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ON THE SUM OF SIGNLESS LAPLACIAN SPECTRA OF GRAPHS

For a simple graph G(V, E) with n vertices, m edges, vertex set V(G) = {v1, v2, . . . , vn} and

edge set E(G) = {e1, e2, . . . , em}, the adjacency matrix A = (aij) of G is a (0, 1)-square matrix

of order n whose (i, j)-entry is equal to 1 if vi is adjacent to vj and equal to 0, otherwise. Let

D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix associated to G, where di = deg(vi), for all i ∈
{1, 2, . . . , n}. The matrices L(G) = D(G)− A(G) and Q(G) = D(G) + A(G) are respectively called

the Laplacian and the signless Laplacian matrices and their spectra (eigenvalues) are respectively

called the Laplacian spectrum (L-spectrum) and the signless Laplacian spectrum (Q-spectrum) of

the graph G. If 0 = µn ≤ µn−1 ≤ · · · ≤ µ1 are the Laplacian eigenvalues of G, Brouwer conjectured

that the sum of k largest Laplacian eigenvalues Sk(G) satisfies Sk(G) =
k

∑
i=1

µi ≤ m + (k+1
2 ) and this

conjecture is still open. If q1, q2, . . . , qn are the signless Laplacian eigenvalues of G, for 1 ≤ k ≤ n,

let S+
k (G) = ∑

k
i=1 qi be the sum of k largest signless Laplacian eigenvalues of G. Analogous to

Brouwer’s conjecture, Ashraf et al. conjectured that S+
k (G) ≤ m + (k+1

2 ), for all 1 ≤ k ≤ n. This

conjecture has been verified in affirmative for some classes of graphs. We obtain the upper bounds

for S+
k (G) in terms of the clique number ω, the vertex covering number τ and the diameter of the

graph G. Finally, we show that the conjecture holds for large families of graphs.
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INTRODUCTION

Let G(V, E) be a simple graph with n vertices, m edges, having vertex set

V(G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}. The adjacency matrix A = (aij)

of G is a (0, 1)-square matrix of order n whose (i, j)-entry is equal to 1 if vi is adjacent to

vj and equal to 0, otherwise. Let D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix associ-

ated to G, where di = deg(vi), for all i ∈ {1, 2, . . . , n}. The matrices L(G) = D(G) − A(G)

and Q(G) = D(G) + A(G) are respectively called the Laplacian and the signless Laplacian

matrices and their spectra (eigenvalues) are respectively called the Laplacian spectrum (L-

spectrum) and the signless Laplacian spectrum (Q-spectrum) of the graph G. These matri-

ces are real symmetric and positive semi-definite. We let 0 = µn ≤ µn−1 ≤ · · · ≤ µ1 and

0 ≤ qn ≤ qn−1 ≤ · · · ≤ q1 to be the L-spectrum and Q-spectrum of G, respectively. It is well
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known that the multiplicity of the Laplacian eigenvalue µn = 0 is equal to the number of con-

nected components of G and also µn−1 > 0 if and only if G is connected. Moreover µi = qi, for

all i ∈ {1, 2, . . . , n}, if and only if G is bipartite [4].

For k ∈ {1, 2, . . . , n}, let Sk(G) =
k

∑
i=1

µi be the sum of k largest Laplacian eigenvalues of G.

Also, let d∗i (G) = |{v ∈ V(G) : dv ≥ i}|, for i ∈ {1, 2, . . . , n}. In 1994, Grone and Merris [12]

observed that for any graph G and for any k ∈ {1, 2, . . . , n},

Sk(G) ≤
k

∑
i=1

d∗i (G).

This observation was proved by Hua Bai [2] and is nowadays called as Grone-Merris theorem.

As an analogue to Grone-Merris theorem, Andries Brouwer [3] conjectured that for a graph G

with n vertices and m edges and for any k ∈ {1, 2, . . . , n},

Sk(G) =
k

∑
i=1

µi ≤ m +

(

k + 1

2

)

.

This conjecture is still open and is presently an active component of research. For the progress

on this conjecture and related results, we refer to [8–11, 14] and the references therein.

