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Introduction

In the paper, in terms of the best approximations and generalized moduli of smoothness,

direct and inverse approximation theorems are established for Besicovitch almost periodic

functions, the sequences of Fourier exponents of which have a single boundary point in in-

finity, and the sums of the pth degrees of absolute values of the Fourier coefficients are finite.

Study of direct and inverse approximation theorems originates in the well-known papers of

D. Jackson [18] and S.N. Bernstein [8]. Such theorems establish connections between the

difference-differential properties of the function that is approximated and the value of the er-

ror of its approximation by various methods (see, e.g. the monographs [13,20,29,33]). In 1962,

N.P. Korneichuk [19] proved Jackson inequality in the uniform metric with the least (exact)

constant. In [14], N.I. Chernykh showed that for an arbitrary 2π-periodic square-summable

non-constant function f ( f ∈ L2),

En( f )2 < 2−1/2ω( f , π/n)2 , n ∈ N, (1)

where En( f )2 is the best mean-square approximation of the function f by trigonometric poly-

nomials of order n − 1, and ω( f , t)2 is the modulus of continuity (modulus of smoothness of

the first order) of f in the space L2. In [15], the unimprovable Jackson-type inequalities with

averaged moduli of smoothness with some weight functions were established.

In spaces of almost periodic functions, direct approximation theorems were established in

the papers [6,11,23,24], etc. In particular, in [23], an analogue of the inequality (1) was obtained

for Besicovitch almost periodic functions of the order 2 (B2-a.p. functions). In [24] and [6],

Jackson type inequalities were obtained with moduli of smoothness of B2-a.p. functions of

arbitrary positive integer order and with generalized moduli of smoothness, respectively.
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In this paper, we consider the spaces BS p of all functions that are Besicovitch almost peri-

odic of order 1 (B-a.p. functions) for which the sums of the pth degrees of absolute values of

their Fourier coefficients are finite, 1 ≤ p < ∞. The norm of a function in the spaces BS p is

defined as the usual norm of a sequence of its Fourier coefficients in the space of numerical

sequences lp.

In the case when the 2π-periodic Lebesgue summable functions were considered instead

of the B-a.p. functions, similar spaces were studied in the papers of A.I. Stepanets and his

followers, and they were denoted by S p [3, 25–28, 35, 38], [29, Ch. 11], etc. In [28], direct and

inverse theorems for the approximation of functions from the spaces S p were proved in terms

of their best approximations by trigonometric polynomials and moduli of smoothness of ar-

bitrary positive orders. In [3], exact Jackson-type inequalities in the spaces S p were obtained

in terms of the best approximations of functions and the averaged values of their general-

ized moduli of smoothness as well as the exact values were found for widths of classes of

2π-periodic functions defined by certain conditions on the averaged values of their general-

ized moduli of smoothness.

The spaces BS p are a natural generalization of both the spaces S p (since S p ⊂ BS p) and

spaces B2-a.p. functions (since the sets of B2-a.p. functions coincide with the sets BS2). There-

fore, it is of interest to obtain direct and inverse theorems on the approximation of functions

from the spaces BS p in terms of their best approximations and generalized moduli of smooth-

ness.

1 Preliminaries

Let Bs, 1 ≤ s < ∞, be the space of all functions Lebesgue summable with the sth degrees

in each finite interval of the real axis, in which the distance is defined by the equality

DBs( f , g) =
(

lim
T→∞

1

2T

∫ T

−T
| f (x) − g(x)|s dx

)1/s
.

Further, let T be the set of all trigonometric sums of the form τN(x) = ∑
N
k=1 akeiλkx, N ∈ N,

where λk ∈ R and ak ∈ C are arbitrary real and complex numbers, respectively.

An arbitrary function f is called a Besicovitch almost periodic function of order s (or

Bs-a.p. function) and is denoted by f ∈ Bs-a.p. [22, Ch. 5, §10], [9, Ch. 2, §7], if there exists

a sequence of trigonometric sums τ1, τ2, . . . from the set T such that limN→∞ DBs( f , τN) = 0.

If s1 ≥ s2 ≥ 1, then (see, e.g. [11, 12]) Bs1-a.p. ⊂ Bs2-a.p. ⊂ B-a.p., where B-a.p. := B1-a.p. .

For any B-a.p. function f , there exists the average value

M{ f} = lim
T→∞

1

T

∫ T

0
f (x) dx.

