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THE NONLOCAL BOUNDARY VALUE PROBLEM FOR ONE-DIMENSIONAL

BACKWARD KOLMOGOROV EQUATION AND ASSOCIATED SEMIGROUP

This paper is devoted to a partial differential equation approach to the problem of construction

of Feller semigroups associated with one-dimensional diffusion processes with boundary condi-

tions in theory of stochastic processes. In this paper we investigate the boundary-value problem for

a one-dimensional linear parabolic equation of the second order (backward Kolmogorov equation)

in curvilinear bounded domain with one of the variants of nonlocal Feller-Wentzell boundary con-

dition. We restrict our attention to the case when the boundary condition has only one term and it

is of the integral type. The classical solution of the last problem is obtained by the boundary inte-

gral equation method with the use of the fundamental solution of backward Kolmogorov equation

and the associated parabolic potentials. This solution is used to construct the Feller semigroup cor-

responding to such a diffusion phenomenon that a Markovian particle leaves the boundary of the

domain by jumps.
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INTRODUCTION

Let Π[0, T] = {(s, x) : 0 ≤ s ≤ T, x ∈ R} and let St ⊂ Π[0, T] be the curvilinear domain

St = {(s, x) : 0 ≤ s < t ≤ T, r1(s) < x < r2(s)},

where T is a fixed positive number, and r1, r2 are given functions defined on [0, T]. Denote by

Ds the interval (r1(s), r2(s)) and by St and Ds the closure of St and Ds respectively. Denote

also by Ci the curves {(s, ri(s)) : s ∈ [0, T]} (i = 1, 2) and let C = C1 ∪ C2.

In Π[0, T] we consider the parabolic operator of the second order with bounded continuous

coefficients

∂

∂s
+ Ls ≡

∂

∂s
+

1

2
b(s, x)

∂2

∂x2
+ a(s, x)

∂

∂x
.

The main problem is to find a classical solution u(s, x, t) of equation

∂u

∂s
+ Lsu = 0, (s, x) ∈ St, (1)
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which satisfies the “initial” condition

lim
s↑t

u(s, x, t) = ϕ(x), x ∈ Dt, (2)

and two boundary conditions

∫

Ds

[u(s, ri(s), t)− u(s, y, t)]µi(s, dy) = 0, 0 ≤ s ≤ t ≤ T, i = 1, 2, (3)

where ϕ is the given function and µi(s, ·) (s ∈ [0, T], i = 1, 2) are given finite nonnegative

measures on Ds, s ∈ [0, T].

The problem (1)-(3) appears, in particular, in the theory of stochastic processes while study-

ing the diffusion processes with boundary conditions. Recall that the most general form of

boundary conditions for one-dimensional diffusion processes was established in works of W.

Feller [2] and A. D. Wentzell [12] (see also [13], where the multidimensional case is consid-

ered). From the assertions proved there, it follows that if the ordinary differential operator

of the second order is a generator of the Feller semigroup in C[r1, r2] (r1, r2 are fixed, −∞ <

r1 < r2 < ∞), then its domain of definition consists of functions satisfying nonlocal boundary

conditions. In the general case, these boundary conditions contain the values of the function

and its first-order derivatives with respect to the time variable and with respect to the spatial

variable at points ri, i = 1, 2, and the nonlocal component of the integral type that correspond,

respectively, to such properties of process after it reaches the boundary point ri as its termina-

tion, delay, reflection and jump out of ri.

In the present paper we shall establish the classical solvability of problem (1)-(3) by the

boundary integral equation method with the use of the fundamental solution of the equation

(1) and the associated parabolic potentials, and prove that its solution u(s, x, t) ≡ Tst ϕ(x) can

be treated as the two parameter semigroup of operators describing an inhomogeneous Feller

process in R which trajectories are located in curvilinear domain ST. It is easy to understand

that the trajectories of this process in ST \ C can be treated as the trajectories of the diffusion

process generated by the operator Ls and at the points of curves Ci (i = 1, 2) their behavior is

determined by Feller-Wentzell boundary conditions in (3). The conditions in (3) correspond to

jump discontinuity of trajectories of process which is caused by inward jump of a Markovian

particle from the boundary.