For k ∈ {1, 2, . . . , n}, let S+
k (G) = ∑

k
i=1 qi be the sum of k largest signless Laplacian eigen-

values of a graph G. Motivated by the definition of Sk(G) and Brouwer’s conjecture, Ashraf et

al. [1] proposed the following conjecture about S+
k (G).

Conjecture 1. If G is a graph with n vertices and m edges, then

S+
k (G) =

k

∑
i=1

qi ≤ m +

(

k + 1

2

)

,

for all k ∈ {1, 2, . . . , n}.

Using computations on a computer Ashraf et al. [1] verified the truth of this conjecture for

all graphs with at most 10 vertices. For k = 1, the conjecture follows from the well-known

inequality q1(G) ≤ 2m
n−1 + n + 2 and m ≥ n − 1. Also, the cases k = n and k = n − 1 are

straightforward. The conjecture is true for trees. This follows from the fact that Brouwer’s

conjecture holds for trees and that both Laplacian and signless Laplacian eigenvalues are the

same for trees. Ashraf et al. [1] showed that the conjecture is true for all graphs when k = 2 and

is also true for regular graphs. Yang et al. [16] obtained various upper bounds for S+
k (G) and

proved that the conjecture is also true for unicyclic graphs, bicyclic graphs and tricyclic graphs

(except for k = 3). For the progress on this conjecture and related results, we refer to [1, 7, 16]

and the references therein.

A clique of a graph G is the maximum complete subgraph of the graph G. The order of the

maximum clique is called the clique number of the graph G and is denoted by ω. A subset S

of the vertex set V(G) is said to be a covering set of G if every edge of G is incident to at least

one vertex in S. A covering set with minimum cardinality among all covering sets is called

minimum covering set of G and its cardinality, denoted by τ, is called vertex covering number of

G.



ON THE SUM OF SIGNLESS LAPLACIAN SPECTRA OF GRAPHS 409

The distance between any two vertices u and v is defined as the length of shortest path

between them and the diameter of a graph G is the maximum distance among all pair of vertices

of G. If H is a subgraph of the graph G, we denote the graph obtained by removing the edges

in H from G by G \ H (that is, only the edges of H are removed from G).

Further, as usual Pn, Kn and Ks,t, respectively, denote the path on n vertices, the complete

graph on n vertices and the complete bipartite graph on s + t vertices. For other undefined

notations and terminology from spectral graph theory, the readers are referred to [4, 13].

The paper is organized as follows. In Section 2, we obtain some upper bounds for S+
k (G)

in terms of the clique number ω, the vertex covering number τ and the diameter of the graph

G. As applications to the results obtained in Section 2, we prove that Conjecture 1 is true for

some new classes of graphs in Section 3.

1 UPPER BOUNDS FOR S+
k (G)

In this section, we obtain the upper bounds for S+
k (G), in terms of the clique number ω, the

vertex covering number τ and the diameter of the graph G.

Yang et al. [16] obtained the following upper bound for S+
k (G), in terms of the clique num-

ber ω and the number of edges m:

S+
k (G) ≤ k(ω − 2) + 2m − ω(ω − 2). (1)

Das et al. [5] obtained an upper for Sk(G) of a graph with n vertices, in terms of the vertex

covering number τ and the number of edges m. Using similar analysis, the following upper

bound can be obtained for S+
k (G), in terms of the vertex covering number τ and the number

of edges m:

S+
k (G) ≤ m + kτ, (2)

with equality if and only if G ∼= K1,n−1.

The following observation is due to Fulton [6].

Lemma 1. Let A and B be two real symmetric matrices of order n. Then for any 1 ≤ k ≤ n,

k

∑
i=1

λi(A + B) ≤
k

∑
i=1

λi(A) +
k

∑
i=1

λi(B),

where λi(X) is the ith eigenvalue of the matrix X.

Let Γ1 be the family of all connected graphs except for the graphs G, where the vertices in

the vertex covering set S = {v1, v2, . . . , vω−1} of the subgraph Kω have the property that there

are pendent vertices incident to some vi ∈ S or any two vertices of S forms a triangle with a

vertex v ∈ V(G) \ C, where C is the vertex covering set of G.