The value of the function M{ f (·)e−iλ·}, λ ∈ R, can be nonzero at most on a countable set. As a

result of numbering the values of this set in an arbitrary order, we obtain a set S( f ) = {λk}k∈N

of Fourier exponents, which is called the spectrum of the function f . The numbers Aλk
=

Aλk
( f ) = M{ f (·)e−iλk ·} are called the Fourier coefficients of the function f . To each function

f ∈ B-a.p. with spectrum S( f ) there corresponds a Fourier series of the form ∑k Aλk
eiλkx. If, in

addition, f ∈ B2-a.p., then the Parseval equality holds (see, e.g. [9, Ch. 2, §9])

M{| f |2} = ∑
k∈N

|Aλk
|2.
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Developing the ideas of A.I. Stepanets [27], for a fixed 1 ≤ p < ∞ we consider the spaces of

all functions f ∈ B-a.p., for which the following quantity is finite

‖ f‖p := ‖ f‖BS p = ‖{Aλk
( f )}k∈N‖lp(N) =

(

∑
k∈N

|Aλk
( f )|p

)1/p

. (2)

We denote these spaces by BS p and call them Besicovitch-Stepanets spaces. By definition,

B-a.p. functions are considered identical in BS p if they have the same Fourier series.

Further, we will consider only those almost periodic functions from the spaces BS p, the

sequences of Fourier exponents of which have a single limit point at infinity. For such functions

f , the Fourier series are written in the symmetric form

S[ f ](x) = ∑
k∈Z

Akeiλkx, Ak = Ak( f ) = M{ f (·)e−iλk ·}, (3)

where λ0 := 0, λ−k = −λk, |Ak|+ |A−k| > 0, and λk+1 > λk > 0 for k > 0.

By Gλn
we denote the set of all B-a.p. functions, whose Fourier exponents belong to the

interval (−λn, λn), and define the value of the best approximation by the equality

Eλn
( f )p = Eλn

( f )BS p = inf
g∈Gλn

‖ f − g‖p.

Let Φ be the set of all continuous bounded nonnegative pair functions ϕ(t) such that

ϕ(0) = 0 and the Lebesgue measure of the set {t ∈ R : ϕ(t) = 0} is equal to zero. For

an arbitrary fixed ϕ ∈ Φ, consider the generalized modulus of smoothness of the function

f ∈ BS p

ωϕ( f , δ)p := ωϕ( f , δ)BS p = sup
|h|≤δ

(

∑
k∈Z

ϕp(λkh)|Ak( f )|p
)1/p

, δ ≥ 0. (4)

Let M = {µj}m
j=0 be a nonzero collection of complex numbers such that ∑

m
j=0 µk = 0. We

associate the collection M with the difference operator ∆M
h f (t) = ∑

m
j=0 µj f (t − jh) and the

modulus of smoothness ωM( f , δ)p := sup|h|≤δ ‖∆M
h f‖p . Note that the collection

M(m) =
{

µj = (−1)j

(

m

j

)

, j = 0, 1, . . . , m
}

, m ∈ N,

corresponds to the classical modulus of smoothness of order m: ωM(m)( f , δ)p = ωm( f , δ)p .

For any k ∈ Z, the Fourier coefficients of the function ∆M
h f satisfy the equality

|Ak(∆
M
h f )| = |Ak( f )|

∣

∣

∣

∣

m

∑
j=0

µje
−iλk jh

∣

∣

∣

∣

.

Therefore, for ϕM(t) = |∑
m
j=0 µje

−ijt| we have ωϕM( f , δ)p = ωM( f , δ)p . In particular, for

ϕm(t) = 2m| sin(t/2)|m = 2m/2(1 − cos t)m/2, m ∈ N, we have ωϕm( f , δ)p = ωm( f , δ)p .

In the general case, such modules were studied in [1, 3, 5, 6, 10, 21, 36, 37], etc.

2 Main results

2.1 Jackson type inequalities

In this subsection, direct approximation theorems are established in the space BS p in terms

of best approximations and generalized moduli of smoothness. For functions f ∈ BS p with
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the Fourier series of the form (3), we prove Jackson type inequalities of the kind

Eλn
( f )p ≤ K(τ)ωϕ

(

f ,
τ

λn

)

p
, τ > 0, 1 ≤ p < ∞, n ∈ N,

and consider the problem of the least constant in these inequalities for fixed values of the

parameters n, ϕ, τ and p. In particular, we study the quantity

Kn,ϕ,p(τ) = sup
{ Eλn

( f )p

ωϕ( f , τ/λn)p
: f ∈ BS p

}

.

Here and below, we assume that 0/0 = 0.

Let V(τ), τ > 0, be a set of bounded nondecreasing functions v that differ from a constant

on [0, τ].

