A WORPITZKY BOUNDARY THEOREM FOR BRANCHED CONTINUED FRACTIONS OF THE SPECIAL FORM

For a branched continued fraction of a special form we propose the limit value set for the Worpitzky-like theorem when the element set of the branched continued fraction is replaced by its boundary.

Key words and phrases: element set, value set, branched continued fraction of special form.
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, 3b Naukova str., 79060, Lviv, Ukraine
E-mail: khkuchminska@gmail.com

INTRODUCTION

A lot of convergence criteria for continued fractions are characterized by convergence domains. Such domains are indicated in the complex plane, that if elements a_{k}, b_{k} of a continued fraction belong to these domains then the continued fraction

$$
\frac{a_{1}}{b_{1}+\frac{a_{2}}{b_{2}+\frac{a_{3}}{b_{3}+}}}=D_{k=1}^{\infty} \frac{a_{k}}{b_{k}}
$$

converges. At first convergence domains for continued fractions we can find in papers of Worpitzky (1865), Pringsheim (1899) and Van Vleck (1901) [8].

Despite of the fact that a well known convergence theorem for continued fractions was proposed by J. Worpitzky in 1865, its new proofs, generalizations and applications are actual even at present $[3,6,8]$.
H. Waadeland [10] formulated the Worpitzky theorem in a slightly more general form than classical one [8], using conditions on the coefficients of the continued fraction proposed by F . Paydon and H. Wall [9].

Theorem 1. Let $\rho \in(0,1 / 2]$ be any positive number, and let all elements of a continued fraction

$$
\begin{equation*}
\frac{a_{1}}{1+\frac{a_{2}}{1+\frac{a_{3}}{1+}}}=D_{i=1}^{\infty} \frac{a_{i}}{1} \tag{1}
\end{equation*}
$$

$a_{i}, i=1,2, \ldots$, be complex numbers, bounded by

$$
\left|a_{i}\right| \leq \rho(1-\rho), \quad i=1,2, \ldots .
$$

Then the continued fraction (1) converges and its values are contained in the disk $|w| \leq \rho$.

[^0]For the continued fraction (1) Haakon Waadeland raised the question: What happens to the set of values of the continued fraction (1) when the condition (2) in the Worpitzky theorem would be replaced by $\left|a_{i}\right|=\rho(1-\rho), i=1,2, \ldots$? Answering on his question H.Waadeland proved [10], that the set of all possible values of the continued fraction (1) is the annulus

$$
\rho \cdot \frac{1-\rho}{1+\rho} \leq|w| \leq \rho .
$$

In the classical case of the theorem $(\rho=1 / 2)$, i.e. $\left|a_{i}\right|=1 / 4, \quad i=1,2, \ldots$, the annulus is $1 / 6 \leq|w| \leq 1 / 2$.

The same question one can put for multidimensional generalizations of the continued fraction, such as for example,
a branched continued fraction (BCF) [3]

$$
\begin{equation*}
1+\sum_{i_{1}=1}^{N} \frac{a_{i_{1}} z_{i_{1}}}{1+\sum_{i_{2}=1}^{N} \frac{a_{i_{1} i_{2}} z_{i_{2}}}{1+\sum_{i_{3}=1}^{N} \frac{a_{i_{1} i_{2} i_{3}} z_{i_{3}}}{1+}} \vdots}=1+D_{k=1}^{\infty} \sum_{i_{k}=1}^{N} \frac{a_{i(k)} z_{i_{k}}}{1}, \tag{3}
\end{equation*}
$$

where $a_{i_{1} i_{2} \ldots i_{k}}$ be complex numbers, $z_{i_{k}}$ be complex variables, $i(k)=i_{1} i_{2} \ldots i_{k}$ be multiindex;
a branched continued fraction with independent variables [1]

$$
\begin{equation*}
\frac{a_{00}}{1+\sum_{i_{1}=1}^{N} \frac{a_{i_{1}} z_{i_{1}}}{1+\sum_{i_{2}=1}^{i_{1}} \frac{a_{i_{1} i_{2}} z_{i_{2}}}{1+\sum_{i_{3}=1}^{i_{2}} \frac{a_{i_{1} i_{2} i_{3} z_{3}}}{1+}}}=\frac{a_{00}}{1+\sum_{k=1}^{\infty} \sum_{i_{k}=1}^{i_{k-1}} \frac{a_{i(k)} z_{i_{k}}}{1}},} \tag{4}
\end{equation*}
$$

