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Metric properties of Cayley graphs of alternating groups

Olshevskyi M.S.

A well known diameter search problem for finite groups with respect to its systems of generators

is considered. The problem can be formulated as follows: find the diameter of a group over its

system of generators. The diameter of a group over a specific system of generators is the diameter

of the corresponding Cayley graph.

It is considered alternating groups with classic irreducible system of generators consisting of

cycles with length three of the form (1, 2, k). The main part of the paper concentrates on analysis

how even permutations decompose with respect to this system of generators. The rules for moving

generators from permutation’s decomposition from left to right and from right to left are introduced.

These rules give rise for transformations of decompositions, that do not increase their lengths. They

are applied for removing fixed points of a permutation, that were included in its decomposition.

Based on this rule the stability of system of generators is proved. The strict growing property of

the system of generators is also proved, as the corollary of transformation rules and the stability

property.

It is considered homogeneous theory, that was introduced in the previous author’s paper. For

the series of alternating groups with systems of generators mentioned above it is shown that this

series is uniform and homogeneous. It makes possible to apply the homogeneous down search

algorithm to compute the diameter. This algorithm is applied and exact values of diameters for

alternating groups of degree up to 43 are computed.
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Introduction

In group theory the diameter search problem for specific system of generators can be for-

mulated as follows. For a finite group G and its system of generators S find the diameter

DS(G) of the Cayley graph Γ(G, S) of G with respect to S. The diameter of Sym(n) over

S = {(1, k) : k ∈ 2, . . . , n} was found in [1].

The general variant of this problem, the diameter search problem, is formulated as the

problem to find maximum of DS(G) for all systems of generators S of G. The research in

this direction was stimulated by the paper of L. Babai and A. Seress [2]. A few recent papers

dealing with this topic are [3, 4, 6, 7, 9].

The minimum-length generators sequence search problem is another well known problem

for finite groups. It can be formulated as follows: for a finite group G, its system of generators

S and an element g ∈ G find the shortest generators sequence realizing g. In [5], it is shown

that this problem is NP-hard for permutation groups.
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In the present work, we consider alternating groups Alt(n), n ≥ 3. As a system of gener-

ators of Alt(n) we consider SoG(n) consisting of cycles (1, 2, k), k = 3, . . . , n. We investigate

properties of multiplication of even permutations by such generators. These properties pro-

vide an opportunity to establish rules of moving generators in permutation’s decompositions

from left to right and from right to left. This leads to the proof of the main result of the paper.

We show that our groups with respect to mentioned systems of generators are stable, i.e. for

an even permutation its minimal length of a decomposition is preserved when the degree of

the alternating group grows. Also, we show that our system of generators is strictly growing.

This paper is partially based on the previous author’s work [8]. We consider the series of

alternating groups and their generator systems and show that it is uniform and homogeneous.

Then to find the diameter we apply the homogeneous down search algorithm. As a result

of computations we present the exact values of diameters for alternating groups Alt(n) with

respect to generators (1, 2, k), k = 3, . . . , n, of degree n up to 43.

The paper is organized as follows. Section 1 describes specific notations, elementary prop-

erties of generators and introduces one of the main tools of the paper, the trajectory of a point

over permutation’s decomposition. In Section 2, the rules of moving generators over decom-

positions from left to right or from right to left are obtained. In Section 3, using the rules from

previous section it is proved stability of alternating groups with respect to considered systems

of generators. Also, as corollary it is shown that the strictly growing property of these sys-

tems of generators hold. Section 4 recalls definitions of groups-generators series. It is proved

that alternating groups-generators series is uniform and homogeneous. Homogeneous down

search algorithm is applied for the alternating groups of degrees up to 43.

Unless otherwise specified in the paper we denote a finite group by G and a system of

generators of G by S.

1 Preliminaries

The main object of research of the paper is the alternating group Alt(n) with its system

of generators ((1, 2, 3), . . . , (1, 2, n)), n ≥ 3. We consider some useful elementary properties of

this system of generators and introduce the trajectory of a point over permutation’s decompo-

sition. This notion will be intensively used in the sequel and we present general classification

of trajectories.

1.1 Basic definitions, notations and properties

Every element g of G can be decomposed as a product

g =
l

∏
k=1

sk

of generators from S for some natural l. The tuple of generators (s1, . . . , sk) will be called a

decomposition of the element g over S. The length |g|S of the element g over S is the length of the

shortest decomposition of g over S. The diameter DS(G) of G with respect to S is the maximum

of lengths |g|S , g ∈ G. An element g ∈ G such that |g|S = DS(G) is called a diameter element.

Let us introduce the operation of concatenation over tuples of generators. Let π, τ be ele-

ments from G and D = (d1, . . . , dm), T = (t1, . . . , tu) be its decompositions over S correspond-

ingly. Then the concatenation of D and T is the decomposition (d1, . . . , dm, t1, . . . , tu) of the

element π · τ.
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An element a ∈ G will be called properly generated over S if for arbitrary A ⊂ S, A 6= S, we

have a 6∈ 〈A〉. A system of generators S of a group G will be called strictly growing if every

diameter element is properly generated.

Fix an integer n0.

Definition 1. A groups-generators series G is the sequence of pairs (G(n), SoG(n) : n > n0) such

that:

1) G(n0 + 1) < G(n0 + 2) < G(n0 + 3) < . . . is an ascending group series;

2) SoG(n) is a system of generators of G(n) and SoG(n) ⊂ SoG(n + 1), n > n0.

Let G be a groups-generators series.

Definition 2. The series G will be called stable if for arbitrary integers N1, N2, n0 < N1 < N2,

and every element a ∈ G(N1) the following equality holds

|a|SoG(N1)
= |a|SoG(N2).

Let G(n) be the alternating group Alt(n), n ≥ 3. We fix the natural embedding of Alt(n)

into Alt(n + 1), n ≥ 3. Denote by sk the cycle (1, 2, k), k ≥ 3. Let SoG(n) = {s3, . . . , sn)}, n ≥ 3.

Denote by A the groups-generators series ((Alt(n), SoG(n)) : n ≥ 3).

In this paper, we consider the right rule of permutation’s multiplication: for every permu-

tations π, τ and for every natural number x we have

(π · τ)(x) = τ(π(x)).

As usual, the support of a permutation π in A will be denoted by supp(π), i.e. supp(π) =

{x ∈ 1, n : π(x) 6= x}, where 1, n = {1, 2, . . . , n}.

Fix a natural number n ≥ 3. The group A = Alt(n) is a permutation group on the set 1, n.

The elements of this set will be called points.