It is necessary to note that the scheme we shall use to solve the problem (1)-(3) is partially

presented in work [6], where the similar problem was investigated in the case when the back-

ward Kolmogotov equation is given in ∪2
i=1S

(i)
t = ∪2

i=1{(s, x) : 0 ≤ s < t ≤ T, (−1)i(x −
r(s)) > 0} and, at the common boundary x = r(s) of domains S

(1)
t and S

(2)
t , the Feller-

Wentzell conjugation condition, which, in addition to the integral term, contains also the lo-

cal term corresponding to the termination of process, is imposed. We should also mention

works [8], [11], which give the results concerning the construction of diffusion processes with

nonlocal boundary conditions of the integral type by the methods of stochastics [8] and func-

tional analysis [11].

We need the following conditions:

I. The operator ∂/∂s + Ls is uniformly parabolic in Π[0, T], i.e., there exist constants b and

B such that 0 < b ≤ b(s, x) ≤ B < ∞ for all (s, x) ∈ Π[0, T].
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II. The coefficients of Ls are bounded and continuous functions in Π[0, T] which belong

to Hölder class H
α
2 ,α(Π[0, T]), 0 < α < 1 (to recall the definitions of Hölder classes

see [7, p.16]).

III. The function ϕ in (2) is assumed to be defined on R and belongs to the space of bounded

continuous functions on R, which we will denote by Cb(R). The norm in this space is

defined by the equality ‖ϕ‖ = sups∈R
|ϕ(x)|. Furthermore, two fitting conditions

∫

Dt

[ϕ(ri(t))− ϕ(y)]µi(t, dy) = 0, i = 1, 2, hold.

IV. The nonnegative measures µi in (3) are such that µi(s, Ds) = 1, s ∈ [0, T] and for all

f ∈ Cb(R) the integrals ∫

Ds

f (y)µi(s, dy), i = 1, 2,

belong to H
1+α

2 ([0, T]) as functions of s.

V. The functions ri(s), i = 1, 2, are continuous and belong to H
1+α

2 ([0, T]).

Conditions I, II ensure the existence of the fundamental solution of the parabolic operator

∂/∂s + Ls in Π[0, T] (see [7, Ch.IV, §15], [9, Ch.II, §3]), i.e., a function G(s, x, t, y) defined for all

(s, x) and (t, y) in Π[0, T], s < t, satisfying the following condition:

for any ϕ ∈ Cb(R), the function

u0(s, x, t) =
∫

R

G(s, x, t, y)ϕ(y)dy (4)

satisfies the equation (1) if 0 ≤ s < t ≤ T, x ∈ R and the condition (2) if t ∈ (0, T], x ∈ R.

Note that the function G admits the representation

G(s, x, t, y) = Z0(s, x, t, y) + Z1(s, x, t, y), i = 1, 2,

where

Z0(s, x, t, y) = [2πb(t, y)(t − s)]−
1
2 exp

{
− (y − x)2

2b(t, y)(t − s)

}
,

Z1(s, x, t, y) =

t∫

s

dτ
∫

R

Z0(s, x, τ, z)Q(τ, z, t, y)dz,

and the function Q(s, x, t, y) is the solution of some singular Volterra integral equation of the

second kind. Note also that

∣∣Dr
sD

p
x Z0(s, x, t, y)

∣∣ ≤ C(t − s)−
1+2r+p

2 exp

{
−c

(y − x)2

t − s

}
, (5)

∣∣Dr
sD

p
x Z1(s, x, t, y)

∣∣ ≤ C(t − s)−
1+2r+p−α

2 exp

{
−c

(y − x)2

t − s

}
(6)
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(0 ≤ s < t ≤ T, x, y ∈ R), and that for the function u0 defined by (4) (ϕ ∈ Cb(R)) which is

called the Poisson potential in the theory of parabolic equations, the inequality

∣∣Dr
sD

p
x u0(s, x, t)

∣∣ ≤ C‖ϕ‖(t − s)−
2r+p

2 , 0 ≤ s < t ≤ T, x ∈ R, (7)

holds. Here C and c are positive constants (we shall subsequently denote various positive

constants by symbols C or c without specifying their values), r and p are the nonnegative

integers for which 2r + p ≤ 2, Dr
s is the partial derivative with respect to s of order r, D

p
x is the

partial derivative with respect to x of order p.