Theorem 1. Assume that the function f ∈ BS p, 1 ≤ p < ∞, has the Fourier series of the form

(3). Then for any τ > 0, n ∈ N and ϕ ∈ Φ the following inequality holds

Eλn
( f )p ≤ Cn,ϕ,p(τ)ωϕ

(

f ,
τ

λn

)

p
, (5)

where

Cn,ϕ,p(τ) :=
(

inf
v∈M(τ)

v(τ)− v(0)

In,ϕ,p(τ, v)

)1/p
, (6)

and

In,ϕ,p(τ, v) := inf
k∈N, k≥n

∫ τ

0
ϕp

(λkt

λn

)

dv(t). (7)

Futhermore, there exists a function v∗ ∈ V(τ) that realizes the greatest lower bound in (6).

Inequality (5) is unimprovable on the set of all functions f ∈ BS p with the Fourier series of

the form (3) in the sense that for any ϕ ∈ Φ and n ∈ N the following equality is true

Cn,ϕ,p(τ) = Kn,ϕ,p(τ).

In the spaces L2 of 2π-periodic square-summable functions, for moduli of continuity, this

result was obtained by A.G. Babenko [4]. In the spaces S p of functions of one and several

variables, this result for classical moduli of smoothness was obtained in [28] and [2], respec-

tively, and for generalized moduli of smoothness, in [1] (for functions of one variable). In the

proof of Theorem 1, we mainly use the ideas outlined in [4, 14, 15, 28], taking into account the

peculiarities of the spaces BS p.

Proof. From relations (2) and (8), it follows that for any f ∈ BS p with the Fourier series of the

form (3), we have

E
p
λn
( f )p = ‖ f − Sn( f )‖p = ∑

|k|≥n

|Ak( f )|p , (8)

where Sn( f ) := ∑|k|<n Ak( f )eiλk x.

For any f ∈ BS p, ϕ ∈ Φ and h ∈ R, consider the sequence of numbers {ϕ(λkh)Ak( f )}k∈Z .

If there exists a function ∆
ϕ
h f ∈ B-a.p. such that for all k ∈ Z

Ak(∆
ϕ
h f ) = ϕ(λkh)Ak( f ), (9)

then denote by ‖∆
ϕ
h f‖p the usual norm (2) of the function ∆

ϕ
h f . If such a B-a.p function ∆

ϕ
h f

does not exist, then to simplify notation we will also use the notation ‖∆
ϕ
h f‖p, meaning by it

the lp-norm of the sequence {ϕ(λkh)Ak( f )}k∈Z .
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Taking into account (7), (8) and the parity of the function ϕ, we obtain

‖∆
ϕ
h f‖p

p = ∑
k∈Z

ϕp(λkh)|Ak( f )|p ≥ ∑
|k|≥n

ϕp(λkh)|Ak( f )|p

=
In,ϕ,p(τ, v)

v(τ)− v(0)
E

p
λn
( f )p + ∑

|k|≥n

|Ak( f )|p
(

ϕp(λkh)− In,ϕ,p(τ, v)

v(τ)− v(0)

)

,

where the quantity In,ϕ,p(τ, v) is defined by (7). Hence, for any t ∈ [0, τ] we find

E
p
λn
( f )p ≤ v(τ)− v(0)

In,ϕ,p(τ, v)

(

‖∆
ϕ
t/λn

f‖p
p − ∑

|k|≥n

|Ak( f )|p
(

ϕp
(λkt

λn

)

− In,ϕ,p(τ, v)

v(τ)− v(0)

)

)

. (10)

Since the both sides of inequality (10) are nonnegative and the series on its right-hand side

is majorized on the entire real axis by the absolutely convergent series C(ϕ)∑|k|≥n |Ak( f )|p ,

where C(ϕ) = maxt∈R ϕ(t), then integrating this inequality with respect to dv(t) from 0 to τ,

we get

E
p
λn
( f )p(v(τ)− v(0)) ≤ v(τ)− v(0)

In,ϕ,p(τ, v)

(

∫ τ

0
‖∆

ϕ
t/λn

f‖p
p dv(t)

− ∑
|k|≥n

|Ak( f )|p
(

∫ τ

0
ϕp

(λkt

λn

)

dv(t)− In,ϕ,p(τ, v)
)

)

.

By virtue of (7), we have
∫ τ

0
ϕp

(λkt

λn

)

dv(t)− In,ϕ,p(τ, v) ≥ 0.

