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A NEW GENERALIZATION OF α-TYPE ALMOST-F-CONTRACTIONS AND α-TYPE

F-SUZUKI CONTRACTIONS IN METRIC SPACES AND THEIR FIXED POINT

THEOREMS

In this paper a new generalization of α-type almost-F-contractions and an extension of α-type

F-Suzuki contractions are given. Moreover, some new fixed point theorems of them are discussed.

Some examples and applications in order to illustrate the main results are presented. The results of

this article can be considered as improvements of some well-known results appeared in the litera-

ture.

Key words and phrases: α-type almost-F-contraction, α-type F-Suzuki contraction.

1 Department of Mathematics, Science and Research Branch, Islamic Azad University, 14515-775, Tehran, Iran
2 Department of Mathematics, Razi University, 67149, Kermanshah, Iran

E-mail: aghiltaheri@yahoo.com (Taheri A.), farajzadehali@gmail.com (Farajzadeh A.P.)

1 INTRODUCTION

After innovation of the Banach contraction principle [2], fixed point theory, which was one

of the most celebrated tool in nonlinear analysis, acquires a distinguished role in research ac-

tivity. Due to its applications in the nonlinear integro-differential equations, nonlinear Volterra

integral equations, game theory etc, existence of a fixed point for contraction type mappings

in metric spaces have been considered by many authors. see, for instance, [4,12,13,17,19,22,23]

and the references therein.

During the past decades, scholars extend this principle towards different contractions. Spe-

cially, in 2012, Wardowski [24] generalized it interestingly by introducing a new type of con-

tractions called F-contractions. After presentation of F-contractions, many authors extended

them in various forms. Some extensions and generalizations are obtained in [1,6–11,14–21,25].

Wardowski and Van Dung [25] (also independently Minak et al. [14]) with using Ćirić-type

generalized contraction [5] in definition of F-contractions, introduced the notion of F-weak

contractions and utilize the same to generalize the main result of [24].

Very recently (in 2016) Gopal et al. [7] generalized it by introducing the concept of α-type

F-contraction. On the other hand, In 2014 Piri and Kumam [16] extended the results of War-

dowski [24] by introducing the concept of an F-Suzuki contraction. Also, in the same year,

Minak et al. [14] introduced a new concept of an almost-F-contraction. Most recently (in 2016)

Budhia et al. [3] introduced the new concepts of an α-type almost-F-contraction and an α-type

F-Suzuki contraction and proved some fixed point theorems concerning such contractions. In

this research, we extended the results of [7] and [3], by introducing a new type of contractions

that is called α-type almost-F-weak contraction and an α-type F-weak Suzuki contraction.
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2 PRELIMINARIES

Here, we express a series of definitions of some fundamental notions.

First, let us, following [24], denote with F the family of all functions F : (0,+∞) → R that

satisfy the following conditions:

(F1) F is strictly increasing,

(F2) for every sequence {αn} in (0,+∞), we have limn→∞ F(αn) = −∞ iff limn→∞ αn = 0,

(F3) there exists a number k ∈ (0, 1) such that limα→0+ αkF(α) = −∞.

And following [20], denote by G the collection of all functions F : (0,+∞) → R satisfying the

following conditions:

(G1) F is strictly increasing,

(G2) there exists a sequence {αn} in (0,+∞) such that limn→∞ F(αn) = −∞, or inf F = −∞,

(G3) F is a continuous map.

Example 1 ([3]). The following functions belong to F :

F(α) = ln α, F(α) = ln α + α, F(α) = − 1√
α

,

and the following functions F : (0,+∞) → R belongs to G :

F(α) = ln α, F(α) = −1

α
+ α, F(α) = −1

α
.

Definition 1 ([24]). Let (X, d) be a metric space. The mapping T : X → X is called an

F-contraction, if there exist F ∈ F and τ > 0 such that, for all x, y ∈ X with d(Tx, Ty) > 0, we

have

τ + F(d(Tx, Ty)) ≤ F(d(x, y)).

Example 2 ([24], Example 2.1). It is easy to verify that every Banach contraction is an

F-contraction with F(t) = ln t and τ = ln r. For more details and examples see [24].

Definition 2 ([25]). Let (X, d) be a metric space. The mapping T : X → X is called an F-weak

contraction on X if there exist F ∈ F and τ > 0 such that, for all x, y ∈ X with d(Tx, Ty) > 0,

we have

τ + F(d(Tx, Ty)) ≤ F(m(x, y)),

where

m(x, y) = max

{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2

}

.

Remark 1. Every F-contraction is an F-weak contraction but converse is not necessarily true

[25].

Definition 3 ([25]). Let (X, d) be a metric space and α : X × X → (0,+∞) ∪ {−∞} be a

symmetric function. The mapping T : X → X is called an α-type F-contraction on X if there

exist F ∈ F and τ > 0 such that, for all x, y ∈ X with d(Tx, Ty) > 0, we have

τ + α(x, y)F(d(Tx, Ty)) ≤ F(d(x, y)).
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Definition 4 ([25]). Let (X, d) be a metric space and α : X × X → (0,+∞) ∪ {−∞} be a

symmetric function. The mapping T : X → X is called an α-type F-weak contraction on X if

there exist F ∈ F and τ > 0 such that, for all x, y ∈ X with d(Tx, Ty) > 0, we have

τ + α(x, y)F(d(Tx, Ty)) ≤ F(m(x, y)),

where

m(x, y) = max

{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2

}

.