In addition to the integral u0(s, x, t) we need to consider two more integrals

ui1(s, x, t) =

t∫

s

G(s, x, τ, ri(τ))Vi(τ, t)dτ, i = 1, 2,

where 0 ≤ s < t ≤ T, x ∈ R and V1, V2 are some functions. The function ui1 is called

the parabolic simple-layer potential. If we assume that the density Vi(τ, t) is continuous for

τ ∈ [s, t) and admits a weak singularity with an exponent of not less than −1
2 when τ = t,

then the function ui1(s, x, t), i = 1, 2, is bounded continuous in 0 ≤ s ≤ t ≤ T, x ∈ R and

satisfies the equation (1) in (s, x) ∈ [0, t)× (R \ ri(s)) with the initial condition: ui1(s, x, t) → 0

if s ↑ t (x ∈ R, i = 1, 2).

The important property of the function ui1 is reflected in the so-called theorem on the jump

of conormal derivative of parabolic simple-layer potential (see, e.g. [3, Ch.V, §2], [7, Ch.IV,

§15]). In the present paper this assertion is not used, and therefore we do not formulate it.

1 SOLVING THE PARABOLIC BOUNDARY VALUE PROBLEM

We shall find a solution u of problem (1)-(3) as a sum of Poisson potential u0 and two

simple-layer potentials u11 and u21, namely:

u(s, x, t) =
∫

R

G(s, x, t, y)ϕ(y)dy +
2

∑
j=1

t∫

s

G(s, x, τ, rj(τ))Vj(τ, t)dτ, (s, x) ∈ St. (8)

Here ϕ is the function in (2) and Vi, i = 1, 2, are the unknown densities to be determined.

Note that since µi(s, Ds) = 1 for every s ∈ [0, T] (see the condition IV), the conditions (3)

and the fitting conditions in III can be reduced to

u(s, ri(s), t)−
∫

Ds

u(s, y, t)µi(s, dy) = 0, 0 ≤ s ≤ t ≤ T, i = 1, 2, (9)

and

ϕ(ri(t))−
∫

Dt

ϕ(y)µi(t, dy) = 0, i = 1, 2, (10)

respectively.
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Substituting (8) into (9), we get the system of two Volterra integral equations of the first

kind for the unknowns Vi, i = 1, 2, namely

2

∑
j=1

t∫

s

Kij(s, τ)Vj(τ, t)dτ = Φi(s, t), 0 ≤ s < t ≤ T, i = 1, 2, (11)

where

Kij(s, τ) = G(s, ri(s), τ, rj(τ))−
∫

Ds

G(s, y, τ, rj(τ))µi(s, dy),

Φi(s, t) =
∫

Ds

u0(s, y, t)µi(s, dy)− u0(s, ri(s), t).

Using Holmgren’s method [4] (see also [5]) we shall reduce (11) to an equivalent system

of Volterra integral equations of the second kind. For this purpose we consider the integro-

differential operator

E(s, t) f =

√
2

π

∂

∂s

t∫

s

(ρ − s)−
1
2 f (ρ, t)dρ, 0 ≤ s < t ≤ T

and apply it to the both sides of each equation in (11).

The application of the operator E to the left-hand side of (11) gives the expression which

after interchanging the order of integration takes on the form

Ii(s, t) ≡
2

∑
j=1

√
2

π

∂

∂s

t∫

s

Vj(τ, t)dτ

τ∫

s

(ρ − s)−
1
2 Kij(ρ, τ)dρ.

Write Kij as Kij(ρ, τ) = K
(1)
ij (ρ, τ) + K

(2)
ij (ρ, τ)− K

(3)
ij (ρ, τ), where

K
(1)
ij (ρ, τ) = Z0(ρ, ri(τ), τ, rj(τ)),

K
(2)
ij (ρ, τ) = Z1(ρ, ri(τ), τ, rj(τ)) + [G(ρ, ri(ρ), τ, rj(τ))− G(ρ, ri(τ), τ, rj(τ))],

K
(3)
ij (ρ, τ) =

∫

Dρ

Z0(ρ, y, τ, rj(τ))µi(ρ, dy) +
∫

Dρ

Z1(ρ, y, τ, rj(τ))µi(ρ, dy),

and denote by Jij(s, τ) the integral
τ∫
s
(ρ − s)−

1
2 Kij(ρ, τ)dρ, and by J

(k)
ij (s, τ) the integral

τ∫
s
(ρ − s)−

1
2 K

(k)
ij (ρ, τ)dρ, k = 1, 2, 3.