The following theorem gives an upper bound for S+
k (G) in terms of the clique number ω,

the vertex covering number τ and the number of edges m of the graph G. The number of

vertices in a graph G is denoted by n(G) and the number of vertices adjacent to a vertex v is

denoted by N(v).
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Theorem 2. Let G ∈ Γ1 be a connected graph of order n ≥ 2 with m edges having clique

number ω and vertex covering number τ. Then, for 1 ≤ k ≤ n,

S+
k (G) ≤ k(τ − 1) + m − ω(ω − 3)

2
, (3)

with equality if and only if G ∼= Kn.

Proof. If G ∈ Γ1 is a connected graph with clique number ω, vertex cover number τ and mini-

mum vertex covering set C = {v1, v2, . . . , vτ}, then Kω is a subgraph of G. Further, the vertex

covering number of a complete graph on ω vertices is ω − 1. Without loss of generality, let

v1, v2, . . . , vω−1 be the vertices in C, which belong to V(Kω). The signless Laplacian spectrum

of Kω is {2ω − 2, ω − 2[ω−1]}. After removing the edges of Kω from G, the signless Laplacian

matrix of G isdecomposed as

Q(G) = Q(Kω ∪ (n − ω)K1) + Q(G \ Kω),

where G \ Kω is the graph obtained from G by removing the edges of Kω. Using Lemma 1 and

the fact S+
k (Kω ∪ (n − ω)K1) = S+

k (Kω), we have

S+
k (G) =

k

∑
i=1

qi(G) ≤
k

∑
i=1

qi(Kω) +
k

∑
i=1

qi(G \ Kω)

= S+
k (Kω) + S+

k (G \ Kω) = ω(k + 1)− 2k + S+
k (G \ Kω).

To complete the proof, we need to estimate S+
k (G \ Kω). So let Gω, Gω+1, . . . , Gτ be the span-

ning subgraphs of H = G \ Kω corresponding to the vertices vω, vω+1, . . . , vτ of C, having

vertex set same as H and edge sets defined as follows.

E(Gω) = {vωvt : vt ∈ N(vω) \ {v1, v2, . . . , vω−1}}
E(Gω+1) = {vω+1vt : vt ∈ N(vω+1) \ {v1, v2, . . . , vω}}

and in general

E(Gi) = {vivt : vt ∈ N(vi) \ {v1, v2, . . . , vi−1}}, i = ω, ω + 1, . . . , τ.

For i ∈ {ω, ω + 1, . . . , τ}, let mi = |E(Gi)|. Clearly E(H) = E(Gω) ∪ E(Gω+1) ∪ · · · ∪ E(Gτ)

and Gi = K1,mi
∪ (n(H)− mi − 1)K1, for all i ∈ {ω, ω + 1, . . . , τ}. Also, it is clear that

Q(H) = Q(Gω) + Q(Gω+1) + · · ·+ Q(Gτ). (4)

The signless Laplacian spectrum of Gi = K1,mi
∪ (n(H)− mi − 1)K1 is

{mi + 1, 1[n(Gi)−2], 0[n(H)−mi]}.

Therefore,

S+
k (Gi) = mi + k, f or all i = ω, ω + 1, . . . , τ. (5)

Now, applying Lemma 1 to Equation (4) and using Equation (5) and the fact that ∑
τ
j=ω mj =

m(H) = m − ω(ω−1)
2 , we have

S+
k (H) =

k

∑
i=1

qi(H) ≤
τ

∑
j=ω

k

∑
i=1

qi(Gj) =
τ

∑
j=ω

S+
k (Gj)

=
τ

∑
j=ω

(

mj + k
)

= m − ω(ω − 1)

2
+ (τ − ω + 1)k.
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This shows that

S+
k (G \ Kω) = S+

k (H) ≤ m − ω(ω − 1)

2
+ (τ − ω + 1)k.

Therefore, it follows that

S+
k (G) ≤ ω(k + 1)− 2k + S+

k (G \ Kω)

≤ ω(k + 1)− 2k + m − ω(ω − 1)

2
+ (τ − ω + 1)k

= k(τ − 1) + m − ω(ω − 3)

2
.