Remark 2. Every α-type F-contraction is an α-type F-weak contraction but the converse is not

necessarily true.

Remark 3. It is clear that every F-weak contraction is an α-type F-weak contraction with

α(x, y) = 1, for all x, y ∈ X. But every α-type F-weak contraction is not necessarily an F-weak

contraction. For example, see ([25], Example 3.4).

Definition 5 ([14]). Let (X, d) be a metric space. The mapping T : X → X is said to be an

almost-F-contraction, if there exist F ∈ F , τ > 0 and L ≥ 0 such that for all x, y ∈ X,

d(Tx, Ty) > 0 ⇒ τ + F(d(Tx, Ty)) ≤ F(d(x, y) + Ld(y, Tx))

and

d(Tx, Ty) > 0 ⇒ τ + F(d(Tx, Ty)) ≤ F(d(x, y) + Ld(x, Ty)).

Remark 4. Every F-contraction is an almost-F-contraction with L = 0, but the converse is not

necessarily true [14]. Also, it is obvious that every F-weak contraction is an α-type F-weak

contraction with α(x, y) = 1, for all x, y ∈ X, but the converse is not necessarily true. For

examples, see [14].

Definition 6 ([3]). Let (X, d) be a metric space. The mapping T : X → X is said to be an α-type

almost-F-contraction, if there exist F ∈ F and τ > 0 and L ≥ 0 such that for all x, y ∈ X,

d(Tx, Ty) > 0 ⇒ τ + F(d(Tx, Ty)) ≤ F(d(x, y) + Ld(y, Tx))

and

d(Tx, Ty) > 0 ⇒ τ + F(d(Tx, Ty)) ≤ F(d(x, y) + Ld(x, Ty)).

Remark 5. Every almost-F-contraction is an α-type almost-F-contraction with α(x, y) = 1, for

all x, y ∈ X. But the converse is not necessarily true. For some examples, see [3, Example 3.1].

Definition 7 ([16]). Let (X, d) be a metric space. A mapping T : X → X is said to be an

F-Suzuki contraction if there exist F ∈ G and τ > 0 such that for all x, y ∈ X with Tx 6= Ty

1

2
d(x, Tx) ≤ d(x, y) implies that τ + F(d(Tx, Ty)) ≤ F(d(x, y)).

Definition 8 ([3]). Let (X, d) be a metric space and α : X × X → (0,+∞) ∪ {−∞} be a sym-

metric function. The mapping T : X → X is said to be an α-type F-Suzuki contraction if there

exist F ∈ G and τ > 0 such that for all x, y ∈ X with Tx 6= Ty

1

2
d(x, Tx) ≤ d(x, y) implies that τ + α(x, y)F(d(Tx, Ty)) ≤ F(d(x, y)).
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Remark 6. Every α-type F-Suzuki contraction is an F-Suzuki contraction with α(x, y) = 1, for

all x, y ∈ X. But the converse is not necessarily true. For example, see [3, Example 3.2].

Definition 9 ([19]). Let α : X × X → (0,+∞) be a given mapping. The mapping T : X → X is

said to be an α-admissible, whenever α(Tx, Ty) ≥ 1 provided α(x, y) ≥ 1 and x, y ∈ X.

Definition 10. An α-admissible map T is said to have the K-property, if for each sequence

{xn} ⊆ X with α(xn, xn+1) ≥ 1, for all n ∈ N, there exists a natural number k such that

α(Txn, Txm) ≥ 1, for all m > n ≥ k.

We state the following lemmas which are useful in proving our main results.

Lemma 1 ([16]). Let F : (0,+∞) → R be an increasing function and {αn} be a sequence of

positive real numbers. Then, the following holds:

(a) if limn→∞ F(αn) = −∞, then limn→∞ αn = 0,

(b) if inf F = −∞ and limn→∞ αn = 0, then limn→∞ F(αn) = −∞.

Lemma 2 ([4]). Let (X, d) be a metric space, and {xn} be a sequence in X such that

limn→∞ d(xn, xn+1) = 0. If {xn} is not a Cauchy sequence then there exists ε > 0 and two

sequences of positive integers {nk} and {mk} with nk > mk > k such that d(xmk
, xnk

) > ε,

d(xmk
, xnk−1) < ε and

(1) limk→∞ d(xmk
, xnk

) = ε,

(2) limk→∞ d(xmk−1, xnk
) = ε,

(3) limk→∞ d(xmk
, xnk+1) = ε,

(4) limk→∞ d(xmk−1, xnk+1) = ε.

3 MAIN RESULTS

In this section, two new contractions are introduced. In the first part of this section, the

concept of an α-type almost-F-weak contraction is defined in metric spaces. And in the second

part the concept of an α-type F-weak Suzuki contraction is introduced. Some fixed point the-

orems for these contractions are proved and suitable examples are furnished to demonstrate

the validity of the hypotheses of our results and reality of our generalizations.

We commence our main result with the following definition.