Note that J
(1)
ij (s, τ) is equal to

1√
2πb(τ, ri(τ))

τ∫

s

(τ − ρ)−
1
2 (ρ − s)−

1
2 dρ =

√
π

2b(τ, ri(τ))
,

when i = j, and tends to zero as s ↑ τ when i 6= j. Note also that application of the mean value

theorem to difference G(ρ, ri(ρ), τ, rj(τ)) − G(ρ, ri(τ), τ, rj(τ)) together with the condition V

and the estimates (5), (6) lead to the estimate

|K(2)
ij (ρ, τ)| ≤ |Z1(ρ, ri(τ), τ, rj(τ))|+ |D1

xG(ρ, x0, τ, rj(τ))| · |ri(τ)− ri(ρ)| ≤ C(τ − ρ)−
1
2+

α
2
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(x0 is a point in the open interval with endpoints ri(τ) and ri(ρ)) from which it follows that

J
(2)
ij (s, τ) → 0 as s ↑ τ.

Hence,

I
(k)
ij (s, t) ≡

√
2

π

∂

∂s

t∫

s

Vj(τ, t)J
(k)
ij (s, τ)dτ =

√
2

π

t∫

s

Vj(τ, t)
∂

∂s
J
(k)
ij (s, τ)dτ (12)

if k = 1, i 6= j or if k = 2. If k = 1 and i = j, then I
(k)
ij (s, t) = − Vi(s,t)√

b(s,ri(s))
.

Let us show that the relation (12) is true also for k = 3. For this it suffices to prove that

lim
s↑τ

J
(3)
ij (s, τ) = 0. (13)

Let us denote by K
(31)
ij the first term in the expression for K

(3)
ij and by J

(31)
ij the integral J

(3)
ij with

K
(3)
ij replaced by K

(31)
ij . In view of (5) and (6), we may verify (13) only for J

(31)
ij .

Write J
(31)
ij in the form J

(31)
ij (s, τ) = L

(1)
ij (s, τ)+ L

(2)
ij (s, τ)+ L

(3)
ij (s, τ), i = 1, 2, j = 1, 2, where

L
(1)
ij (s, τ) =

1√
2πb(τ, rj(τ))

τ∫

s

(ρ − s)−
1
2 (τ − ρ)−

1
2 dρ

[ ∫

Dρ

exp

{
−

(y − rj(τ))
2

2b(τ, rj(τ))(τ − ρ)

}
µi(ρ, dy)

−
∫

Ds

exp

{
−

(y − rj(τ))
2

2b(τ, rj(τ))(τ − ρ)

}
µi(s, dy)

]
,

L
(2)
ij (s, τ) =

1√
2πb(τ, rj(τ))

∫

Ds

[
exp

{
−

(y − rj(τ))
2

2b(τ, rj(τ))(τ − s)

}

− exp

{
−

(y − rj(s))
2

2b(τ, rj(τ))(τ − s)

}]
Rj(s, τ, y)µi(s, dy),

L
(3)
ij (s, τ) =

1√
2πb(τ, rj(τ))

∫

Ds

exp

{
−

(y − rj(s))
2

2b(τ, rj(τ))(τ − s)

}
Rj(s, τ, y)µi(s, dy),

and Rj(s, τ, y) denotes the integral

Rj(s, τ, y) =

τ∫

s

(ρ − s)−
1
2 (τ − ρ)−

1
2 exp

{
−

(y − rj(τ))
2

2b(τ, rj(τ))(τ − s)
· ρ − s

τ − ρ

}
dρ,

which after the change of variables z = ρ−s
τ−ρ takes on the form

Rj(s, τ, y) =

∞∫

0

z−
1
2 (z + 1)−1 exp

{
−

(y − rj(τ))
2

2b(τ, rj(τ))(τ − s)
· z

}
dz,

and so

|Rj(s, τ, y)| ≤ C. (14)
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From this and IV it follows immediately that

|L(1)
ij (s, τ)| ≤ C(τ − s)