Therefore, for any function v ∈ V(τ), we have

E
p
λn
( f )p ≤ 1

In,ϕ,p(τ, v)

∫ τ

0
‖∆

ϕ
t/λn

f‖p
p dv(t) ≤ 1

In,ϕ,p(τ, v)

∫ τ

0
ω

p
ϕ

(

f ,
t

λn

)

dv(t). (11)

Hence we immediately get (5) and the estimate

K
p
n,ϕ,p(τ) ≤ inf

v∈V(τ)

v(τ)− v(0)

In,ϕ,p(τ, v)
= C

p
n,ϕ,p(τ). (12)

It remains to show that in relation (12) there is in fact equality.

By virtue of (4) and (8), we have

K
p
n,ϕ,p(τ) = sup

f∈BS p

∑|k|≥n |Ak( f )|p
sup|h|≤τ ∑|k|≥n ϕp(λkh/λn)|Ak( f )|p . (13)

In (13), it is sufficient to consider the supremum over all functions f ∈ BS p, such that

∑
|k|≥n

|Ak( f )|p ≤ 1.

Then, taking into account the parity of the function ϕ, we obtain

K
−p
n,ϕ,p(τ) ≤ Jn,ϕ,p(τ) := inf

w∈Wn,ϕ,p

‖w‖C[0,τ]
, (14)

where

Wn,ϕ,p :=
{

ω(u) =
∞

∑
j=n

̺j ϕ
p
(λju

λn

)

: ̺j ≥ 0,
∞

∑
j=n

̺j = 1

}

. (15)

Further, we use the duality relation in the space C[a,b], which we formulate as the following

statement (see, e.g. [20, Ch. 1.4]).
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Proposition 1 ([20, Ch. 1.4]). If F is a convex set in the space C[a,b], then for any x ∈ C[a,b]

inf
u∈F

‖x − u‖C[a,b]
= sup

b
V
a
(g)≤1

(

∫ b

a
x(t) dg(t) − sup

u∈F

∫ b

a
u(t) dg(t)

)

. (16)

For x ∈ C[a,b] \ F̄, where F̄ is the closure of a set F, there exists a function g with variation equal

to 1 on [a, b] that realizes the least upper bound in (16).

It is easy to see that the set Wn,α,p is a convex subset of the space C[0,τ]. Therefore, setting

a = 0, b = τ, x(t) ≡ 0, u(t) = w(t) ∈ Wn,α,p, F = Wn,α,p, from relation (16) we get

Jn,ϕ,p(τ) = inf
w∈Wn,ϕ,p

‖0 − w‖C[0,τ]

= sup
τ

V
0
(g)≤1

(

0 − sup
w∈Wn,ϕ,p

∫ τ

0
w(t) dg(t)

)

= sup
τ

V
0
(g)≤1

inf
w∈Wn,ϕ,p

∫ τ

0
w(t) dg(t).

(17)

Furthermore, according to Proposition 1, there exists a function g∗(t), that realizes the least

upper bound in (17) and such that
τ

V
0
(g∗) = 1. Every function w ∈ Wn,α,p is nonnegative.

Therefore, it sufficient to take the supremum on the right-hand side of (17) over the set of

nondecreasing functions v(t) for which v(τ) − v(0) ≤ 1. For such functions, by virtue of (7)

and (15), the following equality

inf
w∈Wn,α,p

∫ τ

0
w(t) dv(t) = In,ϕ,p(τ, v).

is true. This implies that there exists a function v∗ ∈ V(τ) such that v∗(τ)− v∗(0) = 1 and

In,ϕ,p(τ, v∗) = sup

v∈V(τ),
τ

V
0
(v)≤1

In,ϕ,p(τ, v) = Jn,ϕ,p(τ). (18)

From relations (14) and (18), we obtain the necessary estimate

K
p
n,ϕ,p(τ) ≥

1

Jn,ϕ,p(τ)
=

1

In,ϕ,p(τ, v∗)
=

v∗(τ)− v∗(0)
In,ϕ,p(τ, v∗)

= C
p
n,ϕ,p(τ).

Consider an important special case when

ϕ(t) = ϕα(t) = 2α/2(1 − cos t)α/2 = 2α| sin(t/2)|α , α > 0.

In this case, we set ωϕα( f , δ)p =: ωα( f , δ)p and Kn,ϕα,p(τ) =: Kn,α,p(τ). For the weight function

v1(t) = 1 − cos t, we get the following assertion.