Definition 11. Let (X, d) be a metric space and α : X × X → (0,+∞) ∪ {−∞} be a symmetric

function. The mapping T : X → X is said to be an α-type almost-F-weak contraction (for

simplicity we write almost-α F-weak contraction), if there exist F ∈ F , τ > 0 and L ≥ 0 such

that d(Tx, Ty) > 0 implies that

τ + α(x, y)F(d(Tx, Ty)) ≤ F(m(x, y) + LN1(x, y)),

where

m(x, y) = max

{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2

}

,

and

N1(x, y) = min{d(x, Ty), d(y, Tx)}.
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Example 3. Let X = {(0, 0), (0, 4), (5, 0), (4, 5)} be endowed with the metric d defined by

d

(

(x1, x2), (y1, y2)

)

= |x1 − y1|+ |x2 − y2| .

It is easy to see that (X, d) is a complete metric space.

Suppose that T : X → X is defined as follows :

T(0, 0) = T(5, 0) = T(0, 4) = (0, 0), T(4, 5) = (5, 0).

Furthermore, suppose α((x1, x2), (y1, y2)) = 1, for all (x1, x2), (y1, y2) ∈ X. It is easily verified

that, for each F ∈ F , the mapping T is not an α-type almost-F-contraction. Indeed, for any

τ > 0 and F ∈ F , we have

τ + α

(

(0, 4), (4, 5)

)

F

(

d

(

T(0, 4), T(4, 5)

))

= τ + F

(

d

(

(0, 0), (5, 0)

))

= τ + F(5).

On the other hand, we have

F

(

d

(

(0, 4), (4, 5)

)

+ Ld

(

(4, 5), T(0, 4)

))

= F(5).

And τ + F(5) > F(5). So, T is not an α-type almost-F-contraction. But, one can easily see that,

for 0 < τ < ln 6
5 and F(t) = ln t, if d

(

T(x1, x2), T(y1, y2)

)

> 0 then

τ + α

(

(x1, x2), (y1, y2)

)

F

(

d

(

T(x1, x2), T(y1, y2)

))

≤ F

(

m

(

(x1, x2), (y1, y2)

)

+

LN1

(

(x1, x2), (y1, y2)

))

,

(1)

where

m

(

(x1, x2), (y1, y2)

)

= max

{

d

(

(x1, x2), (y1, y2)

)

, d

(

(x1, x2), T(x1, x2)

)

,

d

(

(y1, y2), T(y1, y2)

)

,

d

(

(x1,x2),T(y1,y2)

)

+d

(

(y1,y2),T(x1,x2)

)

2

}

,

and

N1

(

(x1, x2), (y1, y2)

)

= min

{

d

(

(x1, x2), T(y1, y2)

)

, d

(

(y1, y2), T(x1, x2)

)}

.

For example d

(

T(0, 4), T(4, 5)

)

= d

(

(0, 0), (5, 0)

)

= 5 > 0 and

m

(

(0, 4), (4, 5)

)

= max

{

d

(

(0, 4), (4, 5)

)

, d

(

(0, 4), T(0, 4)

)

, d

(

(4, 5), T(4, 5)

)

,

d

(

(0,4),T(4,5)

)

+d

(

(4,5),T(0,4)

)

2

}

= max{5, 4, 6, 9+9
2 } = 9,
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and we have

τ + α

(

(0, 4), (4, 5)

)

F

(

d

(

T(0, 4), T(4, 5)

))

= τ + F(5) < ln
6

5
+ ln 5 = ln 6.

On the other hand, we have

F

(

m

(

(0, 4), (4, 5)

)

+ LN1

(

(0, 4), (4, 5)

))

= F(9) = ln 9.

Hence,

τ + α

(

(0, 4), (4, 5)

)

F

(

d

(

T(0, 4), T(4, 5)

))

< F

(

m

(

(0, 4), (4, 5)

)

+ LN1

(

(0, 4), (4, 5)

))

.

Or for (5, 0) and (4, 5), we have d

(

T(5, 0), T(4, 5)

)

= d

(

(0, 0), (5, 0)

)

= 5 > 0 and

m

(

(5, 0), (4, 5)

)

= max

{

d

(

(5, 0), (4, 5)

)

, d

(

(5, 0), T(5, 0)

)

, d

(

(4, 5), T(4, 5)

)

,

d

(

(5,0),T(4,5)

)

+d

(

(4,5),T(5,0)

)

2

}

= max{6, 5, 6, 0+9
2 } = 6,

and we have

τ + α

(

(5, 0), (4, 5)

)

F

(

d

(

T(5, 0), T(4, 5)

))

= τ + F(5) < ln
6

5
+ ln 5 = ln 6.

On the other hand, we have

F

(

m((5, 0), (4, 5)) + LN1((5, 0), (4, 5))

)

= F(6) = ln 6.

Hence,

τ + α

(

(5, 0), (4, 5)

)

F

(

d

(

T(5, 0), T(4, 5)

))

≤ F

(

m

(

(5, 0), (4, 5)

)

+ LN1

(

(5, 0), (4, 5)

))

.

In the same manner, we can easily check that (1) is satisfied for (0, 0) and (4, 5). Therefore, T

is an almost-α F-weak contraction.

Now, we present our first result.

Theorem 1. Let (X, d) be a complete metric space, α : X × X → (0,+∞)∪ {−∞} be a symmet-

ric function, F ∈ F and T : X → X be an almost-α F-weak contraction satisfying the following

conditions:

(i) T is α-admissible,

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,

(iii) if {xn} is a sequence in X such that xn → x as n → ∞ and α(xn, xn+1) ≥ 1, for all n ∈ N,

then α(xn, x) ≥ 1, for all n ∈ N.
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Then, if T or F is continuous then T has a fixed point.