where $a_{i_{1} i_{2} \ldots i_{k}}$ be complex numbers, $z_{i_{k}}$ be complex variables, $i(k)=i_{1} i_{2} \ldots i_{k}$ be multiindex $1 \leq i_{k} \leq i_{k-1}, k=1,2, \ldots, i_{0}=N$;
or a two-dimensional continued fraction (TDCF) [6]

$$
\begin{equation*}
{ }_{i=0}^{\infty} \frac{a_{i, i} z_{1} z_{2}}{\Phi_{i}}, \quad \Phi_{i}=1+{\underset{j=1}{\infty} \frac{a_{i+j, i} z_{1}}{1}+\sum_{j=1}^{\infty} \frac{a_{i, i+j} z_{2}}{1},}^{2} \tag{5}
\end{equation*}
$$

where $a_{i, j}, i=0,1, \ldots, j=1,2, \ldots$, be complex numbers, z_{1}, z_{2} be complex variables.
It was found this question for the branched continued fraction (3) with $z_{1}=z_{2}=\ldots=$ $z_{N}=1$ is answered by the following theorem [11].

Theorem 2. Let $\rho \in(0,1 / 2]$ and $N \geq 2$ be an integer. In the family of branched continued fractions

$$
\begin{equation*}
1+\sum_{i_{1}=1}^{N} \frac{a_{i_{1}}}{1+\sum_{i_{2}=1}^{N} \frac{a_{i_{1} i_{2}}}{1+\sum_{i_{3}=1}^{N} \frac{a_{i_{1} i_{2} i_{3}}}{1+} \vdots}}=1+D_{k=1}^{\infty} \sum_{i_{k}=1}^{N} \frac{a_{i(k)}}{1} \tag{6}
\end{equation*}
$$

where $a_{i_{1} i_{2} \ldots i_{k}}$ be complex numbers, $i(k)=i_{1} i_{2} \ldots i_{k}$ be multiindex, $a_{i(k)}$ satisfy the conditions $\left|a_{i(k)}\right|=\frac{\rho(1-\rho)}{N}$, then the set of possible branched continued fraction values is the closed disk $|w| \leq \rho$.

Thus, in this case the set of possible BCF values is unchanged when all elements of (6) are restricted to the boundary of the disk.

For TDCF (5) with $z_{1}=z_{2}=1$ the answer is proposed by the following theorem [7].
Theorem 3. Let ρ be a real number in $(0,1 / 2]$, and let F_{ρ} be the family of two-dimensional continued fractions
where $a_{i, j}, i=0,1, \ldots, j=1,2, \ldots$, be complex numbers that satisfy conditions $\left|a_{i, j}\right|=\frac{1}{2} \rho(1-$ $\rho), i, j \geq 1$.

Then the set of all possible values f of the TDCF (7) in F_{ρ} is the annulus A_{ρ}, given by

$$
R \cdot \frac{\rho(1-\rho)}{4 R-\rho(1-\rho)} \leq|f| \leq R, \quad R=\frac{1}{2}(\sqrt{1-2 \rho(1-\rho)}+\sqrt{1-4 \rho(1-\rho)}) .
$$

In the case $\rho=1 / 2$ the annulus is $(8+\sqrt{2}) / 124 \leq|f| \leq 1 / 2 \sqrt{2}$.
In the present paper the answer will be done for the branched continued fraction with independent variables (4) with $z_{1}=z_{2}=\ldots=z_{N}=1$ (named the branched continued fraction of the special form $[2,5,4]$).

1 The WORPITZKY-LIKE THEOREMS FOR BRANCHED CONTINUED FRACTIONS OF THE SPECIAL FORM

Since the beginning we prove the Worpitsky-like theorem in a slightly more general form than it was done in [1].