1+α
2 , (15)

|L(3)
ij (s, τ)| ≤ C

(
µi(s, Uδ(rj(s))) + exp

{
− δ2

2B(τ − s)

})
, (16)

where Uδ(rj(s)) = {y ∈ Ds : |y − rj(s)| < δ}, δ is any positive constant, B is the constant

from I. Applying the mean value theorem to the difference of exponents within the braces in

the expression for L
(2)
ij , we get, after using the condition V as well as the estimate (14) and the

inequality σν exp{−cσ} ≤ C (0 ≤ σ < ∞, 0 ≤ ν < ∞),

|L(2)
ij (s, τ)| ≤ C(τ − s)

α
2 . (17)

The estimates (15)–(17) imply that J
(31)
ij (s, τ) → 0 as s ↑ τ. This completes the proof of (13).

Thus, the relation (12) holds also for k = 3.

Let us apply the operator E to the right-hand side of (11). In order to simplify the expression

for Υi(s, t) ≡ E(s, t)Φi(s, t) we need to prove the following two relations:

Φi(s, t) → 0 as s ↑ t, (18)

|Φi(s, t)− Φi(s̃, t)| ≤ C‖ϕ‖(t − s)−
1+α

2 (s − s̃)
1+α

2 , 0 ≤ s̃ < s < t ≤ T. (19)

Passing to the limit as s ↑ t in the expression for Φi (i = 1, 2), and recalling that the Poisson

potential u0 satisfies the condition (2), we get the expression which equals the left side of (10)

taken with the opposite sign and which therefore vanishes. Thus (18) holds.

We proceed to prove (19). Write the difference Φi(s, t)− Φi(s̃, t) in the form

Φi(s, t)− Φi(s̃, t) =
∫

Ds

[u0(s, y, t)− u0(s̃, y, t)]µi(s, dy)

+

[ ∫

Ds

u0(s̃, y, t)µi(s, dy)−
∫

Ds̃

u0(s̃, y, t)µi(s̃, dy)

]

+ [u0(s̃, ri(s̃), t)− u0(s, ri(s̃), t)] + [u0(s, ri(s̃), t)− u0(s, ri(s), t)]

(20)

and note that for s̃ < s

|u0(s, y, t)− u0(s̃, y, t)| = |u0(s, y, t)− u0(s̃, y, t)| 1+α
2 |u0(s, y, t)− u0(s̃, y, t)| 1−α

2

≤
∣∣∣∣∣
∂u0(ŝ, y, t)

∂ŝ

∣∣∣∣
ŝ=s̃+θ(s−s̃)

· (s − s̃)

∣∣∣∣∣

1+α
2

(|u0(s, y, t)|+ |u0(s̃, y, t)|) 1−α
2

≤ C‖ϕ‖
[
(t − s̃ − θ(s − s̃))−1(s − s̃)

] 1+α
2

≤ C‖ϕ‖
[
((t − s)+(s − s̃)(1 − θ))−1(s − s̃)

] 1+α
2

≤ C‖ϕ‖(t − s)−
1+α

2 (s − s̃)
1+α

2 , 0 < θ < 1.

Using this inequality for differences u0(s, y, t)− u0(s̃, y, t), u0(s̃, ri(s̃), t)− u0(s, ri(s̃), t) and the

condition IV to estimate the difference of integrals in the second line of the expression (20)
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as well as the Lagrange formula together with the condition V and the inequality (7) (with

r = 0, p = 1) to estimate the last term u0(s, ri(s̃), t)− u0(s, ri(s), t) in (20), we arrive at (19).

Taking into account (18) and (19) we see thus that the application of the operator E to the

function Φi gives

Υi(s, t) =
1√
2π

t∫

s

(ρ − s)−
3
2 [Φi(ρ, t)− Φi(s, t)]dρ −

√
2

π
(t − s)−

1
2 Φi(s, t). (21)

Having considered the action of the operator E on both sides of (11), we can now write the

system of Volterra integral equations of the second kind for the unknowns Vi, i = 1, 2, which

is equivalent to (11) and has the form

Vi(s, t) =
2

∑
j=1

Nij(s, τ)Vj(τ, t)dτ + Ψi(s, t), 0 ≤ s < t ≤ T, i = 1, 2, (22)

where

Ψi(s, t) = −
√

b(s, ri(s))Υi(s, t),

Nii(s, τ) =

√
2b(s, ri(s))

π

∂

∂s

(
J
(2)
ii (s, τ)− J

(3)
ii (s, τ)

)
, i = j,

Nij(s, τ) =

√
2b(s, ri(s))

π

∂

∂s
Jij(s, τ), i 6= j.

