PHYSICS AND CHEMISTRY OF SOLID STATE

V. 23, No. 1 (2022) pp. 67-71

Section: Physics

DOI: 10.15330/pcss.23.1.67-71

Vasyl Stefanyk Precarpathian National University

ФІЗИКА І ХІМІЯ ТВЕРДОГО ТІЛА Т. 23, № 1 (2022) С. 67-71

Фізико-математичні науки

PACS: 71.15.Mb

ISSN 1729-4428

Hind Ahmed, Ahmed Hashim

Tuning the Optical, Electronic and Thermal Characteristics of Si₃N₄/PVA/PEO Solid State Structures for Electronics Devices

University of Babylon, College of Education for Pure Sciences, Department of Physics, Iraq, ahmed_taay@yahoo.com

The present paper deals with design of Si₃N₄ doped PVA/PEO new structures to use in different optic, electronic, photonic and electric approaches with distinguished characteristics included few costs, high corrosion resistance, lightweight and good optical, thermal and electronic properties. The Si₃N₄/PVA/PEO structures were optimized and effectively simulated with a B3LYP / LanL2DZ primer. The structure stability, optical, thermal and electronic properties of Si₃N₄/PVA/PEO were studied. The obtained results indicated to the PVA/PEO/Si₃N₄ structures may be used for various optoelectronics devices with low cost and high flexibly.

Keywords: silicon nitride, energy gap, PEO, electronic properties, devices.

Received 29 August 2021; Accepted 25 January 2022.

Introduction

Ferroelectric materials are characterized by having a polarization direction that can be switched in response to an external electric field, which generates many technical applications [1]. Silicon nitride (Si₃N₄) is an important ceramic material owing to its mechanical, chemical and electronic properties; it has been used in cutting tools, engine components and microelectronic devices due to its excellent mechanical properties [2]. Si₃N₄ is chemically inert and has a wide-band gap with high dielectric constant [3]. The other significant property of Si3N4 is good resistance to oxidation, high hardness, corrosion, high mechanical strength and thermal shock [4]. Gaussian 03 program (computer software which is capable of predicting many properties of molecules and reactions, including the molecular energies and structures) [5] to make the calculation. This work aims to design, structural, optical and electronic characteristics of Si₃N₄ doped PVA/PEO structures for optoelectronics approaches.

I. Theoretical Part

Energy gap refers to energy difference between the

(HOMO) and (LUMO) according to the Koopmans theorem [5]:

$$E_{gap} = E_{LUMO} - E_{HOMO}.$$
(1)

Ionization potential energy (IP) is defined as[6]:

$$I_{\rm E} = -E_{\rm HOMO}.$$
 (2)

Electron affinity can be determined by[5].

$$E_A = -E_{LUMO}.$$
 (3)

The chemical potential (μ) is calculated by the relation [7]:

$$\mu \approx \frac{1}{2} (E_{\text{HOMO}} + E_{\text{LUMO}}) \approx -\frac{1}{2} (I_{\text{E}} + E_{\text{A}}). \tag{4}$$

Chemical hardness (H) is calculated by using [8]:

$$H = \frac{I_{\rm g} - E_{\rm A}}{2}.$$
 (5)

Chemical softness (S) is given by the equation [9]:

$$S = \frac{1}{2H}.$$
 (6)

Electrophilicity ($^{(\omega)}$) can be defined by [10]:

$$\omega = \frac{\mu^2}{2H}.$$
 (7)

The electronegativity is given by [11]:

$$\mathbf{E}_{\mathbf{N}} = \frac{1}{2} (\mathbf{I}_{\mathbf{E}} + \mathbf{E}_{\mathbf{A}}). \tag{8}$$

The electric dipole polarizability is the determine of the linear response for the electron density in the existence of electric field [12]. The polarizability is given by [13]

$$<\alpha>=\frac{1}{3}\left(\alpha_{xx}+\alpha_{yy}+\alpha_{zz}\right).$$
(9)

II. Results and Discussion

Figure (1) shows find the relaxation of the molecule, in which the optimized structure of the molecule is the structure at minimum energy, and it is performed by finding the first derivative of the energy with respect to distance between different atoms. Table 1 represents the standard orientation of all atoms in the molecule. The bonds values in present work are in a well agreement with [14,15].

