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ON CONTINUITY OF HOMOMORPHISMS BETWEEN TOPOLOGICAL CLIFFORD

SEMIGROUPS

Generalizing an old result of Bowman we prove that a homomorphism f : X → Y between

topological Clifford semigroups is continuous if

• the band EX = {x ∈ X : xx = x} of X is a U-semilattice;

• the topological Clifford semigroup Y is ditopological;

• the restriction f |EX is continuous;

• for each subgroup H ⊂ X the restriction f |H is continuous.
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INTRODUCTION

This paper was motivated by the following old result of Yeager [6] who generalized an

earlier result of Bowman [3].

Theorem 1. A homomorphism h : X → Y between compact topological Clifford semigroups

is continuous if and only if for any subgroup H ⊂ X and any subsemilattice E ⊂ X the

restrictions h|H and h|E are continuous.

In this paper we shall extend this result of Yeager beyond the class of compact topolog-

ical Clifford semigroups. Let us define a homomorphism h : X → Y between topological

semigroups to be EH-continuous if

• the restriction h|EX to the set of idempotents of X is continuous;

• for every subgroup H ⊂ X the restriction h|H is continuous.

In terms of EH-continuity, Theorem 1 says that each EH-continuous homomorphism h :

X → Y between compact topological Clifford semigroups is continuous. For compact topo-

logical Clifford semigroup X with Lawson maximal semilattice EX = {x ∈ X : xx = x} this

result of Yeager was proved by Bowman [3] in 1971. Generalizing the Bowman’s result, in The-

orem 3 we shall prove that each EH-continuous homomorphism h : X → Y from a topological

Clifford U-semigroup X to a ditopological Clifford semigroup Y is continuous. Topological U-

semigroups will be introduced and studied in Section 2. Section 1 presents some preliminaries.

Section 4 contains our main result and some its corollaries.
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1 PRELIMINARIES

1.1. Semigroups. A semigroup is a non-empty set endowed with an associative binary opera-

tion. A semigroup S is said to be

• inverse if for every x ∈ S there is a unique element x−1 ∈ S such that x = xx−1x and

x−1 = x−1xx−1;

• Clifford if it is inverse and xx−1 = x−1x for every x ∈ S;

• a semilattice if it is commutative and every element x ∈ S is an idempotent, that is xx = x.

For a semigroup S by ES = {e ∈ S : ee = e} we denote the set of idempotents of S and for

each idempotent e ∈ ES let

He = {x ∈ S : ∃y ∈ S xy = e = yx, xe = x = ex, ye = y = ey}

denote the maximal subgroup of S containing e. If the semigroup S is inverse, then the maximal

group He can be written as He = {x ∈ S : xx−1 = e = x−1x}.

Each semilattice E carries the natural partial order ≤ defined by x ≤ y iff xy = yx = x. For

a point x ∈ E let ↓x = {y ∈ E : y ≤ x} and ↑x = {y ∈ E : x ≤ y} be the lower and upper cones

of x, respectively. By ⇑x we shall denote the interior of the upper cone ↑x in E.

A homomorphism between semigroups X, Y is a function h : X → Y preserving the oper-

ation in the sense that h(x · y) = h(x) · h(y) for all x, y ∈ X. The uniqueness of the inverse

element in an inverse semigroup implies that each homomorphism h : X → Y between in-

verse semigroups preserves the inversion in the sense that h(x−1) = h(x)−1 for all x ∈ X.

More information on inverse semigroups can be found in [5].

A topological semigroup is a semigroup S endowed with a topology making the semigroup

operation · : S × S → S continuous. A topological inverse (Clifford) semigroup is an inverse

(Clifford) semigroup S endowed with a topology making the multiplication · : S × S → S and

the inversion ( )−1 : S → S continuous.

A topological semilattice E is Lawson if open subsemilattices form a base of the topology

of E.

1.2. Unosemigroups and unomorphisms. By a left unit operation on a semigroup S we under-

stand a unary operation λS : S → S such that λS(x) · x = x for all x ∈ S. A left unosemigroup

is a semigroup S endowed with a left unit operation λS : S → S. A left unosemigroup S is

called λ-regular if for each x ∈ S there is x∗ ∈ S such that λS(x) = xx∗. In this case the element

λS(x) = xx∗ is an idempotent because λS(x) · λS(x) = λS(x)xx∗ = xx∗ = λS(x). So, for each

λ-regular left unosemigroup S we get λS(S) ⊂ ES.

By an unomorphism between left unosemigroups (X, λX) and (Y, λY) we understand a

semigroup homomorphism h : X → Y preserving the left unit operation in the sense that

h ◦ λX = λY ◦ h.

Left unosemigroups were introduced in [1]. By analogy we can define right unosemi-

groups, see [1].