Proof. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1. For any n ∈ N, define:

xn+1 = T(xn).

If xn0+1 = xn0 for some n0 ∈ N then xn0 is a fixed point of T. So, we can assume that xn+1 6= xn,

for each n ∈ N. Since T is α-admissible, one can easily obtain that

α(xn, xn+1) ≥ 1, ∀n ∈ N. (2)

Now since T is an almost-αF − weak contraction, there exist τ > 0 and L ≥ 0 such that if

d(Tx, Ty) > 0, then

τ + α(x, y)F(d(Tx, Ty)) ≤ F(m(x, y) + LN1(x, y)). (3)

Therefore, by (2) and (3)

τ + F(d(Txn , Txn+1)) ≤ τ + α(xn, xn+1)F(d(Txn , Txn+1))

≤ F(m(xn, xn+1) + LN1(xn, xn+1)) ≤ F(m(xn, xn+1) + Ld(xn+1, Txn))

= F(m(xn, xn+1) + 0) = F(m(xn, xn+1)).

Hence, we have

τ + F(d(xn+1, xn+2)) ≤ F(m(xn, xn+1)). (4)

But

m(xn, xn+1) = max

{

d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1),
d(xn,Txn+1)+d(xn+1,Txn)

2

}

= max

{

d(xn, xn+1), d(xn+1, xn+2),
d(xn,xn+2)

2

}

≤ max

{

d(xn, xn+1), d(xn+1, xn+2),
d(xn,xn+1)+d(xn+1,xn+2)

2

}

≤ max{d(xn , xn+1), d(xn+1, xn+2)}.

Now, if d(xn0+1, xn0+2) ≥ d(xn0 , xn0+1) for some n0 ∈ N, then

m(xn0 , xn0+1) ≤ d(xn0+1, xn0+2),

and since F is strictly increasing,

F(m(xn0 , xn0+1)) ≤ F(d(xn0+1, xn0+2)),

so, it follow from (4)

τ + F(d(xn0+1, xn0+2)) ≤ F(d(xn0+1, xn0+2)).

So, τ ≤ 0 is a contradiction. Consequently,

d(xn+1, xn+2) < d(xn, xn+1), ∀n ∈ N. (5)
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Hence, from (4) and (5), we have

τ + F(d(xn+1, xn+2)) ≤ F(d(xn, xn+1)),

or

F(d(xn+1, xn+2)) ≤ F(d(xn, xn+1))− τ.

In general, one can get

F(d(xn+1, xn+2)) ≤ F(d(x0, x1))− nτ. (6)

Hence limn→∞ F(d(xn , xn+1)) = −∞. So, from (F2) we have,

lim
n→∞

d(xn, xn+1) = 0.

Therefore, with notice to (F3), there exists k ∈ (0, 1) such that

lim
n→∞

(d(xn, xn+1))
kF(d(xn , xn+1)) = 0.

Now, (6) implies that

(d(xn , xn+1))
kF(d(xn , xn+1)) ≤ (d(xn , xn+1))

k(F(d(x0 , x1))− nτ).

Then, it can be easily seen that

lim
n→∞

n(d(xn, xn+1))
k = 0.

So, there exists n0 ∈ N such that

d(xn, xn+1) ≤
1

n
1
k

, ∀n ≥ n0.

Consequently, if m > n > n0, then

d(xn, xm) ≤ ∑
m
i=n d(xi, xi+1) ≤ ∑

m
i=n

1

i
1
k

≤ ∑
∞
i=n0

1

i
1
k

.

Since k ∈ (0, 1), the series ∑
∞
i=n0

1

i
1
k

is convergent. Therefore, {xn} is a Cauchy sequence, and

since X is complete, there exists u ∈ X such that xn → u as n → ∞. We claim that u is a fixed

point of T.

To prove the claim, at first suppose that T is continuous, then we have

u = lim
n→∞

xn+1 = lim
n→∞

Txn = T(u),

and so u is a fixed point of T. Now, suppose that F is continuous and in contrary, suppose

that Tu 6= u. Without lose of generality, one can assume that there exists n0 ∈ N such that

Txn 6= Tu, for all n ≥ n0. (Indeed, if xn+1 = Txn = Tu for infinite values of n, then uniqueness

of the limit concludes that Tu = u).

From (iii) and (4), we have

τ + F(d(Txn , Tu)) ≤ τ + α(xn, u)F(d(Txn , Tu)) ≤ F(m(xn, u) + LN1(xn, u))

≤ F(m(xn, u) + Ld(Txn, u)) = F(m(xn, u) + Ld(xn+1, u))
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And since F is continuous, as n → ∞ we get

τ + F(d(u, Tu)) ≤ F( lim
n→∞

(m(xn, u) + Ld(xn+1, u))), (7)

where

m(xn, u) = max

{

d(xn, u), d(xn, xn+1), d(u, Tu),
d(xn, Tu) + d(u, xn+1)

2

}

,

so,

lim
n→∞

m(xn, u) = max

{

0, 0, d(u, Tu),
d(u, Tu) + 0

2

}

= d(u, Tu).

Also, we have

lim
n→∞

Ld(xn+1, u) = 0.