Let S = SoG(n). Let D = (i1, . . . , im) be a tuple of m ≥ 1 natural numbers, each greater or

equal than 3. We will use notation [i1, . . . , im]S for the product

m

∏
k=1

sik
=

m

∏
k=1

(1, 2, ik).

For simplicity we will identify the tuple D = (i1, . . . , im) of indices with the tuple (si1 , . . . , sim
)

of generators. The later forms a decomposition of the permutation [i1, . . . , im]S over S.

We will use notation

π
︷ ︸︸ ︷

a → b for π ∈ A and a, b ∈ 1, n such that π(a) = b. Moreover, if for

some permutation τ ∈ A and a point c additional equality τ(b) = c holds, then we use the

following notation

π
︷ ︸︸ ︷

a → b =⇒

τ
︷ ︸︸ ︷

b → c. This notation can be naturally generalized for products of

arbitrary number of permutations.

Proposition 1. The following equalities hold:

1) [i, i, i]S = e, i ≥ 3;

2) [i, j]S = [j, j, i, i]S , i, j ≥ 3, i 6= j.
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Proof. 1. Every cycle of length t has order t. Then [i, i, i]S = (1, 2, i)3 = e.

2. It is enough to show that si · sj and sj · sj · si · si coincide on every point from the set

{1, 2, i, j}. Direct computations are summarized in the following table.

Case si · sj sj · sj · si · si

1

si
︷ ︸︸ ︷

1 → 2 =⇒

sj
︷ ︸︸ ︷

2 → j

sj
︷ ︸︸ ︷

1 → 2 =⇒

sj
︷ ︸︸ ︷

2 → j =⇒

si
︷ ︸︸ ︷

j → j =⇒

si
︷ ︸︸ ︷

j → j

2

si
︷ ︸︸ ︷

2 → i =⇒

sj
︷ ︸︸ ︷

i → i

sj
︷ ︸︸ ︷

2 → j =⇒

sj
︷ ︸︸ ︷

j → 1 =⇒

si
︷ ︸︸ ︷

1 → 2 =⇒

si
︷ ︸︸ ︷

2 → i

i

si
︷ ︸︸ ︷

i → 1 =⇒

sj
︷ ︸︸ ︷

1 → 2

sj
︷ ︸︸ ︷

i → i =⇒

sj
︷ ︸︸ ︷

i → i =⇒

si
︷ ︸︸ ︷

i → 1 =⇒

si
︷ ︸︸ ︷

1 → 2

j

si
︷ ︸︸ ︷

j → j =⇒

sj
︷ ︸︸ ︷

j → 1

sj
︷ ︸︸ ︷

j → 1 =⇒

sj
︷ ︸︸ ︷

1 → 2 =⇒

si
︷ ︸︸ ︷

2 → i =⇒

si
︷ ︸︸ ︷

i → 1

1.2 The trajectory of a point over a decomposition

Let π ∈ A be a permutation. Fix a decomposition D = (i1, . . . , im) of π over S. We assume

that m ≥ 3. Let a ∈ {1, 2, i1, . . . , im}.

We will define the trajectory of a over the decomposition D as follows. For arbitrary points

c, d and k ∈ 1, m such that sik
(c) = d we will use notation c

k
−→ d. Then in the graph of the

action of the generating system S on 1, n the decomposition D defines the unique path of the

form

a = a0
1
−→ a1

2
−→ a2

3
−→ . . .

m
−→ am = π(a).

Definition 3. The trajectory of the point a in the permutation π over the decomposition D is a

tuple Tr(a, π, D) := (j1, . . . , jt) of all indices from D, such that exactly one condition ajk = 1 or

ajk−1 = 2 holds for every 1 ≤ k ≤ t.

In other words, the trajectory of a is the tuple of all positions in D, such that in the graph of

the action corresponding generator defines the arrow that either starts in 2 or terminates at 1.

Since m ≥ 3 the trajectory is well defined.

In many cases we can use more compact form of the path of a point. For arbitrary k, l ∈ 1, m,

k < l, such that 2 = s−1
ik

(ak) 6= ak = . . . = al−1 6= sil
(al−1) = 1, ak 6= 1, 2, we will use the

notation ak
k,l
=⇒ ak. Note that in this case both k, l ∈ Tr(a, π, D).

The following properties of the trajectory Tr(a, π, D) = (j1, . . . , jt) hold:

1) ajk 6= 2 for every k ∈ 1, t;

2) ajk = ajk+1−1 if and only if ajk

jk,jk+1
===⇒ ajk is well defined in the path of a over D.

We will omit the following parts of the path of a in π over D:

1) the initial part of the path up to the first occurrence of a, if a 6= 1, 2;

2) the closing part of the path after the last occurrence of π(a), if π(a) 6= 1, 2.

Under these conditions we have the following assertion.
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Proposition 2. Let π ∈ A, D be its decomposition over S and a be a point from {1, 2}
⋃

D.

Depending on the values of a and π(a) the path of a over D has one the following forms.

Case 1.1. a = 1, π(a) = 1. Then

1
1
−→ 2

2
−→ ij1

j1,j2
==⇒ ij2

j2
−→ 1

j2+1
−−→ 2

j2+2
−−→ ij3

j3,j4
==⇒ . . . ijt−2

jt−2
−−→ 1

jt−2+1
−−−→ 2

jt−2+2
−−−→ ijt−1

jt−1,jt
===⇒ ijt

m
−→ 1

Case 1.2. a = 1, π(a) = 2. Then

1
1
−→ 2

2
−→ ij1

j1,j2
==⇒ ij2

j2
−→ 1

j2+1
−−→ 2

j2+2
−−→ ij3

j3,j4
==⇒

. . . . . . . . . . . .

ijt−2

jt−2
−−→ 1

jt−2+1
−−−→ 2

jt−2+2
−−−→ ijt−1

jt−1,jt
===⇒ ijt

m−1
−−→ 1

m
−→ 2

Case 1.3. a = 1, π(a) 6= 1, 2. Then

1
1
−→ 2

2
−→ ij1

j1,j2
==⇒ ij2

j2
−→ 1

j2+1
−−→ 2

j2+2
−−→ ij3

j3,j4
==⇒

. . . . . . . . . . . .