Theorem 4. Let $\rho \in(0,1 / 2]$ and $N \geq 2$ be an integer. In the BCF of the special form

$$
\begin{equation*}
\frac{a_{00}}{1+\mathrm{D}_{k=1}^{\infty} \sum_{i_{k}=1}^{i_{k-1}} \frac{a_{i(k)}}{1}}, \tag{8}
\end{equation*}
$$

where $a_{i_{1} i_{2} \ldots i_{k}}$ be complex numbers, $i(k)=i_{1} i_{2} \ldots i_{k}$ be multiindex $1 \leq i_{k} \leq i_{k-1}, k=1,2, \ldots$, $i_{0}=N, a_{i(k)}$ satisfy the conditions $\left|a_{i(k)}\right| \leq \alpha_{i_{k-1}}=\frac{\rho(1-\rho)}{i_{k-1}},\left|a_{00}\right| \leq \rho(1-\rho)$.

Then the BCF of the special form (8) converges, and its values are contained in the disk $|w| \leq \rho$.

Proof. It is not difficult to show that a periodic continued fraction

$$
\begin{equation*}
\frac{\rho(1-\rho)}{1-\frac{\rho(1-\rho)}{1-\frac{\rho(1-\rho)}{1-}}} \tag{9}
\end{equation*}
$$

is the majorant fraction for the BCF of special form (8).
It means that approximants of these fractions satisfy the relation:

$$
\left|f_{n}-f_{m}\right| \leq M \cdot\left|g_{n}-g_{m}\right|,
$$

where f_{n}, g_{n} are the nth approximants of the BCF of the special form (8) and continued fraction (9) respectively, M is a certain constant, m, n are natural numbers.

For the difference between the nth and m th approximants of the BCF of the special form (8) the following relation is true [1]:

$$
\begin{equation*}
f_{n}-f_{m}=(-1)^{m} \sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{i_{1}} \cdots \sum_{i_{m}=1}^{i_{m-1}} \frac{a_{00} \cdot \prod_{k=1}^{m} a_{i(k)}}{\prod_{k=0}^{m} Q_{i(k)}^{(n-1)} \prod_{k=0}^{m-1} Q_{i(k)}^{(m-1)}}, n>m \geq 1 \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
& Q_{i(s)}^{(s)}=1, \quad Q_{i(k)}^{(s)}=1+\sum_{i_{k+1}=1}^{i(k)} \frac{a_{i(k+1)}}{Q_{i(k+1)}^{(s)}}, k=\overline{1, s-1}, s \geq 2, \\
& Q^{(s)}=Q_{i(0)}^{(s)}=1+\sum_{i_{1}=1}^{N} \frac{a_{i(1)}}{Q_{i(1)}^{(s)}}, s \geq 1, \quad f_{n}=\frac{a_{00}}{Q_{i(0)}^{(n-1)}} .
\end{aligned}
$$

Using the method of complete mathematical induction it is easy to prove that

$$
\begin{equation*}
\left|Q_{i(k)}^{(s)}\right| \geq h_{s-k} \tag{11}
\end{equation*}
$$

where h_{m} is the m th approximant of the continued fraction

$$
1-\frac{\rho(1-\rho}{1-\frac{\rho(1-\rho}{1-}}
$$

for all possible index sets.
Let us write the difference formula for approximants of the continued fraction (9)

$$
\begin{equation*}
g_{n}-g_{m}=\frac{\rho^{m+1}(1-\rho)^{m+1}}{\prod_{i=0}^{m} h_{n-i-1} \prod_{i=0}^{m-1} h_{m-i-1}} \tag{12}
\end{equation*}
$$

From (11) follows that all $Q_{i(k)}^{(s)} \neq 0$. Hence, taking into account (10) and (12) we have

$$
\begin{aligned}
\left|f_{n}-f_{m}\right| & \leq \sum_{i_{1}=1}^{N} \sum_{i_{2}=1}^{i_{1}} \cdots \sum_{i_{m}=1}^{i_{m-1}} \frac{\left|a_{00}\right| \cdot \prod_{k=1}^{m}\left|a_{i(k)}\right|}{\prod_{k=0}^{m}\left|Q_{i(k)}^{(n-1)}\right| \prod_{k=0}^{m-1}\left|Q_{i(k)}^{(m-1)}\right|} \\
& \leq \frac{\rho^{m+1}(1-\rho)^{m+1}}{\prod_{k=0}^{m} h_{n-k-1} \prod_{k=0}^{m-1} h_{m-k-1}}=g_{n}-g_{m} .
\end{aligned}
$$

The continued fraction (9) converges, and therefore the BCF of the special form (8) is also convergent.