Note that from (21), (19) and (7) (with r = p = 0), it follows that

|Ψi(s, t)| ≤ C‖ϕ‖(t − s)−
1
2 .

Unfortunately, the kernels Nij do not have a weak singularity. We can not find the estimate for

Nij(s, τ) better than C(τ − s)−1. However this difficulty arises due to only one term

∫

Uδ(rj(s))

∂

∂y
Z0(s, y, τ, rj(τ))µi(s, dy)

which appears after writing ∂
∂s J

(31)
ij (s, τ) in the form

∂

∂s
J
(31)
ij (s, τ) =

∂

∂s

τ∫

s

(ρ − s)−
1
2

( ∫

Dρ

Z0(ρ, y, τ, rj(τ))µi(ρ, dy)

−
∫

Ds0

Z0(ρ, y, τ, rj(τ))µi(s0, dy)

)∣∣∣∣
s0=s

+
∂

∂s

τ∫

s

(ρ − s)−
1
2 dρ

∫

Ds0

Z0(ρ, y, τ, rj(τ))µi(s0, dy)

∣∣∣∣
s0=s

and then taking the derivative of the last term in this expression. Namely,
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∂

∂s

τ∫

s

(ρ − s)−
1
2 dρ

∫

Ds0

Z0(ρ, y, τ, rj(τ))µi(s0, dy)

∣∣∣∣
s0=s

=
1√

2πb(τ, rj(τ))

× ∂

∂s

∫

Ds0

exp

{
−

(y − rj(τ))
2

2b(τ, rj(τ))(τ − s)

}
Rj(s, τ, y)µi(s0, dy)

∣∣∣∣
s0=s

=
1√

2πb(τ, rj(τ))

× ∂

∂s

∫

Ds0

µi(s0, dy)

∞∫

0

z−
1
2 (z + 1)−1 exp

{
−

(y − rj(τ))
2

2b(τ, rj(τ))(τ − s)
· (z + 1)

}
dz

∣∣∣∣
s0=s

=

√
πb(τ, rj(τ))

2

∫

Ds

∂

∂y
Z0(s, y, τ, rj(τ))µi(s, dy) =

√
πb(τ, rj(τ))

2

×
( ∫

Uδ(rj(s))

∂

∂y
Z0(s, y, τ, rj(τ))µi(s, dy) +

∫

Ds\Uδ(rj(s))

∂

∂y
Z0(s, y, τ, rj(τ))µi(s, dy)

)
.

All other terms in the expression for Nij can be estimated by C(δ)(τ − s)−1+ α
2 , where C(δ)

is the positive constant depending on δ.

Despite the strong singularity of kernels Nij, the system of equations (22) has a solution

and this solution can be found by the method of successive approximations:

Vi(s, t) =
∞

∑
n=0

V
(n)
i (s, t), 0 ≤ s < t ≤ T, i = 1, 2, (23)

where

V
(0)
i (s, t) = Ψi(s, t), V

(n)
i (s, t) =

2

∑
j=1

t∫

s

Nij(s, τ)V
(n−1)
j (τ, t)dτ, n = 1, 2, . . . .

The convergence of series (23) and so the existence of the function Vi follows from the next

inequality

|V(n)
i (s, t)| ≤ C‖ϕ‖(t − s)−

1
2

n

∑
k=0

Ck
na(n−k)mk, 0 ≤ s < t ≤ T, i = 1, 2, (24)

where

a(k) =

(
2C(δ0)T

α
2 Γ(α

2 )
)k

Γ(1
2 )

Γ
(

1+kα
2

) , k = 0, 1, . . . , n,

m = max
s∈[0,T]

{ 2

∑
j=1

µi(s, Uδ0
(rj(s))), i = 1, 2

}

and the constant δ = δ0 is chosen to be sufficiently small so that m < 1. One can prove the

estimate (24) by induction and by using the scheme analogous to those used in the proofs of

(15), (16) and (17). Note also that the similar scheme was used in [10] in the study of the system

of Volterra integral equations of the second kind with strong singularity in the kernels.
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From (24) it also follows that the function Vi(s, t), i = 1, 2, satisfies the inequality

|Vi(s, t)| ≤ C‖ϕ‖(t − s)−
1
2 . (25)

Thus, the formula (23) represents the unique solution of (22), which is continuous in the

domain 0 ≤ s < t ≤ T and satisfies the inequality (25).