Corollary 1. For any function f ∈ BS p, 1 ≤ p < ∞, with the Fourier series of the form (3), the

following inequalities

E
p
λn
( f )p ≤ 1

2αp/2 In(αp/2)

∫ π

0
ω

p
α

(

f ,
t

λn

)

p
sin t dt, n ∈ N, α > 0, (19)

hold, where

In(s) := inf
k∈N, k≥n

∫ π

0

(

1 − cos
λkt

λn

)s
sin t dt, s > 0, n ∈ N. (20)
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If, in addition αp/2 ∈ N, then

In

(αp

2

)

=
2αp/2+1

αp/2 + 1
, (21)

and inequality (19) cannot be improved for any n ∈ N.

Proof. Inequality (19) follows from relation (11) with τ = π, ϕ(t) = ϕα(t) and v(t) = 1 − cos t,

t ∈ [0, π]. In [28, relation (52)], it was shown that for any θ ≥ 1 and s ∈ N the following

inequality
∫ π

0
(1 − cos θt)s sin t dt ≥ 2s+1

s + 1
holds, which turns into equality for θ = 1. Therefore, setting s = αp/2 and θ = λν/λn,

ν = n, n + 1, . . ., and the monotonicity of the sequence of Fourier exponents {λk}k∈Z, we see

that for αp/2 ∈ N, indeed, the equality (21) holds.

To prove that inequality (19) is unimprovable for αp/2 ∈ N, it suffices to verify that the

function

f ∗(x) = γ + βe−λnx + δeλnx, (22)

where γ, β and δ are arbitrary complex numbers, satisfies the equality

E
p
λn
( f ∗)p =

αp/2 + 1

2αp+1

∫ π

0
ω

p
α

(

f ∗,
t

λn

)

p
sin t dt, n ∈ N, α > 0. (23)

In this case, E
p
λn
( f ∗)p

p = |β|p + |δ|p, the function ‖∆
ϕα

t/λn
f ∗‖p

p = 2αp/2(|β|p + |δ|p)(1 − cos t)αp/2

does not decrease with respect to t on [0, π]. Therefore, ωα( f ∗, t/λn)p = ‖∆
ϕα

t/λn
f ∗‖p, and

2αp+1

αp/2 + 1
E

p
λn
( f ∗)p −

∫ π

0
ω

p
α

(

f ∗,
t

λn

)

p
sin t dt

= (|β|p + |δ|p)
( 2αp+1

αp/2 + 1
− 2αp/2

∫ π

0
(1 − cos t)αp?2 sin t dt

)

= 0.

If v2(t) = t, then we obtain the following assertion.

Corollary 2. Assume that the function f ∈ BS p, 1 ≤ p < ∞, has the Fourier series of the form

(3) and the number α > 0 such that αp ≥ 1. Then for any 0 < τ ≤ 3π/4 and n ∈ N,

E
p
λn
( f )p ≤

(

∫ τ

0
ω

p
α

(

f ,
t

λn

)

p
dt
)/(

2αp
∫ τ

0
sinαp t

2
dt
)

. (24)

Equality in (24) holds for the function f ∗ of the form (22).

Proof. From inequality (11), it follows that

E
p
λn
( f )p ≤ 1

Ĩn(αp/2)

∫ τ

0
ω

p
α

(

f ,
t

λn

)

dt,

where

Ĩn(s) := inf
k∈N, k≥n

∫ τ

0

(

1 − cos
λkt

λn

)s
dt, s > 0, n ∈ N.
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Consider the function

Fβ(x) :=
1

x

∫ x

0
| sin t|β dt.

In [38], it is shown that for any h ∈ (0, 3π/4) and β ≥ 1, the following relation

inf
x≥h/2

Fβ(x) = Fβ(h/2). (25)

is true. Since for any θ ∈ R,
∫ τ

0
(1 − cos θt)β/2 dt = 2β

∫ τ

0

∣

∣

∣
sin

θt

2

∣

∣

∣

β
dt = 2βτFβ

(θτ

2

)

,

then setting θ = λk/λn ≥ 1 (k ≥ n) and β = αp, from (25) (with τ ∈ (0, 3π/4]) we obtain

Ĩn

(αp

2

)

= inf
k∈N, k≥n

∫ τ

0

(

1 − cos
λkt

λn

)αp/2
dt

= 2αp inf
k∈N,k≥n

∫ τ

0

∣

∣

∣
sin

λkt

2λn

∣

∣

∣

αp
dt = 2αp

∫ τ

0
sinαp t

2
dt.

For the functions f ∗ of the form (22), the equality

E
p
λn
( f ∗)p =

(

∫ τ

0
ω

p
α

(

f ∗,
t

λn

)

p
dt
)/(

2αp
∫ τ

0
sinαp t

2
dt
)

.

is verified similarly to the proof of equality (23).