Therefore, from (7) we have

τ + F(d(u, Tu)) ≤ F(d(u, Tu)),

which is contradicted by positivity of τ . So, d(u, Tu) = 0 i.e. Tu = u.

The next result establishes a sufficient condition for uniqueness of fixed point.

Theorem 2. Let (X, d) be a complete metric space and T : X → X be a mapping for which

there exist F ∈ F and τ > 0 and L ≥ 0 such that d(Tx, Ty) > 0 implies that

τ + α(x, y)F(d(Tx, Ty)) ≤ F(m(x, y) + LN2(x, y)), (8)

where m(x, y) is defined as in Definition 11 and

N2(x, y) = min{d(x, Tx), d(x, Ty), d(y, Tx)}.

We further assume that α(x, y) ≥ 1, for each x, y ∈ Fix(T). Then if T is satisfies the conditions

(i), (ii) and (iii) of Theorem 1 and T or F is continuous, then T has a unique fixed point.

Proof. It is clear that T is an almost-α F-weak contraction. So, by Theorem 1, T has a fixed

point.

Now, suppose that u and v are two fixed point of T. If u 6= v, then d(Tu, Tv) > 0. Also

α(u, v) ≥ 1, because u, v ∈ Fix(T), hence (8) implies that

τ + F(d(u, v)) = τ + F(d(Tu, Tv)) ≤ τ + α(u, v)F(d(Tu, Tv))

≤ F(m(u, v) + LN2(u, v)) ≤ F(m(u, v) + Ld(u, Tu))

= F(m(u, v) + 0) = F(m(u, v)),

where

m(u, v) = max

{

d(u, v), d(u, Tu), d(v, Tv), d(u,Tv)+d(v,Tu)
2

}

= max{d(u, v), 0, 0, d(u,v)+d(v,u)
2 } = d(u, v).

So, we have

τ + F(d(u, v)) ≤ F(d(u, v)),

which is contradicted by positivity of τ. So, u = v.



484 TAHERI A., FARAJZADEH A.P.

Corollary 1 ([3], Theorem 3.1). Let (X, d) be a complete metric space and T : X → X be an

α-type almost-F-contraction, where F ∈ F , satisfying the following conditions:

(i) T is α-admissible,

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,

(iii) if {xn} is a sequence in X such that xn → x as n → ∞ and α(xn, xn+1) ≥ 1 for all n ∈ N,

then α(xn, x) ≥ 1, for all n ∈ N.

Then, T has a fixed point.

Proof. It is enough to notice that T is an almost-α F-weak contraction in which m(x, y) =

d(x, y). One can prove this corollary by applying the proof of Theorem 1, without needing

to continuity of T or F.

The following corollaries are some obvious results of Theorem 1.

Corollary 2. Let (X, d) be a complete metric space and T : X → X be an almost F-contraction.

Then, T has a fixed point.

Proof. In Theorem 1, put α(x, y) = 1, for each x, y ∈ X.

Corollary 3. Let (X, d) be a complete metric space and T : X → X be an F-contraction. Then,

T has a unique fixed point.

Proof. In the Theorem 1, put α(x, y) = 1, for each x, y ∈ X, and L = 0.

The following example shows that Theorem 1 is a generalization of the Theorem 3.1 in [3].

Example 4. In the Example 3, we observed that the mapping T is not an α-type almost-F-

contraction. So, T does not satisfy to Theorem 3.1 in [3]. But T is an almost-α F-weak contrac-

tion, and we can easily see that T satisfies all conditions of Theorem 1 and (0, 0) is a fixed point

of T. Also, all conditions of the Theorem 2 are satisfied and (0, 0) is the unique fixed point of

the map T.

Here, to obtain our next results, we first introduce the following definition.

Definition 12. Let (X, d) be a metric space and α : X × X → (0,+∞) ∪ {−∞} be a symmetric

function. The mapping T : X → X is said to be an α-type F-weak Suzuki contraction (for

simplicity we write α F-weak Suzuki contraction) if there exists F ∈ G and τ > 0 such that for

all x, y ∈ X with Tx 6= Ty,

1

2
d(x, Tx) ≤ d(x, y) implies that τ + α(x, y)F(d(Tx, Ty)) ≤ F(m(x, y)),

where m(x, y) is defined as in Definition 11.

Example 5. Let X = {0, 1, 2} be endowed with the metric d defined by

d(x, y) = |x − y|.
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And T : X → X is defined as follows

T(1) = T(2) = 1 and T(0) = 2.

Furthermore, suppose that α(x, y) = 1, for all x, y ∈ X. It is easily verified that, for each F ∈ F ,

the mapping T is not an α-type F-Suzuki contraction. Indeed, for any τ > 0 and F ∈ F , we

have
1

2
d(0, T0) =

1

2
d(0, 2) = 1 = d(0, 1),

and

τ + α(0, 1)F(d(T0, T1)) = τ + F(d(2, 1)) = τ + F(1).

On the other hand, we have

F(d(0, 1)) = F(1).

And τ + F(1) > F(1). So, T is not an α-type F-Suzuki contraction. But one can easily see that,

for 0 < τ ≤ ln 2 and F(t) = ln t, if d(Tx, Ty) 6= 0 then

1

2
d(x, Tx) ≤ d(x, y) implies that τ + α(x, y)F(d(Tx, Ty)) ≤ F(m(x, y)), (9)

where m(x, y) is defined as in Definition 11. For example, d(T(0), T(1)) = d(2, 1) = 1 and

m(0, 1) = max

{

d(0, 1), d(0, T0), d(1, T1),
d(0, T1) + d(1, T0)

2

}

= 2,

and we have

τ + α(0, 1)F(d(T0, T1)) = τ + F(1) ≤ ln 2 + ln 1 = ln 2.