Each inverse semigroup S endowed with the left unit operation λS : S → S, λS : x 7→ xx−1,

carries a canonical structure of a λ-regular left unosemigroup. If S is Clifford, then the left unit

operation λS is a homomorphism coinciding with the projection π : S → ES, π : x 7→ xx−1 =

x−1x. If S is a semilattice, then λS coincides with the identity map of S.
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The uniqueness of the inverse element in an inverse semigroup implies that each homo-

morphism between inverse semigroups is a unomorphism of the corresponding left unosemi-

groups.

By a topological left unosemigroup we understand a topological semigroup S endowed with

a continuous left unit operation λS : S → S.

Proposition 1. If a topological left unosemigroup (S, λS) is λ-regular, then for any idempotent

e ∈ S and any point x ∈ S with e · λS(x) = e the right shift sx : He → Hex, sx : z 7→ zx, is a

homeomorphism.

Proof. Since (S, λS) is λ-regular, λS(x) = xx∗ for some element x∗ ∈ S. Consider the right shift

sx∗ : S → S, sx∗ : z 7→ zx∗, and observe that for every element z of the maximal subgroup

He, we get sx∗ ◦ sx(z) = zxx∗ = z · λS(x) = ze · λS(x) = ze = z. This implies that the

restriction sx∗ |Hex : Hex → He is a continuous map, inverse to sx. So, sx : He → Hex is a

homeomorphism.

1.3. Ditopological unosemigroups. For two subsets A, B of a semigroup S consider the subsets

B ⋋ A = {y ∈ S : ∃b ∈ B ∃a ∈ A by = a} and A ⋌ B = {x ∈ S : ∃a ∈ A ∃b ∈ B a = xb}

which can be thought as the results of left and right division of A by B in the semigroup S.

A topological left unosemigroup (S, λS) is called a ditopological left unosemigroup if for each

x ∈ X and neighborhood Ox ⊂ S there are neighborhoods WλS(x) ⊂ λS(S) and Ux ⊂ S of the

points λS(x) and x, respectively, such that

(WλS(x) ⋋Ux) ∩ λ
−1
S (WλS(x)) ⊂ Ox.

Ditopological left unosemigroups were introduced and studied in [1]. By analogy, ditopo-

logical right unosemigroups can be introduced; see [1]. By Theorem 4 of [1], each compact

topological left unosemigroup is ditopological.

A topological Clifford semigroup S is ditopological if it is ditopological as a topological

left unosemigroup (endowed with the canonical left unit operation λS : x 7→ xx−1). By

[1], the class of ditopological Clifford semigroups contains all compact topological Clifford

semigroups, all topological groups, all topological semilattices and is closed under many op-

erations over topological Clifford semigroups (in particular, taking Clifford subsemigroups,

Tychonoff products, reduced products, semidirect products).

2 TOPOLOGICAL LEFT U-UNOSEMIGROUPS

In this section we introduce the notion of a left U-unosemigroup, which is crucial in the

proof of our main results.

Definition 1. A topological left unosemigroup (X, λX) is called a left U-unosemigroup if for

each point x ∈ X and each neighborhood OλX(x) ⊂ X of the element λX(x) there is an open

neighborhood Ux ⊂ X of x and an idempotent e ∈ OλX(x) such that eλX(x) = e and eUx ⊂ Hex.

In case S is a topological semilattice the notion of a left U-unosemigroup agrees with the

notion of a U-semilattice.
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A topological semilattice S is called a U-semilattice if for each point x ∈ S and its neighbor-

hood U ⊂ S there is an idempotent y ∈ U such that x ∈ ⇑y. We recall that by ⇑y we denote

the interior of the upper cone ↑y in S.

The definitions of a left U-unosemigroup and a U-semilattice imply the following charac-

terization:

Proposition 2. A topological semilattice E is a left U-unosemigroup if and only if it is a

U-semilattice.

The interplay between topological U-semilattices and other classes of topological semi-

lattices was studied in [2]. In particular, let us recall for future references that each locally

compact Lawson semilattice is a U-semilattice. The same is true for locally compact zero-

dimensional semilattices, as they are Lawson. Let us recall that a regular topological space X

is locally compact if every point has a compact neighborhood and zero-dimensional if closed-and-

open sets form a base of the topology of X.

2.1. Topological Clifford U-semigroups. Topological Clifford semigroups which are left U-

unosemigroups can be characterized as follows.

Proposition 3. A topological Clifford semigroup S is a left U-unosemigroup if and only if its

band ES = {x ∈ S : xx = x} is a U-semilattice.

Proof. Assume first that S is a left U-unosemigroup. Given any idempotent e ∈ ES and its

neighborhood U ⊂ ES, we need to find an idempotent e′ ∈ U such that e ∈ ⇑e′. The set U

is open in ES and so U = W ∩ ES for some open neighborhood W ⊂ S of e. Since S is a U-

unosemigroup, for the element e and the neighborhood W of the point ee−1 = e we can find an

open neighborhood We ⊂ S of e and an idempotent e′ ∈ W such that e′e = e′ and e′We ⊂ He′e.