Equality occurs in (3) if and only if all the inequalities above become equalities. Since G is

connected equality occurs in S+
k (G) ≤ S+

k (Kω) + S+
k (G \ Kω), only if G ∼= Kn. Conversely, if

G ∼= Kn, then τ = n − 1, ω = n, m = n(n−1)
2 and so equality holds in (3), completing the

proof.

Remark 1. For a graph G ∈ Γ1, it is easy to see that the upper bound given by (3) is better than

the upper bound given by (1) for all m ≥ k(τ − ω + 1) + ω(ω−1)
2 . In particular, for the graph

with τ = ω and k ≤ n − ω, the upper bound (3) is better than the upper bound (1).

Remark 2. Clearly for the graph G ∈ Γ1 the upper bound given by (3) is always better than the

upper bound given by (2).

Let Γ2 be the family of all connected graphs except for the graphs G, where the vertices in

the vertex covering set S = {v1, v2, . . . , v⌊ d
2 ⌋
} of the subgraph Pd has the property that there are

pendent vertices incident at some vi ∈ S or any two vertices of S forms a triangle with a vertex

v ∈ V(G) \ C, where C is the vertex covering set of G.

Rocha et al. [15] obtained an upper bound for Sk(G) in terms of diameter of the graph G.

Using similar analysis, the following upper bound can be obtained for S+
k (G), in terms of the

diameter d − 1 of the graph G.

S+
k (G) ≤ 2(m − d) + 1 − n + 4k + p + cos

(

kπ

d

)

+
cos(π

d ) sin( kπ
d ) + sin( kπ

d )

sin(π
d )

, (6)

where p is the number of isolated vertices in the graph obtained by removing the edges of Pd

from G.

The following theorem gives an upper bound for S+
k (G), in terms of the diameter, the num-

ber of edges m and the vertex covering number τ of the graph G.

Theorem 3. Let G ∈ Γ2 be a connected graph of order n ≥ 3 with m edges having diameter

d − 1 and vertex covering number τ. Then for 1 ≤ k ≤ n,

S+
k (G) ≤ (τ − ⌊d

2
⌋+ 2)k + m − d + cos

(

kπ

d

)

+
cos(π

d ) sin( kπ
d ) + sin( kπ

d )

sin(π
d )

, (7)

with equality if and only if G ∼= Pn.
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Proof. Let G be a connected graph with diameter d − 1 and vertex cover number τ and let

C = {v1, v2, . . . , vτ} be a minimum vertex covering set in G. Since the diameter of G is d − 1,

it follows that Pd is a subgraph of G. Also, the vertex covering number of a path graph Pn on

n vertices is ⌊n
2 ⌋. Let v1, v2, . . . , v⌊ d

2 ⌋
be the vertices in C, which belong to V(Pd). The signless

Laplacian spectrum of Pd is {2 − 2 cos(πj
d ), 0 : j ∈ {1, 2, . . . , d − 1}}. If we remove the edges of

Pd from G, the signless Laplacian matrix of G can be decomposed as

Q(G) = Q(Pd ∪ (n − d − 1)K1) + Q(G \ Pd),

where G \ Pd is the graph obtained from G by removing the edges of Pd. Applying Lemma 1

and using the fact that S+
k (Pd ∪ (n − d − 1)K1) = S+

k (Pd), we have

S+
k (G) =

k

∑
i=1

qi(G) ≤
k

∑
i=1

qi(Pd) +
k

∑
i=1

qi(G \ Pd) = S+
k (Pd) + S+

k (G \ Pd)

=
k−1

∑
j=0

(

2 − 2 cos(
π(d − j − 1)

d
)

)

+ S+
k (G \ Pd)

= 2k + cos

(

kπ

d

)

+
cos(π

d ) sin( kπ
d ) + sin( kπ

d )

sin(π
d )

− 1 + S+
k (G \ Pd),

where we have used the well-known equality

k−1

∑
j=0

cos(nj) =
sin(nk) cos(n) + sin(nk)

2 sin(n)
− 1

2
cos(nk) +

1

2
.