From estimates (5) (with r = p = 0) and (25) it follows that there exist the simple-layer

potentials ui1(s, x, t), i = 1, 2, in (8), and for them the condition ui1(s, x, t) → 0 if s ↑ t and the

inequality

|ui1(s, x, t)| ≤ C‖ϕ‖, (s, x) ∈ St, (26)

hold. It is obvious (see (7)) that the same inequality is also true for the Poisson potential

u0(s, x, t) in (8) and thus for the function u(s, x, t) as well. Recalling that u0(s, x, t) → ϕ(x) if

s ↑ t and that the functions u0(s, x, t) and ui1(s, x, t) satisfy equation (1) in the domain (s, x) ∈
St we conclude that u(s, x, t) is the desired classical solution of problem (1)-(3).

Let us prove the uniqueness of the solution of the problem (1)-(3). Suppose that the prob-

lem (1)-(3) has two solutions u1(s, x, t) and u2(s, x, t) which are continuous in St. Then the

function u ≡ u1 − u2 satisfies equation (1), the initial condition (2) with ϕ ≡ 0 and two bound-

ary conditions

u(s, ri(s), t) = gi(s, t), 0 ≤ s < t ≤ T, i = 1, 2,

where

gi(s, t) =
∫

Ds

u(s, y, t)µi(s, dy).

The above problem is the first boundary value problem and since the function gi is continuous

in s, it has a unique classical solution, continuous in St, which can be represented in the form

(8) with ϕ ≡ 0. Thus, the function u can be expressed in the form (8) where there are no Poisson

potential and Vi are the unknown functions, continuous in s ∈ [0, t), which are determined by

gi(s, t). Further, if we repeat the considerations of this section concerning the construction of

solution of the problem (1)-(3), we obtain the system (22) with Ψi ≡ 0 for the unknowns Vi.

Then Vi ≡ 0 and hence u ≡ 0. This completes the proof of the uniqueness.

Thus we have proved the following theorem:

Theorem 1. Let conditions I-V hold. Then problem (1)-(3) has a unique classical solution,

continuous in St for all t ∈ (0, T]. Furthermore, this solution has the form (8) and satisfies the

inequality (26).

2 FELLER SEMIGROUP

Suppose that the conditions I-V hold and consider the two-parameter family of linear op-

erators Tst, 0 ≤ s < t ≤ T, acting on the function ϕ ∈ Cb(R) by the rule:

Tst ϕ(x) =
∫

R

G(s, x, t, y)ϕ(y)dy +
2

∑
j=1

t∫

s

G(s, x, τ, rj(τ))Vj(τ, t)dτ, (27)

where the pair of functions (V1, V2) is the solution of (22). Recall that the function Vi (i = 1, 2)

has the form (23) and satisfy the inequality (25).
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We introduce the subspace C0(R) of Cb(R) which consists of all functions ϕ ∈ Cb(R) for

which the fitting conditions in III holds. Since the subspace C0(R) is closed in Cb(R), it is a

Banach space. Furthermore, it is invariant under the operators Tst, i.e.,

ϕ ∈ C0(R) =⇒ Tst ϕ ∈ C0(R).

Let us study properties of the family of operators Tst in C0(R).

First we note that if the sequence ϕn ∈ Cb(R) is such that lim
n→∞

ϕn(x) = ϕ(x) for all x ∈ R

and, in addition, sup
n

‖ϕn‖ < ∞, then lim
n→∞

Tst ϕn(x) = Tst ϕ(x) for all 0 ≤ s < t ≤ T, x ∈ Ds.

The proof of this property is based on well known assertions of calculus on passage of the

limit under the summation and integral signs (here this concerns series (23) and integrals on

the right-hand side of (8)). This property allows us to prove the following properties of the

operator family Tst without loss of generality, under the assumption that the function ϕ has a

compact support.