On the other hand, we have

F(m(0, 1)) = F(2) = ln 2.

Hence,

τ + α(0, 1)F(d(T0, T1)) ≤ F(m(0, 1)).

In the same manner, we can easily check that (9) is satisfied for x = 0, y = 2. Therefore, (9) is

satisfied for any x, y ∈ X which d(Tx, Ty) 6= 0. So, T is an α F-weak Suzuki contraction.

Theorem 3. Let (X, d) be a complete metric space and T : X → X be an α F-weak Suzuki

contraction, satisfying the following conditions:

(i) T is α-admissible,

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,

(iii) if {xn} is a sequence in X such that xn → x as n → ∞ and α(xn, xn+1) ≥ 1, for all

n ∈ N ∪ {0}, then α(xn, x) ≥ 1, for all n ∈ N ∪ {0},

(iv) T has the K-property.

Then, T has a fixed point in X.
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Proof. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1. For any n ∈ N ∪ {0}, define:

xn+1 = T(xn).

Since T is α-admissible, one can easily obtain that

α(xn, xn+1) ≥ 1, ∀n ∈ N ∪ {0}. (10)

If xn0+1 = xn0 for some n0 ∈ N ∪ {0}, then xn0 is a fixed point of T. So, we can assume that

xn+1 6= xn for each n ∈ N ∪ {0}, i.e. d(xn, xn+1) > 0 and so

1

2
d(xn, Txn) =

1

2
d(xn, xn+1) < d(xn, xn+1). (11)

Now, since T is an α F-weak Suzuki contraction, there exist F ∈ G and τ > 0 such that if

d(Tx, Ty) > 0, then

1

2
d(x, Tx) ≤ d(x, y) implies that τ + α(x, y)F(d(Tx, Ty)) ≤ F(m(x, y)), (12)

where m(x, y) is defined as in Definition 11.

Therefore, by (11) and (12)

τ + F(d(Txn , Txn+1)) ≤ τ + α(xn, xn+1)F(d(Txn , Txn+1))

≤ F(m(xn, xn+1)),
(13)

in which

m(xn, xn+1) = max

{

d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1),
d(xn,Txn+1)+d(xn+1,Txn)

2

}

= max

{

d(xn, xn+1), d(xn+1, xn+2),
d(xn,xn+2)

2

}

≤ max

{

d(xn, xn+1), d(xn+1, xn+2),
d(xn,xn+1)+d(xn+1,xn+2)

2

}

≤ max{d(xn , xn+1), d(xn+1, xn+2)}.

Now, if d(xn0+1, xn0+2) ≥ d(xn0 , xn0+1) for some n0 ∈ N ∪ {0}, then

m(xn0 , xn0+1) ≤ d(xn0+1, xn0+2),

and since F is strictly increasing,

F(m(xn0 , xn0+1)) ≤ F(d(xn0+1, xn0+2)).

Therefore by (13)

τ + F(d(xn0+1, xn0+2)) ≤ F(d(xn0+1, xn0+2)).

So, τ ≤ 0 a contradiction. Consequently,

d(xn+1, xn+2) < d(xn, xn+1), ∀n ∈ N. (14)
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Therefore,

m(xn, xn+1) ≤ d(xn, xn+1), ∀n ∈ N ∪ {0}. (15)

So, from (13) and (14) one can obtain that

τ + F(d(xn+1, xn+2)) ≤ F(d(xn, xn+1)),

or

F(d(xn+1, xn+2)) ≤ F(d(xn, xn+1))− τ.

In general, one can get

F(d(xn+1, xn+2)) ≤ F(d(x0, x1))− nτ.

Hence,

lim
n→∞

F(d(xn , xn+1)) = −∞,

which together with (G2) and Lemma 1, gives

lim
n→∞

d(xn, xn+1) = 0.

Now, we claim that {xn} is a Cauchy sequence. If it is not true, then by Lemma 2, there exists

ε0 > 0 and two sequences of positive integers {nk} and {mk} with nk > mk > k such that

d(xmk
, xnk

) > ε0, d(xmk
, xnk−1) < ε0 and

(L1) limk→∞ d(xnk
, xmk

) = ε0,

(L2) limk→∞ d(xnk
, xmk−1) = ε0,

(L3) limk→∞ d(xnk+1, xmk
) = ε0,

(L4) limk→∞ d(xnk+1, xmk−1) = ε0.

Therefore, with notice to definition of m(x, y) we have:

lim
k→∞

m(xnk
, xmk−1) = lim

k→∞
max

{

d(xnk
, xmk−1), d(xnk

, xnk+1), d(xmk−1, xmk
),

d(xnk
,xmk

+d(xmk−1,xnk+1))

2

}

= max{ε0, 0, 0, ε0+ε0
2 } = ε0.