In order to establish the result, we need to estimate S+
k (G \ Pd).

Let G⌊ d
2 ⌋+1, G⌊ d

2 ⌋+2, . . . , Gτ be the spanning subgraphs of H = G \ Pd corresponding to

the vertices v⌊ d
2 ⌋+1, v⌊ d

2 ⌋+2, . . . , vτ of C, having vertex set same as H and edge sets defined as

follows.

E(Gi) = {vivt : vt ∈ N(vi) \ {v1, v2, . . . , vi−1}}, i = ⌊d

2
⌋+ 1, ⌊d

2
⌋+ 2, . . . , τ.

Now, proceeding similarly as in Theorem 2, we obtain

S+
k (G \ Pd) ≤ k(τ − ⌊d

2
⌋) + m − d + 1.

Therefore, from above we have

S+
k (G) ≤ 2k + cos

(

kπ

d

)

+
cos(π

d ) sin( kπ
d ) + sin( kπ

d )

sin(π
d )

− 1 + S+
k (G \ Pd)

≤ (τ − ⌊d

2
⌋+ 2)k + m − d + cos

(

kπ

d

)

+
cos(π

d ) sin( kπ
d ) + sin( kπ

d )

sin(π
d )

,

and hence the result follows.

Equality occurs in (7) if and only if all the inequalities above occur as equalities. Since G is

connected, the equality in the inequality S+
k (G) ≤ S+

k (Pd) + S+
k (G \ Pd) can only occur if and

only if G ∼= Pn. Conversely, if G ∼= Pn, then τ = ⌊n
2 ⌋, m = n − 1, d = n − 1 and so it can be

seen that equality holds in (7), completing the proof.
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Remark 3. For the connected graphs G ∈ Γ2, it is easy to see that the upper bound given by

(7) is better than the upper bound given by (6) for all k ≤ m−n−d+1+p

τ−⌊ d
2 ⌋−2

. In particular, if G ∈ Γ2

is such that τ ≤ ⌊ d
2⌋+ 2 and m ≥ n + d − 1 − p, the upper bound (7) is always better than the

upper bound (6).

Let Γ3 be the family of all connected graphs except for the graphs G, where the vertices

in the vertex set S = {v1, v2, . . . , vs1 , u1, u2, . . . us2} of the subgraph Ks1,s2 , s1 ≤ s2, has the

property that there are pendent vertices incident at some vi or uj ∈ S or any two vertices of S

forms a triangle with a vertex v ∈ V(G) \ C, where C is the vertex covering set of G.

Let Ks1,s2 s1 ≤ s2, be the maximal complete bipartite subgraph of a graph G. Using the fact

that the vertex covering number of Ks1,s2 s1 ≤ s2, is s1 and its signless Laplacian spectrum is

{s1 + s2, s
[s2−1]
1 , s

[s1−1]
2 , 0}, and proceeding similarly as in Theorem 2, we obtain the following

upper bound for S+
k (G).

Theorem 4. Let G ∈ Γ3 be a connected graph of order n ≥ 2 with m edges having vertex

covering number τ. If Ks1,s2 s1 ≤ s2, is the maximal complete bipartite subgraph of the graph

G, then

S+
k (G) ≤ k(τ + s2 − s1) + m − s1(s2 − 1), (8)

with equality if and only if G ∼= Ks1,s2 and s1 + s2 = n.

If s1 = s2, for the graphs G ∈ Γ3, it is easy to see that the upper bound (8) is always better

than the upper bound (2).

2 CONJECTURE 1 IS TRUE FOR SOME MORE CLASSES OF GRAPHS

In this section, we show that Conjecture 1 holds for some more classes of graphs.

Theorem 5. If G ∈ Γ1 is a connected graph of order n ≥ 12 with m edges having clique number

ω, then for ω ≥ 3+
√

3n2−14n+9
2 ,

S+
k (G) ≤ m +

k(k + 1)

2
,

for all k ∈ {1, 2, . . . , ⌊n
2⌋}.