Fig. 1. Optimization of (PVA-PEO-Si₃N₄) structures.

Figure (2) shows the IR-Spectrum of (PVA-PEO- Si_3N_4) structures using DFT. It has been found that the strong peak observed at (2900 cm-1) is attributed to the (O-H) groups. In Raman spectroscopy, a change is observed in the polarization of molecules; that is, a visible or ultraviolet photons interacts with the vibrating molecular bonds, gaining or losing part of their energy, thereby generating the spectrum [15]. Figure (3) shows the Raman spectra of (PVA-PEO- Si_3N_4) structures. Intensities of Raman spectra depend on the probability that photon with particular wavelength will be absorbed.

Average lengths of bond in (Å) and the angles in

Measurements	The optimization parameters	Values	
Bonds Å	(C–C)	1.541	
	(C-O)	1.480	
	(C-H)	1.098	
	(O-H)	0.993	
	(Si = N)	1.618	
	(N-N)	1.401	
	(Si-O)	2.730	
Angles Deg.	(C-C-C)	112.878	
	(C-O-H)	109.132	
	(N- Si -N)	101.365	

Fig. 3. Raman intensities of $(PVA-PEO-Si_3N_4)$ structures with vibration frequency.

Figure (4) show the UV-Vis spectra Visible and Ultra Violet spectrum is dependent on upon the electronics structure of the molecule. The UV-Vis

Table 1.

calculations of the (PVA-PEO-Si $_3N_4$) structures obtained from the B3LYP-TD/LanL2DZ method included the excitation energy, wavelength, oscillator strength and electronic transition.

Fig. 4. \cup V-Vis spectrum for (PVA-PEO-Si₃N₄ structures.

Table. 2 represents the energy gap of (PVA-PEO-Si₃N₄) structures and compared with the experimental data in Ref [17]. Figures (5) illustrates the 3-D distribution of HOMOs and LUMOs for the studied structures. The visualization of HOMO - LUMO obviously characterizes the electron cloud in occupied and virtual orbital. The green color cloud shows the HOMO and red color shows the LUMO electrons in structures. DOS spectrum, the charge density is low in occupied orbital and high in virtual orbital for pure, O and H substituted Si_3N_4 structures. This mentions the localization of charges along the virtual orbitals than in occupied orbitals. The overlapping of Si and N orbitals leads to localization of charges in virtual orbitals. Then the electronic configuration of Si is [Ne] 3s² 3p² and N is $1s^2 2s^2 2p^3$, when they overlap it gives increase to localization of charges along the virtual orbital.

Table 2.

Energy gap values of in (eV) of structures.

The (PVA-PEO-Si ₃ N ₄) structures		
E _{HOMO} (eV)	E _{LUMO} (eV)	Eg (eV)
-9.341	-2.567	6.773

Figure (6) illustrates the electrostatic surfaces potential (ESP) distribution of structures calculated from the total self-consistent field SCF. ESP distributions of structure are caused by repulsive forces or by attracting regions around each structure. In general, the ESP surfaces of (PVA-PEO-Si₃N₄) structures are dragged toward the negative charge positions in each molecule bases the high electronegativity oxygen atoms [3.5 eV].

Table. 3 shows the results of the ground state energy ET in a. u, the viral ratio (-V/T) is the ratio of the negative magnitude of the potential energy to the kinetic energy and some electronic properties of (PVA-PEO-Si₃N₄) structures calculated at the same level of theory. These properties are included the ionization energy IE, electron affinity EA, electronegativity E_N ,

electrochemical hardness H and electrophilic index $^{\omega}$ [17].

Fig. 5. The distribution of HOMO (up) and LUMO (down) (PVA-PEO-Si $_3N_4$) structures.

Fig. 6. Electrostatic potential distribution surface for $(PVA-PEO-Si_3N_4)$ structures.

Table.4 shows the average Polarizability α ave and it is components in au of (PVA-PEO-Si₃N₄) structures.

Table 3.

Electronic properties values in eV of the structures.

Property	(PVA-PEO-Si ₃ N ₄) composites	
Total energy	-1348.406(a.u)	
Ionization potential	9.341	
Electron affinity	2.567	
Electronegativity	5.954	
Chemical hardness	3.387	
Chemical softness	0.147	
Chemical potential	- 5.954	
Electrophilicity	5.233	
Dipole moment (Debye)	14.168	

Table 4.