So

lim
k→∞

m(xnk
, xmk−1) = ε0. (16)

On the other hand, since limk→∞ d(xnk
, xmk−1) = ε0 > 0, and limk→∞ d(xnk

, xnk+1) = 0, by

considering a subsequence if necessary, one can assume that, there exists k1 ∈ N such that for

any k > k1 and nk > mk > k

d(xnk
, xnk+1) ≤ d(xnk

, xmk−1).

So, it is clear that

1

2
d(xnk

, Txnk
) =

1

2
d(xnk

, xnk+1) < d(xnk
, xmk−1), ∀k > k1 and nk > mk > k. (17)
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Also, using the K-property, there exists k2 ∈ N such that

α(xnk
, xmk−1) ≥ 1, ∀k > k2. (18)

Let k ≥ max{k1, k2}, then from (18), (17) and (12) we have

τ + F(d(Txnk
, xmk−1)) ≤ τ + α(xnk

, xmk−1)F(d(Txnk
, Txmk−1))

≤ F(m(xnk
, xmk−1)).

Letting n → ∞, since F is continuous, by (L1) and (16) we have

τ + F(ε0) ≤ F(ε0),

which is a contradiction, as τ > 0. Consequently, {xn} is a Cauchy sequence in the complete

metric space X. So, there exists u ∈ X such that xn → u, as n → ∞. To complete the proof, we

show that u is a fixed point of T. At first, we claim that, for all n ≥ 0

1

2
d(xn, xn+1) ≤ d(xn, u) or

1

2
d(xn+1, xn+2) ≤ d(xn+1, u). (19)

In fact, if for some n0 ≥ 0, both of them are false then we will have

1

2
d(xn0 , xn0+1) > d(xn0 , u) and

1

2
d(xn0+1, xn0+2) > d(xn0+1, u).

So, with notice of (14) we have

d(xn0 , xn0+1) ≤ d(xn0 , u) + d(u, xn0+1) <
1
2 d(xn0 , xn0+1) +

1
2 d(xn0+1, xn0+2)

≤ 1
2 d(xn0 , xn0+1) +

1
2 d(xn0 , xn0+1) = d(xn0 , xn0+1).

Which is a contradiction and the claim is proved.

Well, let us begin with the first part of (19), i.e. suppose that

1

2
d(xn, xn+1) ≤ d(xn, u),

and in contrary, assume that Tu 6= u. Without lose of generality, one can assume that Txn 6= Tu,

for all n ∈ N. (Indeed, if xn+1 = Txn = Tu for infinite values of n, then uniqueness of the limit

concludes that Tu = u). Then, from (14) and (iii) we get

τ + F(d(xn+1, Tu)) = τ + F(d(Txn , Tu))

≤ τ + α(xn, u)F(d(Txn , Tu)) ≤ F(m(xn, u)),

and since F is continuous on (0,+∞) and d(u, Tu) > 0 as n → ∞, we get

τ + F(d(u, Tu)) ≤ F( lim
n→∞

m(xn, u)). (20)

But

m(xn, u) = max

{

d(xn, u), d(xn, xn+1), d(u, Tu),
d(xn, Tu) + d(u, xn+1)

2

}

.

So, we have

lim
n→∞

m(xn, u) = max

{

0, 0, d(u, Tu),
d(u, Tu) + 0

2

}

= d(u, Tu).
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Therefore, if d(u, Tu) 6= 0 then from (20) we have

τ + F(d(u, Tu)) ≤ F(d(u, Tu)),

which is contradicted by positivity of τ. So, d(u, Tu) = 0, i.e. Tu = u. Finally, if we assume

that the second part of (19) is true, i.e.

1

2
d(xn+1, xn+2) ≤ d(xn+1, u).

Then, as the same manner, we can prove that d(u, Tu) = 0, i.e. Tu = u.

The next result establishes a sufficient condition for uniqueness of fixed point of an α F-

weak Suzuki contraction.

Theorem 4. Suppose that all the conditions of Theorem 3 are satisfied. In addition, assume

that α(x, y) ≥ 1, for all x, y ∈ Fix(T). Then, T has a unique fixed point.

Proof. Suppose that u and v are two fixed point of T. If u 6= v, then d(Tu, Tv) > 0. Also

α(u, v) ≥ 1, because u, v ∈ Fix(T). Also, it is clear that 1
2 d(u, Tu) = 0 < d(u, v). Hence, (12)

implies that

τ + F(d(u, v)) = τ + F(d(Tu, Tv)) ≤ τ + α(u, v)F(d(Tu, Tv)) ≤ F(m(u, v)),

where

m(u, v) = max

{

d(u, v), d(u, Tu), d(v, Tv), d(u,Tv)+d(v,Tu)
2

}

= max{d(u, v), 0, 0, d(u,v)+d(v,u)
2 } = d(u, v).

So, we have

τ + F(d(u, v)) ≤ F(d(u, v)),

which is a contradiction, as τ > 0. So, u = v.

Since each α-type F-Suzuki contraction is obviously an α F-weak Suzuki contraction, the

following two corollaries are elementary results of Theorems 3 and 4 respectively.

Corollary 4 ([3], Theorem 3.3). Let (X, d) be a complete metric space and T : X → X be an α-

type F-Suzuki contraction, satisfying the conditions (i)–(iv) of Theorem 3. Then, T has a fixed

point.

Corollary 5 ([3], Theorem 3.4). If in the Corollary 4, we further assume that α(x, y) ≥ 1, for all

x, y ∈ Fix(T), then T has a unique fixed point.