Without loss of generality we can assume that We ⊂ W and therefore Ue = We ∩ ES is an open

neighborhood of e in ES.

It remains to check that e ∈ ⇑e′. For this observe that the inclusion e′We ⊂ He′e implies that

e′Ue ⊂ (He′e) ∩ ES = {e′}e = e′ and consequently e ∈ Ue ⊂ ↑e′. Thus e ∈ ⇑e′, which means

that ES is a U-semilattice.

Now assume that the maximal semilattice ES of S is a U-semilattice. To show that S is a

topological left U-unosemigroup, take any point x ∈ S and neighborhood Oxx−1 ⊂ S of the

idempotent π(x) = xx−1. Since ES is a U-semilattice, we can find an idempotent e ∈ Oxx−1

such that xx−1 ∈ ⇑e. Then Ux = π
−1(⇑e) is an open neighborhood of x.

It remains to show that eUx ⊂ Hex. First observe that for any element z ∈ He we have

z = ze = zex−1x. It follows from

(zex−1)(zex−1)−1 = zex−1xez−1 = zez−1 = e

that zex−1 ∈ He and z = (zex−1)x ∈ Hex. Hence, He ⊂ Hex.

Finally, the inclusion π(eUx) = π(e)π(Ux) ⊂ {e}⇑e = {e} implies that eUx ⊂ π−1(e) =

He ⊂ Hex, which is the desired conclusion.
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Having in mind the previous proposition we define a topological Clifford semigroup S

to be a topological Clifford U-semigroup if its maximal semilattice ES is a U-semilattice. This

happens if and only if S is a topological left U-unosemigroup.

3 THE CONTINUITY OF EH-CONTINUOUS UNOMORPHISMS BETWEEN TOPOLOGICAL LEFT

UNOSEMIGROUPS

The following theorem is a key ingredient in the proof of Theorem 3, which is our main

result. This theorem can be considered as a generalization of Bowman’s result [3] to topological

left unosemigroups.

Theorem 2. Any EH-continuous unomorphism h : X → Y from a λ-regular topological left

U-unosemigroup (X, λX) into a ditopological left unosemigroup (Y, λY) is continuous.

Proof. Given any point x ∈ X and an open neighborhood Oy ⊂ Y of the point y = h(x) we

need to find a neighborhood Vx ⊂ X of x such that h(Vx) ⊂ Oy.

Since the left unosemigroup (Y, λY) is ditopological, there are open neighborhoods

WλY(y)
⊂ λY(Y) and Uy ⊂ Y of the elements λY(y) and y, respectively, such that

(WλY(y)
⋋ Uy) ∩ λ

−1
Y (WλY(y)

) ⊂ Oy. Taking into account that λY(y) · y ∈ Uy, we can replace

WλY(y)
by a smaller neighborhood and additionally assume that WλY(y)

· y ⊂ Uy.

Since the unomorphism h preserves the left unit operation, we have h(λX(x)) = λY(y). The

λ-regularity of the left unit operation λX implies that λX(X) ⊂ EX. By the continuity of the

restriction h|λX(X), there is an open neighborhood WλX(x) ⊂ λX(X) such that h(WλX(x)) ⊂

WλY(y)
.

Since X is a left U-unosemigroup, for the point x and the neighborhood WλX(x) of λX(x)

we can find an idempotent e ∈ WλX(x) and an open neighborhood Vx ⊂ X of x such that

eλX(x) = e and eVx ⊂ Hex. Replacing Vx by a smaller neighborhood, if necessary, we can

additionally assume that λX(Vx) ⊂ WλX(x). In this case

λY ◦ h(Vx) = h ◦ λX(Vx) ⊂ h(WλX(x)) ⊂ WλY(y)

and h(ex) = h(e) · h(x) ∈ h(WλX(x)) · y ⊂ WλY(y)
· y ⊂ Uy.

We claim that the restriction h|Hex is continuous. Indeed, by the λ-regularity of the left

unit operation λX, there is an element x∗ ∈ X such that λX(x) = xx∗. By Proposition 1 the

right shift sx : He → Hex, sx : z 7→ zx, is a homeomorphism with inverse sx∗ : Hex → He,

sx∗ : z 7→ zx∗. The EH-continuity of h guarantees that the restriction h|He is continuous and

so is the composition h ◦ sx∗ : Hex → Y. For every point z ∈ Hex we can find an element

g ∈ He with z = gx and observe that zx∗x = gxx∗x = gλX(x)x = gx = z. So, h(z) =

h(zx∗x) = h(zx∗) · h(x) = h(zx∗) · y, which implies that the restriction h|Hex is continuous

as the composition of the continuous map h ◦ sx∗ and the continuous right shift sy : Y → Y,

sy : u 7→ uy.