ijt−3

jt−3
−−→ 1

jt−3+1
−−−→ 2

jt−3+2
−−−→ ijt−2

jt−2,jt−1
====⇒ ijt−1

jt−1
−−→ 1

jt−1+1
−−−→ 2

jt−1+2
−−−→ ijt

Case 2.1. a = 2, π(a) = 1. Then

2
1
−→ ij1

j1,j2
==⇒ ij2

j2
−→ 1

j2+1
−−→ 2

j2+2
−−→ ij3

j3,j4
==⇒ . . . ijt−2

jt−2
−−→ 1

jt−2+1
−−−→ 2

jt−2+2
−−−→ ijt−1

jt−1,jt
===⇒ ijt

m
−→ 1

Case 2.2. a = 2, π(a) = 2. Then

2
1
−→ ij1

j1,j2
==⇒ ij2

j2
−→ 1

j2+1
−−→ 2

j2+2
−−→ ij3

j3,j4
==⇒ . . . ijt−2

jt−2
−−→ 1

jt−2+1
−−−→ 2

jt−2+2
−−−→ ijt−1

jt−1,jt
===⇒ ijt

m−1
−−→ 1

m
−→ 2

Case 2.3. a = 2, π(a) 6= 1, 2. Then

2
1
−→ ij1

j1,j2
==⇒ ij2

j2
−→ 1

j2+1
−−→ 2

j2+2
−−→ ij3

j3,j4
==⇒

. . . . . . . . . . . .

ijt−3

jt−3
−−→ 1

jt−3+1
−−−→ 2

jt−3+2
−−−→ ijt−2

jt−2,jt−1
====⇒ ijt−1

jt−1
−−→ 1

jt−1+1
−−−→ 2

jt−1+2
−−−→ ijt

Case 3.1. a 6= 1, 2, π(a) = 1. Then

ij1

j1
−→ 1

j1+1
−−→ 2

j1+2
−−→ ij2

j2,j3
==⇒ ij3

j3
−→ 1

j3+1
−−→ 2

j3+2
−−→ ij4

j4,j5
==⇒

. . . . . . . . . . . .

ijt−2

jt−2
−−→ 1

jt−2+1
−−−→ 2

jt−2+2
−−−→ ijt−1

jt−1,jt
===⇒ ijt

m
−→ 1

Case 3.2. a 6= 1, 2, π(a) = 2. Then

ij1

j1
−→ 1

j1+1
−−→ 2

j1+2
−−→ ij2

j2,j3
==⇒ ij3

j3
−→ 1

j3+1
−−→ 2

j3+2
−−→ ij4

j4,j5
==⇒

. . . . . . . . . . . .

ijt−2

jt−2
−−→ 1

jt−2+1
−−−→ 2

jt−2+2
−−−→ ijt−1

jt−1,jt
===⇒ ijt

m−1
−−→ 1

m
−→ 2

Case 3.3. 6= 1, 2, π(a) 6= 1, 2. Then

ij1

j1
−→ 1

j1+1
−−→ 2

j1+2
−−→ ij2

j2,j3
==⇒ ij3

j3
−→ 1

j3+1
−−→ 2

j3+2
−−→ ij4

j4,j5
==⇒

. . . . . . . . . . . .

ijt−3

jt−3
−−→ 1

jt−3+1
−−−→ 2

jt−3+2
−−−→ ijt−2

jt−2,jt−1
====⇒ ijt−1

jt−1
−−→ 1

jt−1+1
−−−→ 2

jt−1+2
−−−→ ijt

Let π ∈ A be a permutation with decomposition D = (d1, . . . , dm) over S, m ≥ 3, and p

be a point from {1, 2, d1, . . . , dm}. We will say that the point p has trivial path in π over D if

|Tr(p, π, D)| ≤ 2.
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2 Multiplication of permutations by generators

In order to prove stability of the series A we need to establish how a decomposition of a

permutations from A behaviors being multiplied by a generator element from S. More pre-

cisely, in this section we show that conjugation by a generator or its inverse does not increase

the length of a decomposition. The proof breaks into a series of lemmas.

Lemma 1. Let π ∈ A, D = (d1, . . . , dm), m ≥ 3, be its decomposition over S, d be some point

from D. Then for arbitrary point p such that p ≥ 3 and p 6= dk, k ∈ 1, m, permutation τ ∈ A,

defined by the equality

τ = [t1, . . . , tm], where ti =

{

p, if di = d,

di, otherwise,
(1)

and each point x the following equality holds

τ(x) =







p, if π(x) = d,

π(p), if x = d,

π(x), otherwise.

Proof. The decomposition T = (t1, . . . , tm) of τ is obtained from D using substitutions of d by

p. Note that in the graph of the action on a point x this transformation changes only one vertex.

Namely, the vertex d substituted by p. Hence, paths of x, which are defined by decompositions

of π and τ, have the same labels on arrows. As the result, for every point x, x 6= d and

π(x) 6= d, we have Tr(x, π, D) = Tr(x, τ, T). This equality implies that τ(x) = π(x) for every

x ∈ supp(π), π(x) 6= d.

Moreover, equality (1) implies:

1) from Tr(d, π, D) = Tr(p, τ, T) it follows that:

(a) if π(d) = d, then τ(p) = p,

(b) if π(d) 6= d, then τ(p) = π(d);

2) from π(p) = p it follows that τ(d) = d.

This completes the proof.

Lemma 2. Let π ∈ A be a permutation such that 1, 2 6∈ supp(π). Then for each point p such

that p ≥ 3 and p 6∈ supp(π) the equality sp · π = π · sp holds.

Proof. Note, that supp(sp)
⋂

supp(π) = ∅. It is enough to show, that (sp · π)(x) = (π · sp)(x)

for every point x ∈ {1, 2, p}
⋃

supp(π). The results of direct computations are summarized in

the following table.

Case sp · π π · sp

x = 1

sp
︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → 2

π
︷ ︸︸ ︷

1 → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

x = 2

sp
︷ ︸︸ ︷

2 → p =⇒

π
︷ ︸︸ ︷
p → p

π
︷ ︸︸ ︷

2 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

x = p

sp
︷ ︸︸ ︷

p → 1 =⇒

π
︷ ︸︸ ︷

1 → 1

π
︷ ︸︸ ︷
p → p =⇒

sp
︷ ︸︸ ︷

p → 1

x ∈ supp(π)

sp
︷ ︸︸ ︷
x → x =⇒

π
︷ ︸︸ ︷

x → π(x)

π
︷ ︸︸ ︷

x → π(x) =⇒

sp
︷ ︸︸ ︷

π(x) → π(x)

Hence, sp · π = π · sp.
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2.1 Multiplication from the left

Let π ∈ A be a permutation with decomposition D = (d1, . . . , dm) over S, m ≥ 3. Note that

if the point 1 is fixed in π and has trivial path in π over D, then via Proposition 2 the path of

the point 1 over D has the form

1
1
−→ 2

2
−→ d2

d2,dm==⇒ dm
dm−→ 1.