The calculated α_{ave} and it is components of (PVA-PEO-Si₃N₄) structures.

Polarizability(a.u)				
axx(a.u)	α _{yy} (a.u)	azz(a.u)	ave(a.u)	
292.251	294.938	286.380	277.189	

The density of states of (PVA-PEO-Si₃N₄) structures as a function of energy levels were calculated by employing the DFT-B3LYP/LanL2DZ level of theory. Figure (7) shows the degenerate states as a function of energy levels for the studied structure, this degeneracy caused by the existence of the new types of atoms, and that leads to varying the bond lengths and angles or changing the geometry of the structure.

Table. 5 illustrates the internal thermal energy Eth, specific heat Cv and entropy Sth of (PVA-PEO-Si₃N₄) structures calculated from the same level of theory. These properties are included all the electronic, translational, rotational, vibrational and total thermal properties.

Table 5.

Eth, Cv and Sth of (PVA-PEO-Si₃N₄) structures.

Thermal corrections (Hartree/Partical)					
Eth(KCal/Mol)		Cv(Cal/	Sth(Cal/		
		Mol-	Mol-		
		Kelvin)	Kelvin)		
Electronic	0.000	0.000	1.377		
Translational	0.889	2.981	44.300		
Rotational	0.889	2.981	36.586		
Vibrational	313.331	108.306	132.986		
Total	340.065	120.282	134.875		

Conclusions

The present work aims to design of $Si_3N_4/PVA/PEO$ new structures to employ in various optoelectronics and photonics approaches with few costs, high corrosion resistance, lightweight and good properties. With the assistance of DFT method, the structures of (PVA-PEO-Si₃N₄) structures are optimized and simulated using B3LYP/LanL2DZ basis set. The structural stability of (PVA-PEO-Si₃N₄) structures are discussed in terms of calculated energy. According to the high of the electrophilicity, the (PVA-PEO-Si₃N₄) structures are more reactive. Finally, the results indicated to the PVA/PEO/Si₃N₄ structures may be used for various optoelectronics devices with low cost, light weight, excellent corrosion resistance and high flexible.

Ahmed Hind – Assistant Professor, Department of Physics, University of Babylon. Hashim Ahmed – Professor, Department of Physics, University of Babylon;

- M. E. Lines & A. M. Glass, Principles and applications of ferroelectrics and related materials. Oxford university press, (2001); <u>https://doi.org/10.1093/acprof:oso/9780198507789.001.0001</u>.
- [2] A. Y. Liu, , & M. L. Cohen, Physical Review B, 41, (1990); <u>https://doi.org/10.1103/PhysRevB.41.10727</u>.
- [3] P. Reis, J. P. Davim, X. Xu, & J. M. F. Ferreira, Friction and wear behaviour of β -silicon nitride–steel couples under unlubricated conditions, Materials science and technology, 22, 2 (2006); https://doi.org/10.1179/174328406X74275.
- [4] X. Xu, T. Nishimura, N. Hirosaki, R. J. Xie, & H. Tanaka, Fabrication of a Nano-Si₃N₄/Nano-C Composite by High-Energy Ball Milling and Spark Plasma Sintering, Journal of the American Ceramic Society, 90, 4 (2007); <u>https://doi.org/10.1111/j.1551-2916.2007.01593.x</u>.

