключевые слова и фразы: циклическая полугруппа, максимальная сцепленная система, су-

перрасширение.