Lemma 3. Let π ∈ A be a permutation with decomposition D = (d1, . . . , dm), m ≥ 3, 1 is fixed

in π over D with trivial path, d = π−1(d2) and p be a natural number ≥ 3, such that there is

no k ∈ 1, m such that p = dk. Then sp · π = τ · sp, where

τ =

{

[d, d1, d2, . . . , dm−1]S, if d 6= 2

[d1, d2, . . . , dm−1]S, if d = 2.

Proof. Denote π−1(2) by y. Consider cases d 6= 2 and d = 2 independently.

Let d 6= 2. Denote [d1, . . . , dm−1]S by σ. From the construction of τ it follows that for every

point x, x 6∈ {1, 2, p, d, y}, we have π(x) 6∈ {1, 2, p, d, y}. Therefore (sp · π)(x) = π(x) =

τ(x) = (τ · sp)(x). Hence, it is enough to show that (sp · π)(x) = (τ · sp)(x) for every point x

from {1, 2, p, d, y}.

Case x = 1. Note, that π(2) 6= 1. So, π(2) is some number from {d1, d3, . . . , dm−1} or 2.

Consider cases:

1) if π(2) 6= 2, then π(2) = σ(2). So, τ(1) = π(2);

2) if π(2) = 2, then σ(2) = 1. So, τ(1) = 1.

As the result, we have the following table.

sp · π τ · sp

π(2) 6= 2

sp
︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → π(2)

τ
︷ ︸︸ ︷

1 → π(2) =⇒

sp
︷ ︸︸ ︷

π(2) → π(2)

π(2) = 2

sp
︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → 2

τ
︷ ︸︸ ︷

1 → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

Case x = 2. Note, that from π(d) = dm it follows that the path of d over D ends on the mth

position. So, σ(d) = 2, as σ does not contain the mth position of D. Hence, τ(2) = 2. As the

result, we have the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

2 → p =⇒

π
︷ ︸︸ ︷
p → p

τ
︷ ︸︸ ︷

2 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

Case x = p. In this case, we have the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

p → 1 =⇒

π
︷ ︸︸ ︷

1 → 1

τ
︷ ︸︸ ︷
p → p =⇒

sp
︷ ︸︸ ︷

p → 1
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Case x = d. Note, that d2 is the unique represented in decomposition of σ. Then σ(1) = d2.

So, τ(d) = d2. As the result, we have the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

d → d =⇒

π
︷ ︸︸ ︷

d → dm

τ
︷ ︸︸ ︷

d → d2 =⇒

sp
︷ ︸︸ ︷

d2 → d2

Case x = y. Note, that the case y = 2 is already considered. Also, y 6= 1 and y 6= p. So, y is

some point inside decomposition D. From π(y) = 2 it follows that τ(y) = 1. As the result, we

have the following table.

sp · π τ · sp

sp
︷ ︸︸ ︷
y → y =⇒

π
︷ ︸︸ ︷

y → 2

τ
︷ ︸︸ ︷

y → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

Let d = 2. From the construction of τ it follows that for every point x, x 6∈ {1, 2, p, y}, we

have π(x) 6∈ {1, 2, p, y}. Therefore,

(sp · π)(x) = π(x) = τ(x) = (τ · sp)(x).

Hence, it is enough to show that (sp · π)(x) = (τ · sp)(x) for every point x from {1, 2, p, y}.

Case x = 1. Note, that d2 is the unique represented in decomposition of τ. So, τ(1) = d2.

As the result, we have the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → dm

τ
︷ ︸︸ ︷

1 → d2 =⇒

sp
︷ ︸︸ ︷

d2 → d2

Case x = 2. Note, that from π(2) = dm it follows that τ(2) = 2. As the result, we have the

following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

2 → p =⇒

π
︷ ︸︸ ︷
p → p

τ
︷ ︸︸ ︷

2 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

Case x = p. In this case, we obtain the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

p → 1 =⇒

π
︷ ︸︸ ︷

1 → 1

τ
︷ ︸︸ ︷
p → p =⇒

sp
︷ ︸︸ ︷

p → 1

Case x = y. Note, that y 6∈ {1, 2, p}. So, y is some point inside decomposition D. From

π(y) = 2 it follows that τ(y) = 1. As the result, we have the following table.

sp · π τ · sp

sp
︷ ︸︸ ︷
y → y =⇒

π
︷ ︸︸ ︷

y → 2

τ
︷ ︸︸ ︷

y → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

The proof is complete.
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Note, that the transformation of decomposition sp · π to decomposition τ · sp do not affect

any points except p, double d2 (clearly d2, dm) and its prototype d. Moreover, the transformation

does not change the length of decomposition.

Lemma 4. Let π ∈ A be a permutation with decomposition D = (d1, . . . , dm), m ≥ 3, 1 is fixed

in π over D with trivial path, π(dm−2) = dm and there is no k ∈ 1, m − 3 such that dk = dm−2.

Then for every natural number p, p ≥ 3, there exists τ ∈ A such that sp · π = τ · sp and τ has

a decomposition (t1, . . . , tl), where l ≤ m and p 6∈ {t1, . . . , tl}.

Proof. Note, that if p 6∈ {d1, . . . , dm}, then the statement holds by Lemma 3.

Let p ∈ {d1, . . . , dm}. Consider seven different cases:

1) d2 = p;

2) d2 6= p, dm−1, dm−2 6= p;

3) d2 6= p, dm−1 = p and dm−2 6= p;

4) d2 6= p, dm−1 6= p, dm−2 = p and π−1(p) 6= 2;

5) d2 6= p, dm−1, dm−2 = p and d := π−1(p) 6= 2;

6) d2 6= p, dm−1 6= p, dm−2 = p and π−1(p) = 2;

7) d2 6= p, dm−1, dm−2 = p and π−1(p) = 2.

1) Let d2 = p. From Proposition 1 it follows that:

(a) if d1 6= p, then

sp · π = [p]S · [d1, p, d3, . . . , dm−1, p]S = [p, d1, p, d3, . . . , dm−1, p]S

= [d1, d1, p, p, p, d3, . . . , dm−1, p]S = [d1, d1, d3, . . . , dm−1, p]S,

so, τ = [d1, d1, d3, . . . , dm−1]S with the length equals to m − 1;

(b) if d1 = p, then

sp · π = [p]S · [p, p, d3, . . . , dm−1, p]S = [p, p, p, d3, . . . , dm−1, p]S = [d3, . . . , dm−1]S · [p]S,

so, τ = [d3, . . . , dm−1]S with the length equals to m − 3.

2) Let d2 6= p, dm−1, dm−2 6= p. Construct τ as follows

τ = [dm−2, t1, . . . , tm−1]S, where ti =

{

dm−2, if di = p,

di, otherwise.