Let us write the m th approximant of (8) in the form

$$
z=\frac{a_{00}}{1+\sum_{i_{1}=1}^{N} \frac{a_{i(1)}}{Q_{i(1)}^{(m-1)}}}=\frac{a_{00}}{(1+w)} .
$$

From the conditions of the theorem on the fraction coefficients and inequalities (11) one can write

$$
|w|=\left|\sum_{i_{1}=1}^{N} \frac{a_{i(1)}}{Q_{i(1)}^{(m-1)}}\right| \leq \frac{\rho(1-\rho)}{h_{m-2}}=g_{m-1} .
$$

Putting $g_{n}=P_{n} / Q_{n}$, where P_{n} is the nth numerator and Q_{n} is the nth denominator of the approximant g_{n} it is easy to find by induction that

$$
Q_{n}=\sum_{i=0}^{n} \rho^{i}(1-\rho)^{n-i}
$$

If Q is the value of the infinite fraction (9), and $Q_{n}>0, n=1,2, \ldots$, then we get

$$
g_{n}-g_{n-1}=\frac{(\rho(1-\rho))^{n}}{Q_{n} Q_{n-1}} \geq 0
$$

i.e., the sequence $\left\{g_{n}\right\}$ grows monotonically. Hence, $|w| \leq Q$. Since $Q=\rho(1-\rho) \cdot(1-Q)^{-1}$, and taking into account that $Q=0$, if $\rho=0$, the solution of this quadratic equation with respect to Q gives $Q=\rho$.

Therefore, $|w| \leq \rho$, and $|z| \leq \rho$.
Now we obtain the boundary version of this theorem.
Theorem 5. Let $\rho \in(0,1 / 2]$ and $N \geq 2$ be an integer. In the family of branched continued fractions of the special form F_{ρ}

$$
\begin{equation*}
\frac{a_{00}}{1+\mathrm{D}_{k=1}^{\infty} \sum_{i_{k}=1}^{i_{k-1}} \frac{a_{i(k)}}{1}} \tag{13}
\end{equation*}
$$

where $a_{i_{1} i_{2} \ldots i_{k}}$ be complex numbers, $i(k)=i_{1} i_{2} \ldots i_{k}$ be multiindex $1 \leq i_{k} \leq i_{k-1}, k=1,2, \ldots$, $i_{0}=N, a_{i(k)}$ satisfy the conditions $\left|a_{i(k)}\right|=\frac{\rho(1-\rho)}{i_{k-1}},\left|a_{00}\right|=\rho(1-\rho)$, the set of all possible branched continued fractions of the special form values is the annulus A_{ρ}, given by

$$
\rho \cdot \frac{1-\rho}{1+\rho} \leq|w| \leq \rho
$$

Proof. Let f_{0} be a possible value of the BCF of the special form (13). Then all values f with $|f|=$ $\left|f_{0}\right|$ are possible BCF of the special form values in F_{ρ}. Hence the set of values of such fraction must be a disk or an annulus, in both cases centered at the origin. From the Worpitzky-like theorem (Theorem 4) follows that this disk or annulus must be contained in the disk $|f| \leq \rho$.

We shall first prove that the set of all values must be contained in A_{ρ}. Any BCF of the special form in F_{ρ} can be written in the form

$$
f=\frac{\rho(1-\rho) e^{i \theta}}{1+\omega}, \theta \in[0,2 \pi), \omega=\sum_{i_{1}=1}^{N} \frac{a_{i(1)}}{1+\sum_{k=1}^{\infty} \sum_{i_{k+1}=1}^{i_{k}} \frac{a_{i(k+1)}}{1}} .
$$

Since $\frac{a_{i(1)} \cdot N}{\infty i_{k} \quad a_{i(k+1)}} \in F_{\rho}$ we have, using the previous Theorem 4

$$
1+\sum_{k=1}^{\infty} \sum_{i_{k+1}=1}^{i_{k}} \frac{a_{i(k+1)}}{1}
$$

It means that

$$
\left\lvert\, a_{i(1)} \cdot\left(1+{\left.\underset{k=1}{D} \sum_{i_{k+1}=1}^{i_{k}} \frac{a_{i(k+1)}}{1}\right)^{-1} \left\lvert\, \leq \frac{\rho}{N^{\prime}}\right., ~, ~, ~}_{\text {, }}\right.\right.
$$

and $|\omega| \leq \rho$. Since $|\omega| \leq \rho$ it follows that for any value f of a BCF of the special form in F_{ρ} we have $|f| \geq \rho \cdot \frac{1-\rho}{1+\rho}$.