In the following assertion, we give the upper estimates for the least constants Kn,α,p(τ) in

Jackson type inequalities with the moduli of smoothness ωα( f , ·)p and τ = π. These estimates

do not depend on n and are unimprovable in several important cases.

Corollary 3. For any n ∈ N and α > 0, the following inequalities

K
p
n,α,p(π) ≤ 1

2αp/2−1 In(αp/2)
≤ αp/2 + 1

2αp + 2αp/2−1(αp/2 + 1)σ(αp/2)
, (26)

are true, where the quantities In(s), s > 0, are defined by (20), and

σ(s) := −
∞

∑
α=[s/2]+1

(

s

2α

)

1

22α−1

(1 − (−1)[s]

2

(

2α

α

)

−
α−1

∑
j=0

(

2α

j

)

2

2(α − j)2 − 1

)

,

here [s] is the integer part of the number s. If αp/2 ∈ N, then σ(αp/2) = 0 and

K
p
n,α,p(π) ≤ αp/2 + 1

2αp ,
αp

2
∈ N, n ∈ N. (27)

Proof. The first inequality in (26) and inequality (27) follow from Corollary 1. The second

inequality in (26) follows from the relation

In

(αp

2

)

≥ 2αp/2+1

αp/2 + 1
+ σ

(αp

2

)

, n ∈ N, α > 0,

which is a consequence of the inequality (see [28])

∫ π

0
(1 − cos θt)s sin tdt ≥ 2s+1

s + 1
+ σ(s), θ ≥ 1, s > 0.
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The following assertion establishes the uniform boundedness of the constants Kn,α,p(π)

with respect to the parameters n ∈ N and 1 ≤ p < ∞.

Corollary 4. Assume that the function f ∈ BS p, 1 ≤ p < ∞, has the Fourier series of the form

(3) and ‖ f − A0( f )‖p 6= 0. Then for any n ∈ N and α > 0,

Eλn
( f )p <

(4/3)1/p

2α/2
ωα

(

f ,
π

λn

)

p
≤ 4

3 · 2α/2
ωα

(

f ,
π

λn

)

p
. (28)

Furthermore, in the case where α = m ∈ N, the following more accurate estimate

Eλn
( f )p <

4 − 2
√

2

2m/2
ωm

(

f ,
π

λn

)

p
(29)

holds.

Proof. It was shown in [28] that In(s) ≥ 2 when s ≥ 1 and In(s) ≥ 1 + 2s−1 when s ∈ (0, 1).

Combining these two estimates and (26), we get (28).

Relation (29) follows from the estimate In(mp/2) ≥ 1 + 1/
√

2, which is a consequence

of the above estimates for the value of In(s) in the case when m ∈ N and 1 ≤ p < ∞

(see [28]).

As noted above, for p = 2 the sets BS p = BS2 coincide with the sets of B2-a.p. functions.

Given the importance of this case, we give the formulation of the corresponding statements

for the classical modulus of smoothness ωm, which follow from the Corollary 1.

Corollary 5. For any B2-a.p. function f having the Fourier series of the form (3), the inequali-

ties

E2
λn
( f )2 ≤ m + 1

22m+1

∫ π

0
ω2

m

(

f ,
t

λn

)

2
sin t dt, m, n ∈ N. (30)

hold. These inequalities can not be improved for any m and n ∈ N.

Corollary 6. For any B2-a.p. function f with the Fourier series of the form (3) such that

‖ f − A0( f )‖p 6= 0, the following inequalities

Eλn
( f )2 <

√
m + 1

2m
ωm

(

f ,
π

λn

)

2
, m, n ∈ N (31)

hold.

Inequalities (30) and (31) complement the results obtained in [5, 23, 24], etc., for the

B2-a.p. functions. In the spaces S p of functions of one and several variables, Theorem 1 and

Corollaries 1, 3 and 4 were proved in [28] and [2], respectively. In the spaces L2, for classical

moduli of smoothness inequality (19) was proved by N.I. Chernykh [15]. The inequalities of

this type were also investigated in [3, 5, 6, 17, 25, 31, 32, 35–38], etc.

3 Inverse approximation theorems

Theorem 2. Assume that the function f ∈ BS p, 1 ≤ p < ∞, has the Fourier series of the form

(3), the function ϕ ∈ Φ does not decrease on [0, τ], τ > 0, and ϕ(τ) = max{ϕ(t) : t ∈ R}.