Proof. Let G be a connected graph of order n having clique number ω and vertex covering

number τ. If τ = n − 1, clearly G ∼= Kn and so Conjecture 1 always holds (this is due to the fact

that Conjecture 1 holds for all regular graphs). So suppose that τ ≤ n − 2. With this choice of

τ, from inequality (3), we have

S+
k (G) ≤ k(n − 3) + m − ω(ω − 3)

2
≤ m +

k(k + 1)

2
,

if k(2n − 6) ≤ k2 + k + ω(ω − 3). That is, k2 − (2n − 7)k + ω(ω − 3) ≥ 0.

Consider the polynomial f (k) = k2 − (2n − 7)k + ω(ω − 3), k ∈ [1, n − 1]. The roots of this

polynomial are

α =
(2n − 7) +

√

4n2 − 28n + 49 − 4ω(ω − 3)

2
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and

β =
(2n − 7)−

√

4n2 − 28n + 49 − 4ω(ω − 3)

2
.

Thus f (k) ≥ 0, for all k ∈ (−∞, β] ∪ [α,+∞). We will show β ≥ n
2 . We have β ≥ n

2 implies

(2n − 7)−
√

4n2 − 28n + 49 − 4ω(ω − 3)

2
≥ n

2
,

which implies that (n − 7)2 ≥ 4n2 − 28n + 49 − 4ω(ω − 3), and further implies that 4ω2 −
12ω − (3n2 − 14n) ≥ 0, which gives ω ≥ 3+

√
3n2−14n+9

2 .

Since α(3+
√

3n2−14n+9
2 ) = 3n−14

2 ≥ n − 1, for all n ≥ 12, it follows that α(ω) ≥ n − 1, for all

ω ≤ 3+
√

3n2−14n+9
2 . Thus, if ω ≥ 3+

√
3n2−14n+9

2 , we have proved that Conjecture 1 holds for all

k ∈ {1, 2, . . . , ⌊n
2 ⌋}.

Let Ωn be a family of those connected graphs G ∈ Γ1 for which the vertex covering number

τ ∈ {ω − 1, ω, ω + 1}, that is,

Ωn = {G ∈ Γ1 : τ = ω − 1 or ω or ω + 1}.

For the family of graphs Ωn, we have the following observation.

Theorem 6. If G ∈ Ωn, then

Sk(G) ≤ m +
k(k + 1)

2
holds for all k, if τ = ω − 1; holds for all k except for k = ω − 2, ω − 1 if τ = ω; holds for all

k, k ≤ 2ω−1−
√

8ω+1
2 and k ≥ 2ω−1+

√
8ω+1

2 , if τ = ω + 1.

Proof. Let G ∈ Ωn. Then τ ∈ {ω − 1, ω, ω + 1}. If τ = ω − 1, from inequality (3), we have

S+
k (G) ≤ k(ω − 2) + m − ω(ω − 3)

2
≤ m +

k(k + 1)

2
,

if 2k(ω − 2) ≤ k2 + k + ω2 − 3ω, that is,

k2 − (2ω − 5)k + ω2 − 3ω ≥ 0. (9)

For the polynomial f (k) = k2 − (2ω − 5)k + ω2 − 3ω, the discriminant D = (2ω − 5)2 −
4(ω2 − 3ω) = 25 − 8ω < 0, if ω ≥ 4. This shows that (9) holds for all ω ≥ 4. By direct

calculations, it can be seen that (9) holds for ω ≤ 3. Thus, it follows that (9) is true for all k.

If τ = ω, from inequality (3), we have

S+
k (G) ≤ k(ω − 1) + m − ω(ω − 3)

2
≤ m +

k(k + 1)

2

if 2k(ω − 1) ≤ k2 + k + ω2 − 3ω, that is,

k2 − (2ω − 3)k + ω2 − 3ω ≥ 0. (10)

For the polynomial f (k) = k2 − (2ω − 3)k+ ω2 − 3ω, the roots are ω − 3 and ω. It follows that

f (k) < 0, for all k ∈ (ω − 3, ω). Since k and ω are integers and the only integers in (ω − 3, ω)

are ω − 2, ω − 1, it follows that f (k) ≥ 0 for all k except k = ω − 2, ω − 1. Thus, it follows that

(10) holds for all k /∈ {ω − 2, ω − 1}.