Let σ = [d, t1, . . . , tm−3]S. Note, that τ = σ · [tm−2, tm−1]S = σ · [dm−2, dm−1]S.

From the construction of τ it follows that for every point x, x 6∈ {1, 2, dm−2, p, π−1(p)}, we

have π(x) 6∈ {1, 2, dm−2, p, π−1(p)}. Therefore, (sp · π)(x) = π(x) = τ(x) = (τ · sp)(x).

Hence, it is enough to show that (sp · π)(x) = (τ · sp)(x) for every point x from

{1, 2, dm−2, p, π−1(p)}.
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Case x = 1. Note, that

(a) if π(2) = 2, then the path of 2 in π over D ends on the mth position. So, σ(2) = 1,

from which it follows that τ(1) = 1;

(b) if π(2) = p, then σ(1) = dm−2. Then we have

σ
︷ ︸︸ ︷

1 → dm−2 =⇒

(1,2,dm−2)
︷ ︸︸ ︷

dm−2 → 1 =⇒

(1,2,dm−1)
︷ ︸︸ ︷

1 → 2 ,

which means that τ(1) = 2;

(c) if π(2) 6= 2, p, then π(2) = τ(1).

As the result, we have the following table.

sp · π τ · sp

π(2) = 2

sp
︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → 2

τ
︷ ︸︸ ︷

1 → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

π(2) = p

sp
︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → p

τ
︷ ︸︸ ︷

1 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

π(2) 6= 2, p

sp
︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → π(2)

τ
︷ ︸︸ ︷

1 → π(2) =⇒

sp
︷ ︸︸ ︷

π(2) → π(2)

Case x = 2. Note, that

(a) if π(p) 6= p, then τ(2) = π(p), based on construction τ from π;

(b) if π(p) = p, then σ(2) = dm−2. So

σ
︷ ︸︸ ︷

2 → dm−2 =⇒

(1,2,dm−2)
︷ ︸︸ ︷

dm−2 → 1 =⇒

(1,2,dm−1)
︷ ︸︸ ︷

1 → 2 , which means

that τ(2) = 2.

As the result, we have the following table.

sp · π τ · sp

π(p) 6= p

sp
︷ ︸︸ ︷

2 → p =⇒

π
︷ ︸︸ ︷

p → π(p)

τ
︷ ︸︸ ︷

2 → π(p) =⇒

sp
︷ ︸︸ ︷

π(p) → π(p)

π(p) = p

sp
︷ ︸︸ ︷

2 → p =⇒

π
︷ ︸︸ ︷
p → p

τ
︷ ︸︸ ︷

2 → p =⇒

sp
︷ ︸︸ ︷

p → 2

Case x = dm−2. Note, that π(dm−2) = dm = d2 = τ(dm−2). As the result, we have the

following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

dm−2 → dm−2 =⇒

π
︷ ︸︸ ︷

dm−2 → dm

τ
︷ ︸︸ ︷

dm−2 → d2 =⇒

sp
︷ ︸︸ ︷

d2 → d2

Case x = p. In this case, we have the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

p → 1 =⇒

π
︷ ︸︸ ︷

1 → 1

τ
︷ ︸︸ ︷
p → p =⇒

sp
︷ ︸︸ ︷

p → 1
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Case x = π−1(p). Let d = π−1(p). Note, that cases d = 2 or d = p are already considered.

Also, d doesn’t equal 1. Then for d in τ we have

σ
︷ ︸︸ ︷

d → dm−2 =⇒

(1,2,dm−2)
︷ ︸︸ ︷

dm−2 → 1 =⇒

(1,2,dm−1)
︷ ︸︸ ︷

1 → 2 . As the

result, we have the following table.

sp · π τ · sp

d = π−1(p), d 6= 2, p

sp
︷ ︸︸ ︷

d → d =⇒

π
︷ ︸︸ ︷

d → p

τ
︷ ︸︸ ︷

d → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

3) Let d2 6= p, dm−1 = p and dm−2 6= p. Construct τ as follows

τ = [dm−2, t1, . . . , tm−2]S, where ti =

{

dm−2, if di = p,

di, otherwise.

Let σ = [dm−2, t1, . . . , tm−3]S. Note, that τ = σ · [tm−2]S = σ · [dm−2]S.

From the construction of τ it follows that for every point x, x 6∈ {1, 2, dm−2, p}, we have

π(x) 6∈ {1, 2, dm−2, p}. Therefore, (sp · π)(x) = π(x) = τ(x) = (τ · sp)(x). Hence, it is enough

to show that (sp · π)(x) = (τ · sp)(x) for every point x from {1, 2, dm−2, p}.

Case x = 1. Note, that

(a) if π(2) = 2, then in the decomposition of τ: 1
1
−→ 2

2
−→ t2 =⇒ . . .

x
−→ dm−2

x,m−2
===⇒

dm−2
m−2
−−→ 1, where x is the last position of p, before m − 1. So, τ(2) = 1;

(b) if π(2) = p, then the last point of 2 was the (m − 1)th position in the decomposi-

tion D. As the result, σ(1) = 1. So,

σ
︷ ︸︸ ︷

1 → 1 =⇒

(1,2,d2)
︷ ︸︸ ︷

1 → 2, which means that τ(1) = 2;

(c) if π(2) 6= p, then σ(1) = π(2) 6= dm−2. So,

σ
︷ ︸︸ ︷

1 → π(2) =⇒

(1,2,dm−2)
︷ ︸︸ ︷

π(2) → π(2), which means

that τ(1) = π(2).

As the result, we have the following table.

sp · π τ · sp

π(2) = 2

sp
︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → 2

τ
︷ ︸︸ ︷

1 → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

π(2) = p

sp
︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → p

τ
︷ ︸︸ ︷

1 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

π(2) 6= 2, p

sp
︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → π(2)

τ
︷ ︸︸ ︷

1 → π(2) =⇒

sp
︷ ︸︸ ︷

π(2) → π(2)

Case x = 2. Note, that

(a) if π(p) 6= p, then σ(2) = π(p), because of 2
1
−→ dm−2 in τ. As the result, we have that

σ
︷ ︸︸ ︷

2 → π(p) =⇒

(1,2,dm−2)
︷ ︸︸ ︷

π(p) → π(p), which means that τ(2) = π(p);

(b) if π(p) = p, then the last point in the path of action of 2 over the decomposition D

will be the (m − 1)th position. As the result, σ(2) = 1. So,

σ
︷ ︸︸ ︷

2 → 1 =⇒

(1,2,dm−2)
︷ ︸︸ ︷

1 → 2 , which means

that τ(2) = 2.
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As the result, we have the following table.