That is sharp, follows from the fact that

$$
\rho=\frac{\rho(1-\rho)}{1-\frac{\rho(1-\rho)}{1-}},
$$

and that the right-hand side is in F_{ρ}.
We next prove that A_{ρ} is contained in the set of values of BCFs of the special form in F_{ρ} with independent variables $|\omega| \leq \rho$.

By the mapping $\xi=1 / 1+\omega$ the circle $\omega=\rho$ is mapped onto the circle

$$
\left|\xi-\frac{1}{1-\rho^{2}}\right|=\frac{\rho}{1-\rho^{2}}
$$

Then, by $\xi \rightarrow \rho(1-\rho) e^{i \theta} \xi$, for all $\theta \in[0,2 \pi)$ we get all points in the annulus A_{ρ}.
Hence, A_{ρ} is contained in the set of BCF with independent variables values for F_{ρ}.

REFERENCES

[1] Baran O.E. An analog of the Worpitzky convergence criterion for branched continued fractions of the special form. J. Math. Sci. 1998, 90 (5), 2348-2351. doi:10.1007/BF02433964
[2] Baran O.E. Some convergence regions of branched continued fractions of special form. Carpathian Math. Publ. 2013, 5 (1), 4-13. doi:10.15330/cmp.5.1.4-13. (in Ukrainian)
[3] Bodnar D.I. Branched continued fractions. Naukova Dumka, Kyiv, 1986. (in Russian)
[4] Dmytryshyn R.I. Positive definite branched continued fractions of special form. Carpathian Math. Publ. 2013, 5(2), 225-230. doi:10.15330/cmp.5.2.225-230
[5] Dmytryshyn R.I. Some properties of branched continued fractions of special form. Carpathian Math. Publ. 2015, 7 (1), 72-77. doi:10.15330/cmp.7.1.72-77
[6] Kuchminska Kh.Yo. Two-dimensional continued fractions. Pidstryhach Institute for Appl. Probl. in Mech. and Math., NAS of Ukraine, Lviv, 2010. (in Ukrainian)
[7] Kuchminska Kh.Yo. Boundary versions of the Worpitzky theorem for two-dimensional continued fractions. Ukrainian Math. J. 2014, 66 (8), 1236-1247. doi:10.1007/s11253-015-1005-4 (translation of Ukrain. Mat. Zh. 2014, 66 (8), 1106-1116. (in Ukrainian))
[8] Lorentzen L., Waadeland H. Continued fractions. In: Atlantis Studies in Mathematics for Engineering and Science, Convergence Theory, 1. Atlantis Press, Amsterdam, 2008. doi:10.2991/978-94-91216-37-4
[9] Paydon F.J., Wall H.S. The continued fraction as a sequence of linear transformations. Duke Math. J. 1942, 9, 360372.
[10] Waadeland H. Boundary versions of Worpitzky's theorem and of parabola theorems. In: Jakobsen L. (Ed.), Lecture Notes in Mathematics, Analytic theory of continued fractions III, 1406. Springer-Verlag, Berlin, 1989. 135-142. doi:10.1007/BFb0096171
[11] Waadeland H. A Worpitzky boundary theorem for N-branched continued fractions. Commun. Analytic Theory Cont. Fract. 1993, 2, 24-29.

Received 19.12.2015
Revised 25.03.2016

Кучмінська Х.Й. Межова теорема Ворпіиького для гіллястих ланиююгових дробів спеціального вигляду // Карпатські матем. публ. — 2016. — Т.8, №2. - С. 272-278.

Для гіллястого ланцюгового дробу спеціального вигляду запропоновано межову множину значень у теоремі типу Ворпіцького, коли множина елементів гіллястого ланцюгового дробу замінена її межею.

Ключові слова і фрази: множина елементів, множина значень, гіллястий ланцюговий дріб спеціального вигляду.

[^0]: У $\Delta \mathrm{K} 517.524$
 2010 Mathematics Subject Classification: 11A55, 11J70, 30B70, 40 A15.