If τ = ω + 1, proceeding similarly as above, it can be seen that the conjecture holds for all

k, k ≤ 2ω−1−
√

8ω+1
2 and k ≥ 2ω−1+

√
8ω+1

2 .
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Theorem 7. Let G ∈ Γ2 be a connected graph of order n ≥ 2 with m edges having vertex

covering number τ. Let Ks1,s1 be the maximal complete bipartite subgraph of G. Then Con-

jecture 1 holds for all k, if τ ≤ 1+
√

8s1(s1−1)
2 holds for all k ≤ 2τ−1−

√
(2τ−1)2−8s1(s1−1)

2 and

k ≥ 2τ−1+
√

(2τ−1)2−8s1(s1−1)
2 , if τ ≥ 1+

√
8s1(s1−1)

2 .

Proof. Using s1 = s2 in inequality (8), we have

S+
k (G) ≤ kτ + m − s1(s1 − 1) ≤ m +

k(k + 1)

2
,

if

k2 − (2τ − 1)k + 2s1(s1 − 1) ≥ 0. (11)

The roots of the polynomial f (k) = k2 − (2τ − 1)k + 2s1(s1 − 1) are α = 2τ−1+
√

θ
2 and β =

2τ−1−
√

θ
2 , where θ = (2τ − 1)2 − 8s1(s1 − 1). We have (2τ − 1)2 − 8s1(s1 − 1) ≤ 0, which

implies that 4τ2 − 4τ − (8s2
1 − 8s1 − 1) ≤ 0, which gives τ ≤ 1+

√
8s1(s1−1)

2 . This shows that

the discriminant of the polynomial f (k) is non-positive for all τ ≤ 1+
√

8s1(s1−1)
2 . That is, (11)

holds for all τ ≤ 1+
√

8s1(s1−1)
2 . On the other hand if the discriminant of the polynomial f (k) is

non-negative, then (11) holds for all k ≥ α and for all k ≤ β, completing the proof.

Let G be a connected bipartite graph of order n having the vertex covering number τ. For

bipartite graphs, it is well known that τ ≤ n
2 . With this in mind, we have the following obser-

vation for bipartite graphs.

Theorem 8. Let G ∈ Γ3 be a connected bipartite graph of order n ≥ 4 with m edges having the

vertex covering number τ. If Ks1,s1 , with s1 ≥ n
4 , is the maximal complete bipartite subgraph of

the graph G, then

Sk(G) ≤ m +
k(k + 1)

2

for all k ≤ n
7 − 1 and k ≥ 6n

7 .

Proof. Using s1 = s2 in (8) and the fact that τ ≤ n
2 , for bipartite graphs we have

S+
k (G) ≤ kτ + m − s1(s1 − 1) ≤ k(

n

2
) + m − s1(s1 − 1) ≤ m +

k(k + 1)

2

if

kn ≤ k(k + 1) + 2s1(s1 − 1). (12)

The right hand side of (10) is an increasing function of s1. Therefore, to prove the assertion, it

suffices to consider s1 = n
4 . With this value of s1, from (12), we have

k2 − (n − 1)k +
n(n − 4)

8
≥ 0.

The roots of the polynomial f (k) = k2 − (n − 1)k +
n(n − 4)

8
are

α =
n − 1 +

√
0.5n2 + 1

2
, β =

n − 1 −
√

0.5n2 + 1

2
.

This shows that f (k) ≥ 0, for all k ≥ α; and f (k) ≥ 0, for all k ≤ β. By using elementary

algebra it can be seen that α < 0.8535n and β > 0.1464n − 1. Hence the result follows.
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For graphs with girth g ≥ 5, Rocha et al. [15] showed that Brouwer’s conjecture holds for

all k ≤ ⌊ g
5⌋. Using similar analysis, we have the following observation.

Theorem 9. For connected graphs with girth g ≥ 5, Conjecture 1 holds for all k, 1 ≤ k ≤ ⌊ g
5⌋.

Using Theorem 3, the fact that

cos

(

kπ

d

)

+
cos(π

d ) sin( kπ
d ) + sin( kπ

d )

sin(π
d )

≤ 2k + 1

and proceeding similarly as in above theorems, we arrive at the following observation.