sp · π τ · sp

π(p) 6= p

sp
︷ ︸︸ ︷

2 → p =⇒

π
︷ ︸︸ ︷

p → π(p)

τ
︷ ︸︸ ︷

2 → π(p) =⇒

sp
︷ ︸︸ ︷

π(p) → π(p)

π(p) = p

sp
︷ ︸︸ ︷

2 → p =⇒

π
︷ ︸︸ ︷
p → p

τ
︷ ︸︸ ︷

2 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

Case x = dm−2. Note, that τ(dm−2) = d2. As the result, we have the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

dm−2 → dm−2 =⇒

π
︷ ︸︸ ︷

dm−2 → dm

τ
︷ ︸︸ ︷

dm−2 → d2 =⇒

sp
︷ ︸︸ ︷

d2 → d2

Case x = p. Note, that τ(p) = p, because there are no point p in the decomposition of τ. As

the result, we have the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

p → 1 =⇒

π
︷ ︸︸ ︷

1 → 1

τ
︷ ︸︸ ︷
p → p =⇒

sp
︷ ︸︸ ︷

p → 1

Case x = π−1(p). Let d = π−1(p). Note, that cases d = 2 or d = p are already considered.

Also, d does not equal to 1. Then for d in τ we have

σ
︷ ︸︸ ︷

d → 1 =⇒

(1,2,dm−2)
︷ ︸︸ ︷

1 → 2 , which means that

τ(d) = 2. As the result, we have the following table.

sp · π τ · sp

d = π−1(p), d 6= 2, p

sp
︷ ︸︸ ︷

d → d =⇒

π
︷ ︸︸ ︷

d → p

τ
︷ ︸︸ ︷

d → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

Note, that in this case, the length of τ over S equals to m − 1.

4) Let d2 6= p, dm−1 6= p, dm−2 = p and π−1(p) 6= 2. Let d = π−1(p). Note, that in this case

dm−2 is unique representation of point p in D. Construct τ as follows

τ = [d, d1, d2, . . . , dm−3, d2, dm−1]S,

where d = π−1(p).

From the construction of τ it follows that for every point x, x 6∈ {1, 2, dm−2 = p, d} we have

π(x) 6∈ {1, 2, dm−2 = p, d}. Therefore, (sp · π)(x) = π(x) = τ(x) = (τ · sp)(x). Hence, it is

enough to show that (sp · π)(x) = (τ · sp)(x) for every point x from {1, 2, dm−2 = p, d}.

Case x = 1. Note, that

(a) if π(2) = 2, then τ(1) = 1;

(b) if π(2) 6= 2, then τ(1) = π(2).

As the result, we have the following table.

sp · π τ · sp

π(2) = 2

sp
︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → 2

τ
︷ ︸︸ ︷

1 → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

π(2) 6= 2

sp
︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → π(2)

τ
︷ ︸︸ ︷

1 → π(2) =⇒

sp
︷ ︸︸ ︷

π(2) → π(2)
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Case x = 2. Note, that τ(2) = [d1, . . . , dm−3, d2, dm−2]S(d) = d2. As the result, we have the

following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

2 → p =⇒

π
︷ ︸︸ ︷

p → dm

τ
︷ ︸︸ ︷

2 → d2 =⇒

sp
︷ ︸︸ ︷

d2 → d2

Case x = p. In this case we have τ(p) = p. As the result, we obtain the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

p → 1 =⇒

π
︷ ︸︸ ︷

1 → 1

τ
︷ ︸︸ ︷
p → p =⇒

sp
︷ ︸︸ ︷

p → 1

Case x = d. Note, that the case d = p is already considered. So, in the decomposition of τ,

we have the path d
1
−→ 1

2
−→ 2

3
−→ d2

3,m−1
===⇒ d2

m−1
−−→ 1

m
−→ 2. So, τ(d) = 2. As the result, we have

the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

d → d =⇒

π
︷ ︸︸ ︷

d → p

τ
︷ ︸︸ ︷

d → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

5) Let d2 6= p, dm−1 = dm−2 = p and π−1(p) 6= 2. Let d = π−1(p). Note, that in this case,

dm−2, dm−1 are unique represented of the point p in D. Construct τ as follows

τ = [d, d1, d2, . . . , dm−3, d2, d2]S.

From the construction of τ it follows that for every point x, x 6∈ {1, 2, dm−2 = p, d}, we have

π(x) 6∈ {1, 2, dm−2 = p, d}. Therefore, (sp · π)(x) = π(x) = τ(x) = (τ · sp)(x). Hence, it is

enough to show that (sp · π)(x) = (τ · sp)(x) for every point x from {1, 2, dm−2 = p, d}.

Case x = 1. Note, that

(a) if π(2) = 2, then τ(1) = 1;

(b) if π(2) 6= 2, then τ(1) = π(2).

As the result, we have the following table.

sp · π τ · sp

π(2) = 2

sp
︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → 2

τ
︷ ︸︸ ︷

1 → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

π(2) 6= 2

sp
︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → π(2)

τ
︷ ︸︸ ︷

1 → π(2) =⇒

sp
︷ ︸︸ ︷

π(2) → π(2)

Case x = 2. Note, that τ(2) = [d1, . . . , dm−3, d2, d2]S(d) = d2. As the result, we have the

following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

2 → p =⇒

π
︷ ︸︸ ︷

p → d2

τ
︷ ︸︸ ︷

2 → d2 =⇒

sp
︷ ︸︸ ︷

d2 → d2
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Case x = p. In this case τ(p) = p. As the result, we have the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

p → 1 =⇒

π
︷ ︸︸ ︷

1 → 1

τ
︷ ︸︸ ︷
p → p =⇒

sp
︷ ︸︸ ︷

p → 1

Case x = d. Note, that the case d = p is already considered. So, in the decomposition of τ,

we have the path d
1
−→ 1

2
−→ 2

3
−→ d2

3,m−1
===⇒ d2

m−1
−−→ 1

m
−→ 2. So, τ(d) = 2. As the result, we have

the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

d → d =⇒

π
︷ ︸︸ ︷

d → p

τ
︷ ︸︸ ︷

d → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

6) Let d2 6= p, dm−1 6= p, dm−2 = p and π−1(p) = 2. Note, that in this case dm−2 is the

unique representation of the point p in D. Construct τ as follows

τ = [d1, d2, . . . , dm−3, d2, dm−1]S.

From the construction of τ it follows that for every point x, x 6∈ {1, 2, dm−2 = p}, we have

π(x) 6∈ {1, 2, p}. Therefore, (sp · π)(x) = π(x) = τ(x) = (τ · sp)(x). Hence, it is enough to

show that (sp · π)(x) = (τ · sp)(x) for every point x from {1, 2, p}.