Then for any n ∈ N, the following inequality

ω
p
ϕ

(

f ,
τ

λn

)

≤
n

∑
ν=1

(

ϕp
(τλν

λn

)

− ϕp
(τλν−1

λn

))

E
p
λν
( f )p (32)

holds.



696 Serdyuk A.S., Shidlich A.L.

Proof. Let us use the scheme of the proof from [1, 28], taking into account the peculiarities of

the spaces BS p. As above, for any f ∈ BS p, ϕ ∈ Φ and h ∈ R, we denote by ‖∆
ϕ
h f‖p the usual

norm (2) of the function ∆
ϕ
h f satisfying relation (9) (if such a function ∆

ϕ
h f ∈ B-a.p. exists) or

the lp-norm of the sequence {ϕ(λkh)Ak( f )}k∈Z if such a function ∆
ϕ
h f ∈ B-a.p. does not exist.

We have

‖∆
ϕ
h f‖p

p = ∑
k∈Z

ϕp(λkh)|Ak( f )|p = ∑
|k|<n

ϕp(λkh)|Ak( f )|p + ∑
|k|≥n

ϕp(λkh)|Ak( f )|p . (33)

It is clear that the second term on the right-hand side (33) does not exceed the value

ϕp(τ) ∑
|k|≥n

|Ak( f )|p = ϕp(τ)E
p
λn
( f )p ,

and due to the parity and non-decreasing function ϕ on the interval [0, τ], for |h| ≤ τ/λn

∑
|k|<n

ϕp(λkh)|Ak( f )|p ≤
n−1

∑
ν=1

ϕp
(τλν

λn

)

(|A−ν( f )|p + |Aν( f )|p).

Therefore, in view of the monotonicity of the sequence of Fourier exponents {λk}k∈Z, we ob-

tain

‖∆
ϕ
h f‖p

p ≤ ϕp(τ)E
p
λn
( f )p +

n−1

∑
ν=1

ϕp
(τλν

λn

)

H
p
ν ( f ), (34)

where H
p
ν ( f ) = (|A−ν( f )|p + |Aν( f )|p). Further, we use the following assertion from [28].

Lemma 1 ([28]). Assume that the numerical series ∑
∞
ν=1 cν is convergent. Then for any se-

quence βν, ν ∈ N, the following equality

N2

∑
ν=N1

βνcν = βa

∞

∑
ν=N1

cν +
N2

∑
ν=N1+1

(βν − βν−1)
∞

∑
i=ν

ci − βN2

∞

∑
ν=N2+1

cν (35)

holds for all positive integers N1 and N2, N1 ≤ N2.

Setting N1 = 1, N2 = n − 1, βν = ϕp(τλν/λn) and cν = H
p
ν ( f ) in (35), taking into account

(8), we get

n−1

∑
ν=1

ϕp
(τλν

λn

)

H
p
ν ( f ) = ϕp

(τλ1

λn

) ∞

∑
ν=1

H
p
ν ( f ) +

n−1

∑
ν=2

(

ϕp
(τλν

λn

)

− ϕp
(τλν−1

λn

)) ∞

∑
i=ν

H
p
i ( f )

− ϕp
(τλn−1

λn

) ∞

∑
ν=n

H
p
ν ( f )

=
n−1

∑
ν=1

(

ϕp
(τλν

λn

)

− ϕp
(τλν−1

λn

))

E
p
λν
( f )p − ϕp

(τλn−1

λn

)

E
p
λn
( f )p .

(36)

By virtue of (34) and (36), we get

‖∆
ϕ
h f‖p

p ≤
n−1

∑
ν=1

(

ϕp
(τλν

λn

)

− ϕp
(τλν−1

λn

))

E
p
λν
( f )p − ϕp

(τλn−1

λn

)

E
p
λn
( f )p + ϕp(τ)E

p
λn
( f )p

=
n

∑
ν=1

(

ϕp
(τλν

λn

)

− ϕp
(τλν−1

λn

))

E
p
λν
( f )p ,

which yields (32).
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Consider the case ϕ(t) = ϕα(t) = 2α| sin(t/2)|α , α > 0. In this case, the function ϕ satisfies

the conditions of Theorem 2 with τ = π. If r = αp ≥ 1, then using the inequality

xr − yr ≤ rxr−1(x − y), x > 0, y > 0

(see, e.g. [16, Ch. 1]), and ordinary trigonometric transformations for ν = 1, 2, . . . , n, we get

ϕp
(τλν

λn

)

− ϕp
(τλν−1

λn

)

= 2αp
(
∣

∣

∣
sin

πλν

λn

∣

∣

∣

αp
−

∣

∣

∣
sin

πλν−1

λn

∣

∣

∣

αp)

≤ 2αpαp
∣

∣

∣
sin

πλν

λn

∣

∣

∣

αp−1∣
∣

∣
sin

πλν

λn
− sin

πλν−1

λn

∣

∣

∣

≤ αp
(2π

λn

)αp
λ

αp−1
ν (λν − λν−1).