Theorem 10. Let G ∈ Γ2 be a connected graph of order n ≥ 3 with m edges having diameter

d − 1 and vertex covering number τ. Then for 1 ≤ k ≤ n, Conjecture 1 holds for all k, if

τ ≤ 2⌊ d
2 ⌋−7+

√
8(d−1)

2 ; holds for all k,

k ≤
2τ − 2⌊ d

2⌋+ 7 −
√

2τ − 2⌊ d
2⌋+ 7 − 8(d − 1)

2

and

k ≥
2τ − 2⌊ d

2⌋+ 7 +
√

2τ − 2⌊ d
2⌋+ 7 − 8(d − 1)

2
,

if τ ≥ 2⌊ d
2 ⌋−7+

√
8(d−1)

2 .

3 CONCLUDING REMARKS

The aim of this paper is twofold. Firstly, in Section 2, we obtained some upper bounds for

the graph invariant S+
k (G), in terms of clique number ω, the vertex covering number τ and the

diameter of the graph G. These bounds can be used to obtain the upper bounds for the signless

Laplacian energy of the graph G and so can be helpful to obtain the extremal graphs among

various families of the graphs. Secondly, in Section 3, we have used the results of Section 2 to

verify the truth of the Conjecture 1 for some more families of graphs. Although, in Sections 2

and 3, we have restricted ourselves to graphs G ∈ {Γ1, Γ2, Γ3}, the importance of these results

can be realized from the fact that not many families of graphs are known for which Conjecture

1 holds.
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Пiрзада С., Ганi Х.А., Альгамдi А.М. Про суму беззнакових лапласiанiвських спектрiв графiв //

Карпатськi матем. публ. — 2019. — Т.11, №2. — C. 407–417.

Для деякого простого графа G(V, E) з n вершинами i m ребрами, множиною вершин

V(G) = {v1, v2, . . . , vn} i множиною ребер E(G) = {e1, e2, . . . , em}, матриця сумiжностi A = (aij)

графа G — це (0, 1)-квадратна матриця порядку n, для якої елементи з iндексом (i, j) дорiв-

нюють 1, якщо vi сумiжна з vj i 0 у протилежному випадку. Нехай D(G) = diag(d1, d2, . . . , dn)

— дiагональна матриця, асоцiйована з G, де di = deg(vi), для всiх i ∈ {1, 2, . . . , n}. Матрицi

L(G) = D(G)− A(G) i Q(G) = D(G) + A(G) називаються лапласiанiвськi i беззнаковi лапласiа-

нiвськi матрицi, вiдповiдно, а їх спектри (власнi значення), вiдповiдно — лапласiанiвським спе-

ктром (L-спектром) та беззнаковим лапласiанiвським спектром (Q-спектром) графа G. Якщо

0 = µn ≤ µn−1 ≤ · · · ≤ µ1 є лапласiанiвськi власнi значення G, Броувер припустив, що сума k

найбiльших лапласiанiвських значень Sk(G) задовольняє Sk(G) =
k

∑
i=1

µi ≤ m + (k+1
2 ) i це при-

пущення є все ще вiдкритим. Якщо q1, q2, . . . , qn — беззнаковi лапласiанiвськi власнi значення

графа G для 1 ≤ k ≤ n, i нехай S+
k (G) = ∑

k
i=1 qi — сума k найбiльших беззнакових лапласiа-

нiвських власних значень G. Аналогiчно до припущення Броувера, Асхраф та iн. припустили,

що S+
k (G) ≤ m + (k+1

2 ) для всiх 1 ≤ k ≤ n. Це припущення було пiдтверджено для деяких

класiв графiв. Ми отримали верхнє обмеження для S+
k (G) в термiнах клiкових чисел ω, чисел

покриття вершин τ i дiаметра графа G. Зрештою, ми показали, що припущення виконується

для широкої сiм’ї графiв.

Ключовi слова i фрази: беззнаковi лапласiанiвськi спектри, припущення Броувера, клiковi

числа, числа покриття вершин, дiаметр.