Case x = 1. Note, that in decomposition of τ there is the next path of the point 1, namely

1
1
−→ 2

2
−→ d2

2,m−2
===⇒ d2

m−2
−−→ 1

m−1
−−→ 2. So, τ(1) = 2. As the result, we have the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → p

τ
︷ ︸︸ ︷

1 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

Case x = 2. Based on the fact that dm−2 is the unique representation of p in D, we have that

π(p) = dm. In the same time, π(2) = p = dm−2, which means that τ(2) = d2. As the result,

we have the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

2 → p =⇒

π
︷ ︸︸ ︷

p → dm

τ
︷ ︸︸ ︷

2 → d2 =⇒

sp
︷ ︸︸ ︷

d2 → d2

Case x = p. Note, that τ(p) = p. As the result, we have the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

p → 1 =⇒

π
︷ ︸︸ ︷

1 → 1

τ
︷ ︸︸ ︷
p → p =⇒

sp
︷ ︸︸ ︷

p → 1

7) Let d2 6= p, dm−1 = dm−2 = p and π−1(p) = 2. Note that in this case, dm−2, dm−1 are the

unique representations of p in D. Construct τ as follows

τ = [d1, d2, . . . , dm−3, d2, d2]S.

From the construction of τ it follows that for every point x, x 6∈ {1, 2, dm−2 = p}, we have

π(x) 6∈ {1, 2, p}. Therefore, (sp · π)(x) = π(x) = τ(x) = (τ · sp)(x). Hence, it is enough to

show that (sp · π)(x) = (τ · sp)(x) for every point x from {1, 2, p}.
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Case x = 1. Note, that there is the next path of point 1 in the decomposition of τ, namely

1
1
−→ 2

2
−→ d2

2,m−2
===⇒ d2

m−2
−−→ 1

m−1
−−→ 2. So, τ(1) = 2. As the result, we have the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → p

τ
︷ ︸︸ ︷

1 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

Case x = 2. Based on the fact that dm−2 is the unique representation of p in D, we have that

π(p) = dm. In the same time, π(2) = p = dm−1, which means that τ(2) = d2. As the result,

we have the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

2 → p =⇒

π
︷ ︸︸ ︷

p → dm

τ
︷ ︸︸ ︷

2 → d2 =⇒

sp
︷ ︸︸ ︷

d2 → d2

Case x = p. Note, that τ(p) = p. As the result, we have the following table.

sp · π τ · sp
sp

︷ ︸︸ ︷

p → 1 =⇒

π
︷ ︸︸ ︷

1 → 1

τ
︷ ︸︸ ︷
p → p =⇒

sp
︷ ︸︸ ︷

p → 1

The proof of lemma is completed.

Lemma 5. Let π be a permutation with decomposition D = (d1, d2, . . . , dm), m ≥ 3, 1 is fixed

in π over D with trivial path and π−1(d2) 6= 2. Then for every natural number p, p ≥ 3, there

exists τ ∈ A such that sp · π = τ · sp and τ has a decomposition (t1, . . . , tl), where l ≤ m and

p 6∈ {t1, . . . , tl}.

Proof. Note, that the case, when there is no such k ∈ 1, m that dk = p, is already proved in

Lemma 3, and the case, when π−1(dm) = dm−2 with no such k ∈ 1, m − 3 that dk = dm−2, is

already proved in Lemma 4.

The basis. Let d = π−1(dm). Note, that due to assumptions of the lemma, the decomposition

of the permutation π requires: 2 positions for d2, dm; at least 2 positions for non-trivial path of

the point dm; 1 position for dm−1. The last means that m ≥ 5.

We will prove the basis for cases m = 5, 6.

1) If m = 5, then d = 2 and there exists the following decomposition of π, namely

π = [d1, d2, d3, d4, d5]S, where d1 = d3, d2 = d4, d5 6= d2 and d5 6= d4. Based on Lemma

3, it is enough to consider three cases depending on p from {d1, d2, d5}. In case p = d1 let

τ = [d2, d2, d4]S. It follows that sd1
· π = τ · sd1

. In case p = d2 let τ = [d4]S. It follows that

sd2
· π = τ · sd2

. In case p = d5 let τ = [d2, d2]S. It follows that sd4
· π = τ · sd4

. In each case we

used direct calculations.

2) If m = 6, then d can be equal to 2, or not. We consider the next three cases: d = 2 and

d3 6= d5; d = 2 and d3 = d5; d 6= 2.

Let d = 2. Then we have the next decomposition of π, namely π = [d1, d2, d3, d4, d5, d6]S,

where d1 = d4, d2 = d6 and d3, d5 are different from d1, d2.

Let d3 6= d5. Based on Lemma 3 it is enough to consider four cases depending on p from

{d1, d2, d3, d5}. In case p = d1 let τ = [d3, d2, d5]S. It follows that sd1
· π = τ · sd1

. In case p = d2

let τ = [d1, d3, d3, d5]S. It follows that sd2
· π = τ · sd2

. In case p = d3 let τ = [d5, d2, d1, d1]S. It
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follows that sd3
·π = τ · sd3

. In case p = d5 let τ = [d1, d2, d3, d1]S. It follows that sd5
·π = τ · sd5

.

In each case we used direct calculations.

Let d3 = d5. Note, that π(d3) = d3. Based on Lemma 3 it is enough to consider two cases

depending on p from {d1, d2}. In case p = d1 let τ = [d1, d2, d1]S. It follows that sd1
·π = τ · sd1

.

In case p = d2 let τ = [d1]S. It follows that sd2
· π = τ · sd2

. In each case we used direct

calculations.

Let d 6= 2. Then there is the next decomposition of π, namely π = [d1, d2, d3, d4, d5, d6]S,

where d3 = d4, d2 = d6 and points d1, d2, d3, d5 are pairwise different. From Proposition 1

we have π = [d1, d2, d3, d3, d5, d2]S = [d2, d2, d1, d1, d3, d3, d5, d2]S = [d2, d2, d3, d1, d5, d2]S. State-

ment is directly implied from Lemma 4.

Induction step: case m under assumption that for l < m the statement holds. Let d = π−1(dm).

Consider cases of d.

Let d = 2. Consider different cases.

1) Let d2 = dm = p. There are possible the next two options. If d1 = p, then by Proposition 1

we have sp · π = [p]S · [p, p, d3, . . . , dm−1, p]S = [d3, . . . , dm−1]S · [p]S = τ · sp. If d1 6= p, then

based on Proposition 1 we obtain

sp · π = [p]S · [d1, p, d3, . . . , dm−1, p]S = [d1, d1, p, p, p, d3, . . . , dm−1, p]S

= [d1, d1, d3, . . . , dm−1]S · [p]S = τ · sp.