If 0 < r < 1, then the similar estimate can be obtained using the inequality

xr − yr ≤ ryr−1(x − y),

which holds for all x > 0 and y > 0 [16, Ch. 1].

Corollary 7. Suppose that the function f ∈ BS p, 1 ≤ p < ∞, has the Fourier series of the form

(3). Then for any n ∈ N and α > 0,

ω
p
α

(

f ,
π

λn

)

≤ αp
(2π

λn

)αp n

∑
ν=1

λ
αp−1
ν (λν − λν−1)E

p
λν
( f ).

If, in addition, the Fourier exponents λν, ν ∈ N, satisfy the condition

λν+1 − λν ≤ C, ν = 1, 2, . . . , (37)

with an absolute constant C > 0, then

ω
p
α

(

f ,
π

λn

)

≤ αp(2π)αp

λ
αp
n

C
n

∑
ν=1

λ
αp−1
ν E

p
λν
( f ). (38)

4 Constructive characteristics of the classes of functions defined by the

generalized moduli of smoothness

Let ω be the function (majorant) given on [0, 1]. For a fixed α > 0, we set

BS pHω
α = { f ∈ BS p : ωα( f , δ)p = O(ω(δ)), δ → 0+}. (39)

Further, we consider the majorants ω(δ), δ ∈ [0, 1], which satisfy the following conditions:

1) ω(δ) is continuous on [0, 1];

2) ω(δ) ↑;

3) ω(δ) 6= 0 for δ ∈ (0, 1];

4) ω(δ) → 0 for δ → 0;

as well as the condition
n

∑
v=1

λs−1
v ω

( 1

λv

)

= O
[

λs
nω

( 1

λn

)]

, (40)

where s > 0, and λν, ν ∈ N, is a increasing sequence of positive numbers. In the case where

λν = ν, the condition (40) is the known Bari condition (Bs) (see, e.g. [7]).
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Theorem 3. Assume that the function f ∈ BS p, 1 ≤ p < ∞, has the Fourier series of the form

(3), α > 0 and the majorant ω, that satisfies the conditions 1)– 4).

i) If f ∈ BS p Hω
α , then the following relation

Eλn
( f )p = O

[

ω
( 1

λn

)]

(41)

is true.

ii) If the numbers λν, ν ∈ N, satisfy condition (37) and the function ωp satisfies condition

(40) with s = αp, then relation (41) yields the inclusion f ∈ BS p Hω
α .

Proof. Let f ∈ BS pHω
α . Then relation (41) follows from (39) and (28).

On the other hand, if f ∈ BS p, the numbers λν, ν ∈ N, satisfy condition (37) and the

function ωp satisfies condition (40) with s = αp and relation (41) holds, then by (38), we get

ω
p
α

(

f ,
1

λn

)

p
≤ C1

λ
αp
n

n

∑
ν=1

λ
αp−1
ν E

p
λν
( f ) ≤ C1

λ
αp
n

n

∑
ν=1

λ
αp−1
ν ωp

( 1

λν

)

= O
[

ωp
( 1

λn

)]

,

where C1 = αp(2π)αpC. Hence, the function f belongs to the set BS p Hω
α .

The function tr, 0 < r ≤ α, satisfies condition (40). Hence, denoting by BS p Hr
α the class

BS pHω
α for ω(t) = tr we establish the following statement.

Corollary 8. Let f ∈ BS p, 1 ≤ p < ∞, has the Fourier series of the form (3), α > 0, 0 < r ≤ α/p

and condition (37) holds. The function f belongs to the set BS p Hr
α, iff the following relation

Eλn
( f )p = O(λ−r

n )

is true.

In the spaces S p, for classical moduli of smoothness ωm, Theorems 2 and 3 were proved

in [28] and [2]. In the spaces S p, inequalities of the form (38) were also obtained in [30]. In

spaces Lp of 2π-periodic functions, Lebesgue summable with the pth degree, inequalities of

the kind as (38) were obtained by M.F. Timan (see, e.g. [33, Ch. 6], [34, Ch. 2]). In the Musielak-

Orlicz type spaces, inequalities of the kind (32) were proved in [1].
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Доведено прямi та оберненi теореми наближення у просторах Безиковича-Степанця BS p
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