- [5] M. J. Frisch, & F. R. Clemente, Gaussian 09, Revision A. 01, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA Petersson, H. Nakatsuji, M. Caricato, X. Li, HP Hratchian, AF Izmaylov, J. Bloino, G. Zhe.
- [6] H. M. Kampen, H. Méndez, & D. R. T. Zahn, Energy Level Alignment at Molecular Semiconductor/GaAs (100) Interaces: Where is the LUM, University of Chemnitz, Institut fur, Germany, 28, (1999); https://www.tuchemnitz.de/physik/HLPH/publications/p_src/438.pdf
- [7] K. Sadasivam, & R. Kumaresan, Theoretical investigation on the antioxidant behavior of chrysoeriol and hispidulin flavonoid compounds–A DFT study, Computational and Theoretical Chemistry, 963, 1 (2011); https://doi.org/10.1016/j.comptc.2010.10.025.
- [8] O. A. Kolawole, & S. Banjo, Theoretical Studies of Anti-corrosion Properties of Triphenylimidazole Derivatives in Corrosion Inhibition of Carbon Steel in Acidic Media via DFT Approach, Anal. Bioanal. Electrochem, 10, 1 (2018); 136-146.
- [9] P. W. Atkins, & R. S. Friedman, Molecular quantum mechanics, Oxford university press, (2011), http://sutlib2.sut.ac.th/sut_contents/H96900.pdf
- [10] V. Subramanian, Quantum Chemical Descriptors in Computational Medicinal Chemistry for Chemoinformatics, Central Leather Research Institute, Chemical Laboratory, (2005); https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=Subramanian%2C+V.+%282005%29.+Quantu m+Chemical+Descriptors+in+Computational+Medicinal+Chemistry+for+Chemoinformatics.+Central+Leathe r+Research+Institute%2C+Chemical+Laboratory%2C+0-0000&btnG=
- [11] L. Shenghua, Y. He, & J. Yuansheng, Lubrication chemistry viewed from DFT-based concepts and electronic structural principles, International Journal of Molecular Sciences, 5, 1 (2004); <u>https://doi.org/10.3390/i5010013</u>.
- [12] A. J. Camargo, K. M. Honório, R. Mercadante, F. A. Molfetta, C. N. Alves, & A. B. da Silva, A study of neolignan compounds with biological activity against Paracoccidioidesbrasiliensis by using quantum chemical and chemometric methods, Journal of the Brazilian Chemical Society, 14, 5 (2003); <u>https://doi.org/10.1590/S0103-50532003000500017</u>.
- [13] P. Udhayakala, & T. V. Rajendiran, Computational investigations on the corrosion inhibition efficiency of some pyridine based alkaloids, Journal of Chemical, Biological and Physical Sciences (JCBPS), 2, 1 (2011); <u>http://dx.doi.org/10.4236/ojmetal.2014.44009</u>.
- [14] F. L. Riley, Silicon Nitride and Related Materials, Journal of the American Ceramic Society, 83, 2 (2000); <u>https://doi.org/10.1111/j.1151-2916.2000.tb01182.x.</u>
- [15] V. M. Bermudez, First-principles study of electron trapping by intrinsic surface states on β-Si₃N₄ (0001), Surf Sci., 691, (2020); <u>https://doi.org/10.1016/j.susc.2019.121511</u>.
- [16] P. Larkin, Infrared and Raman spectroscopy: principles and spectral interpretation, Elsevier Inc., ISBN 978-0-21-804162-8, 277(2013); https://books.google.iq/books?id=bMgpDwAAQBAJ&printsec=frontcover&hl=ar&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
- [17] V. Nagarajan, S.Venkatesan, R. Chandiramouli, DFT investigation on structural stability and electronic properties of α -Si₃N₄ and β -Si₃N₄ nanostructures International Journal of ChemTech Research, 6, 14, 5466-5475 (2014).

Х. Ахмед, А Хашім

Налаштування оптичних, електронних та теплових характеристик твердотільних структур Si₃N₄/PVA/PEO для електронних пристроїв

Університет Вавилону, Коледж освіти та наук, фізичний факультет, Ірак, <u>ahmed_taay@yahoo.com</u>

У роботі розглядаються нові структури PVA/PEO, леговані Si₃N₄, придатні для різних оптичних, електронних, фотонних та електричних застосуваннях із відмінними характеристиками, які включають низьку вартість, високу корозійну стійкість, легку вагу та добрі оптичні, теплові та електронні властивості. Структури Si₃N₄/PVA/PEO оптимізовані та ефективно змодельовані за допомогою праймера B3LYP / LanL2DZ. Досліджено стабільність структури, оптичні, теплові та електронні властивості Si3N₄/PVA/PEO. Отримані результати для структур PVA/PEO/Si₃N₄, можуть бути використані для різноманітних оптоелектронних пристроїв із низькою вартістю та високою гнучкістю.

Ключові слова: нітрид кремнію, заборонена зона, РЕО, електронні властивості, прилади.