The following example shows that Theorem 3 is a generalization of Theorem 3.3 in [3].

Example 6. In the Example 5, we saw that the mapping T is not an α-type F-Suzuki contraction.

So, T does not satisfy to Theorem 3.3 in [3]. But T is an α F-weak Suzuki contraction, and we

can easily see that T satisfies all conditions of Theorem 3. And u = 1 is a fixed point of T. Also,

all conditions of Theorem 4 are satisfied and u = 1 is the unique fixed point of T.
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4 CONSEQUENCES

In this section, one of the consequences of our research in metric spaces with graph is

introduced. First, we remind a series of definitions and notions in graph theory.

Let (X, d) be a metric space and ∆ = {(x, x), x ∈ X}. Suppose that G is a graph, V(G) is

the set of all its vertices and E(G) is the set of all edges of G. We say that G has no parallel

edge, if (x, y), (y, x) ∈ E(G) implies that x = y. Also G is directed if the edges have a direction

associated with them. We denoted by G(X) the set of all directed graph G with no parallel

edge in which V(G) = X and ∆ ⊆ E(G).

Definition 13 ([9]). The mapping T : X → X is called G-continuous, if for each sequence

{xn}∞
n=1 in X that (xn, xn+1) ∈ E(G) ∀n ∈ N and xn → x as n → ∞ one can conclude that

Txn → Tx as n → ∞.

Theorem 5. Let (X, d) be a complete metric space endowed with a graph G ∈ G(X) and

T : X → X be a mapping with the following conditions:

(i) for all x, y ∈ X, (x, y) ∈ E(G) ⇒ (Tx, Ty) ∈ E(G),

(ii) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G),

(iii) for any sequence {xn}∞
n=1 ⊆ X and x ∈ X if limn→∞ xn = x and (xn, xn+1) ∈ E(G), for

all n ∈ N, then (xn, x) ∈ E(G), for all n ∈ N,

(iv) there exist F ∈ F , and τ > 0 and L ≥ 0 such that if (x, y) ∈ E(G) and d(Tx, Ty) > 0 then

τ + F(d(Tx, Ty)) ≤ F(m(x, y) + LN1(x, y)), (21)

where m(x, y) and N1(x, y) are defined as in Definition 11.

Then, if T is G-continuous or F is continuous, then T has a fixed point.

Proof. Define α : X × X → (0,+∞) ∪ {−∞} by

α(x, y) =

{

1, if (x, y) ∈ E(G),

−∞, otherwise.

We show that all condition of Theorem 1 are satisfied. First, prove that T is α-admissible, it is

enough to notice that if α(x, y) ≥ 1, then (x, y) ∈ E(G) and it follows from (i) that (Tx, Ty) ∈
E(G). Hence, α(Tx, Ty) ≥ 1. By (ii) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G) i.e.

α(x0, Tx0) ≥ 1. Now, suppose that {xn}∞
n=1 ⊆ X is a sequence in X such that xn → x as n → ∞

and α(xn, xn+1) ≥ 1, for all n ∈ N, Then, (xn, xn+1) ∈ E(G) and it follows from (iv) that

(xn, x) ∈ E(G), for all n ∈ N, i.e. α(xn, x) ≥ 1, for all n ∈ N ∪ {0}. Finally, we show that T

is an almost-α F-weak contraction on X. For this, suppose that x, y ∈ X and d(Tx, Ty) > 0. If

(x, y) /∈ E(G), then α(x, y) = −∞ and so we have

τ + α(x, y)F(d(Tx, Ty)) ≤ F(m(x, y) + LN1(x, y)).

If (x, y) ∈ E(G), then α(x, y) = 1 and it follows from (21) that

τ + α(x, y)F(d(Tx, Ty)) = τ + F(d(Tx, Ty)) ≤ F(m(x, y) + LN1(x, y)).

Thus, T is an almost-α F-weak contraction on X. It follow from all the conditions of Theorem

1 are satisfied and T has a fixed point in X.
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The following result is immediately deduced from Theorem 5.

Corollary 6 ([6], Theorem 4.1). Let (X, d) be a complete metric space endowed with a graph

G ∈ G(X) and T : X → X be a mapping with the following conditions:

(i) for all x, y ∈ X, (x, y) ∈ E(G) ⇒ (Tx, Ty) ∈ E(G),

(ii) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G),

(iii) for any sequence {xn}∞
n=1 ⊆ X and x ∈ X if limn→∞ xn = x and (xn, xn+1) ∈ E(G), for

all n ∈ N, then (xn, x) ∈ E(G), for all n ∈ N or T is G-continuous.

(iv) there exist F ∈ F , τ > 0 and L ≥ 0 such that if (x, y) ∈ E(G) and d(Tx, Ty) > 0 then

τ + F(d(Tx, Ty)) ≤ F(d(x, y) + LN1(x, y)).

Then, T has a fixed point.
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У цiй статтi запропоновано нове узагальнення майже-F-стиску α-типу i продовження F-

Сузукi стиску α-типу. Крiм того, доведено деякi новi теореми про фiксовану точку для цих

випадкiв. Наведено приклади i застосування, якi iлюструють основнi результати. Результати

цiєї статтi покращують результати, якi добре вiдомi у лiтературi.

Ключовi слова i фрази: майже-F-стиск α-типу, F-Сузукi стиск α-типу.