Now we prove that the operators Tst, 0 ≤ s < t ≤ T, remain the cone of nonnegative

functions invariant.

Lemma 1. If ϕ ∈ C0(R) and ϕ(x) ≥ 0 for all x ∈ R, then Tst ϕ(x) ≥ 0 for all x ∈ Ds,

0 ≤ s < t ≤ T.

Proof. Let ϕ be any nonnegative function in C0(R) with a compact support. Denote by γ the

minimum of Tst ϕ(x) in St and assume that γ < 0. From the minimum principle [3, Ch.II]

it follows that the value γ may be attained only when s ∈ (0, t) and x = ri(s), i = 1, 2. Fix

s0 ∈ (0, t) and i0 ∈ {1, 2} for which Ts0t ϕ(ri0(s0)) = γ. But then
∫

Ds0

[Ts0t ϕ(ri0(s0))− Ts0t ϕ(y)]µi0(s0, dy) < 0

which contradicts (3). Therefore γ ≥ 0 and the assertion of the lemma follows.

Note also that Tst ϕ0(x) = 1 for all 0 ≤ s < t ≤ T, x ∈ Ds if ϕ0 ≡ 1. This property together

with the assertion of lemma 1 allow us to assert that operators Tst are contractive, i.e.,

‖Tst ϕ‖ ≤ ‖ϕ‖
for all 0 ≤ s < t ≤ T.

Finally, we show that the operator family Tst has the semigroup property

Tst = TsτTτt, 0 ≤ s < τ < t ≤ T.

This property is a consequence of the assertion of uniqueness of the solution of the problem

(1)-(3). Indeed, to find u(s, x, t) = Tst ϕ(x), when it is given that u(s, x, t) → ϕ(x) as s ↑ t,

one can solve the problem first in time interval [τ, t] and then solve it in the time interval [s, τ]

with that initial function u(τ, x, t) = Tτt ϕ(x) which was obtained; in other words, Tst ϕ(x) =

Tsτ(Tτt ϕ)(x), ϕ ∈ C0(R) or Tst = TsτTτt.

The above properties of operators Tst imply the following assertion (see [1, Ch.II, §1]).

Theorem 2. Let conditions I-V hold. Then the two-parameter family of operators Tst, 0 ≤
s < t ≤ T, defined by formula (27) describes the inhomogeneous Feller process in R which

trajectories are located in curvilinear domain ST. In ST \ C , the trajectories of this process can

be treated as the trajectories of the diffusion process generated by the operator Ls and at the

points of curves Ci (i = 1, 2) they behave according to boundary conditions in (3).
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Шевчук Р.В., Савка I.Я., Нитребич З.М. Нелокальна крайова задача для одновимiрного оберненого

рiвняння Колмогорова i пов’язана з нею напiвгрупа операторiв // Карпатськi матем. публ. — 2019.

— Т.11, №2. — C. 463–474.

Стаття присвячена вивченню методами теорiї диференцiальних рiвнянь в частинних по-

хiдних проблеми побудови напiвгруп Феллера, якi описують одновимiрнi дифузiйнi проце-

си в областях iз заданими крайовими умовами. У цiй статтi ми дослiджуємо крайову задачу

для одновимiрного лiнiйного параболiчного рiвняння другого порядку (оберненого рiвнян-

ня Колмогорова) у криволiнiйнiй обмеженiй областi з одним iз варiантiв нелокальної крайо-

вої умови типу Феллера-Вентцеля. Ми зосереджуємо увагу на випадку, коли крайова умо-

ва Феллера-Вентцеля мiстить лише компоненту iнтегрального типу. Класичну розв’язнiсть

останньої задачi одержано нами методом граничних iнтегральних рiвнянь з використанням

фундаментального розв’язку оберненого рiвняння Колмогорова i породжених ним параболi-

чних потенцiалiв. Цей розв’язок використано для побудови напiвгрупи Феллера, яка описує

явище дифузiї в обмеженiй областi з властивiстю повернення дифундуючої частинки в сере-

дину областi стрибками.

Ключовi слова i фрази: параболiчний потенцiал, метод граничних iнтегральних рiвнянь, на-

пiвгрупа Феллера, нелокальна крайова умова.