By the continuity of the map h|Hex, the set h−1(Uy) ∩ Hex is an open neighborhood of the

point ex. Replacing the neighborhood Vx by a smaller one, if necessary, we can assume that

eVx ⊂ h−1(Uy) ∩ Hex. Then h(eVx) ⊂ h(h−1(Uy)) ⊂ Uy.

To finish the proof of the continuity of h at x, it remains to check that h(Vx) ⊂ Oy. For this

observe that for every v ∈ Vx we get h(e) · h(v) = h(ev) ∈ Uy and h(e) ∈ h(WλX (x)) ⊂ WλY(y)
.
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Combined with the inclusion λY ◦ h(v) ∈ λY ◦ h(Vx) ⊂ WλY(y)
proved above, this yields

h(v) ∈ (WλY(y)
⋋ Uy) ∩ λ

−1
Y (WλY(y)

) ⊂ Oy

according to the choice of the neighborhoods WλY(y)
and Uy.

4 THE CONTINUITY OF EH-CONTINUOUS HOMOMORPHISMS BETWEEN CLIFFORD

U-SEMIGROUPS

Now we are in a position to prove the main result of the paper and state some its corollaries.

Let us recall that a topological Clifford semigroup X is called topological Clifford U-semigroup

if its band EX is a U-semilattice.

Theorem 3. Each EH-continuous homomorphism h : X → Y from a topological Clifford

U-semigroup X to a ditopological Clifford semigroup Y is continuous.

Proof. By Proposition 3, the topological Clifford U-semigroup X endowed with a canonical left

unit operation λ : x 7→ xx−1 is a λ-regular topological left U-unosemigroup. The homomor-

phism h, being a homomorphism between Clifford semigroups, preserves the operation of in-

version. It follows that h preserves the canonical unit operation on X and so is a unomorphism.

Thus, h : X → Y is a EH-continuous unomorphism and by Theorem 2, it is continuous.

Since each locally compact Lawson semilattice is a U-semilattice (see Proposition 2.4(3)

of [2]), this Theorem implies

Corollary 1. For any topological Clifford semigroup X with locally compact Lawson maximal

semilattice EX, every EH-continuous homomorphism h : X → Y to a ditopological Clifford

semigroup Y is continuous.

Since each locally compact zero-dimensional semilattice is Lawson (see Theorem 2.6 in [4]),

we obtain

Corollary 2. For any topological Clifford semigroup X with locally compact zero-dimensio-

nal maximal semilattice EX, every EH-continuous homomorphism h : X → Y to a ditopologi-

cal Clifford semigroup Y is continuous.

Since each compact Hausdorff topological Clifford semigroup is ditopological (see Theo-

rem 4 in [1]), Corollary 1 implies the following result of Bowman [3].

Corollary 3 (Bowman). Each EH-continuous homomorphism h : X → Y from a compact

Hausdorff topological Clifford semigroup X with Lawson maximal semilattice X into a com-

pact Hausdorff topological Clifford semigroup Y is continuous.
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Пастухова I. Про неперервнiсть гомоморфiзмiв мiж топологiчними клiфордовими напiвгрупами

// Карпатськi матем. публ. — 2014. — Т.6, №1. — C. 123–129.

Узагальнюється результат, отриманий у статтi [3], i доводиться неперервнiсть гомоморфi-

зму f : X → Y мiж топологiчними клiфордовими напiвгрупами за умов:

• множина EX = {x ∈ X : xx = x} ⊂ X iдемпотентiв є U-напiвграткою;

• топологiчна клiфордова напiвгрупа Y дiтопологiчна;

• звуження f |EX неперервне;

• звуження f |H неперервне для кожної пiдгрупи H ⊂ X.

Ключовi слова i фрази: дiтопологiчна унонапiвгрупа, клiфордова напiвгрупа, топологiчна

напiвгратка.

Пастухова И. О непрерывности гомоморфизмов между топологическими клиффордовыми полу-

группами // Карпатские матем. публ. — 2014. — Т.6, №1. — C. 123–129.

Обобщается результат, полученный в работе [3], и доказывается непрерывность гомомор-

физма f : X → Y между топологическими клиффордовыми полугруппами при условиях:

• множество EX = {x ∈ X : xx = x} ⊂ X идемпотентов является U-полурешеткой;

• топологическая клиффордова полугруппа Y дитопологическая;

• сужение f |EX непрерывно;

• сужение f |H непрерывно для каждой подгруппы H ⊂ X.

Ключевые слова и фразы: дитопологическая унополугруппа, клиффордова полугруппа, то-

пологическая полурешетка.