2) Let d2 6= p, dm 6= p. Denote π(p) by d. There are possible the following three options.

i) Let d = 2, dm−1 = p and there is no t ∈ 1, m − 2 such that p = dt. Construct τ as follows

τ = [d1, d2, . . . , dm−2]S.

From the construction of τ it follows that for every point x, x 6∈ {1, 2, p, p−1}, we have

π(x) 6∈ {1, 2, p, p−1}. Therefore, (sp · π)(x) = π(x) = τ(x) = (τ · sp)(x). Hence, it is enough

to show that (sp · π)(x) = (τ · sp)(x) for every point x from {1, 2, p, p−1}.

Case x = 1. Note, that d2 is the unique point in the decomposition of τ. So, τ(1) = d2. As

the result, we have the following table.

sp · π π · sp
sp

︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → dm

τ
︷ ︸︸ ︷

1 → d2 =⇒

sp
︷ ︸︸ ︷

d2 → d2

Case x = 2. From π(2) = dm it follows that τ(2) = 1. As the result, we have the following

table.

sp · π π · sp
sp

︷ ︸︸ ︷

2 → p =⇒

π
︷ ︸︸ ︷

p → 2

τ
︷ ︸︸ ︷

2 → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

Case x = p. In this case, we have the following table.

sp · π π · sp
sp

︷ ︸︸ ︷

p → 1 =⇒

π
︷ ︸︸ ︷

1 → 1

τ
︷ ︸︸ ︷
p → p =⇒

sp
︷ ︸︸ ︷

p → 1
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Case x = p−1. From π(p−1) = p, dm−1 = p and dm = p it follows that τ(p−1) = 2. As the

result, we have the following table.

sp · π π · sp
sp

︷ ︸︸ ︷

p−1 → p−1 =⇒

π
︷ ︸︸ ︷

p−1 → p

τ
︷ ︸︸ ︷

p−1 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

ii) Let d = 2 and dm−1 6= p. That means that there exists the path of p over D such that

p
r−1
−−→ 1

r
−→ 2

r+1
−−→ x =⇒ . . .

w,m−1
===⇒ dm−1

m−1
−−→ 1

m
−→ 2. The last means that σ = [dr , . . . , dm−1]S

satisfies conditions of the lemma. Based on induction assumption, the decomposition D can

be transformed into some decomposition Y = (y1, . . . , yu) such that u ≤ m, yu−1 = p and there

is no t ∈ 1, u − 2 such that p = yt. Based on previous case, we can obtain τ.

iii) Let d 6= 2. Note, that based on the lemma assumptions, we have the next path of

the point 2 over D, namely 2
1
−→ d1

1,t1=⇒ . . .
t2,m−2
===⇒ dm−2

m−2
−−→ 1

m−1
−−→ 2

m
−→ dm for some

natural numbers t1, t2. Suppose that t1 6= m − 2 and t2 = 1. Then the permutation σ =

[dt2+1, . . . , dm−2] satisfies conditions of the lemma. Based on induction assumption, the de-

composition D can be transformed into some decomposition Y = (y1, . . . , yu) such that u ≤ m,

y1 = yu−2 and there is no t ∈ 2, u − 3 such that y1 = yt.

So, without loosing of generality, we can assume that t1 = m − 2 and t2 = 1. Consider

different cases of dm−1.

Case dm−1 = p. Construct τ as follows

τ = [t1, . . . , tm−2]S, where ti =

{

d1, if di = p,

di, otherwise.

From the construction of τ it follows that for every point x, x 6∈ {1, 2, p, p−1}, we have

π(x) 6∈ {1, 2, p, p−1}. Therefore, (sp · π)(x) = π(x) = τ(x) = (τ · sp)(x). Hence, it is enough

to show that (sp · π)(x) = (τ · sp)(x) for every point x from {1, 2, p, p−1}.

Subcase x = 1. Note, that d2 is the unique point in the decomposition of τ. So, τ(1) = d2.

As the result, we have the following table.

sp · π π · sp
sp

︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → dm

τ
︷ ︸︸ ︷

1 → d2 =⇒

sp
︷ ︸︸ ︷

d2 → d2

Subcase x = 2. From π(p) = d and substitution p by d1 it follows that there is the path of

the point 2 in τ, namely 2
1
−→ d1

1,x
=⇒ d1 −→ . . . −→ d, where x is the first position of p in π. As

the result, we have the following table.

sp · π π · sp
sp

︷ ︸︸ ︷

2 → p =⇒

π
︷ ︸︸ ︷

p → d

τ
︷ ︸︸ ︷

2 → d =⇒

sp
︷ ︸︸ ︷

d → d

Subcase x = p. In this case, we have the following table.

sp · π π · sp
sp

︷ ︸︸ ︷

p → 1 =⇒

π
︷ ︸︸ ︷

1 → 1

τ
︷ ︸︸ ︷
p → p =⇒

sp
︷ ︸︸ ︷

p → 1



562 Olshevskyi M.S.

Subcase x = p−1. From π(p−1) = p, dm−1 = p and dm = p it follows that τ(p−1) = 2. As

the result, we have the following table.

sp · π π · sp
sp

︷ ︸︸ ︷

p−1 → p−1 =⇒

π
︷ ︸︸ ︷

p−1 → p

τ
︷ ︸︸ ︷

p−1 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

Case dm1 6= p. Construct τ as follows.

τ = [t1, . . . , tm−2, tm−1]S, where ti =

{

d1, if di = p,

di, otherwise.

From the construction of τ it follows that for every point x, x 6∈ {1, 2, p, p−1}, we have

π(x) 6∈ {1, 2, p, p−1}. Therefore, (sp · π)(x) = π(x) = τ(x) = (τ · sp)(x). Hence, it is enough

to show that (sp · π)(x) = (τ · sp)(x) for every point x from {1, 2, p, p−1}.

Subcase x = 1. Note, that d2 is the unique point in the decomposition of τ. So, τ(1) = d2.

As the result, we have the following table.

sp · π π · sp
sp

︷ ︸︸ ︷

1 → 2 =⇒

π
︷ ︸︸ ︷

2 → dm

τ
︷ ︸︸ ︷

1 → d2 =⇒

sp
︷ ︸︸ ︷

d2 → d2

Subcase x = 2. From π(p) = d and substitution p by d1 implies that there is the path of the

point 1 in τ, namely 1
1
−→ d1

1,x
=⇒ d1

...
−→

d
−→, where x is the first position of p in π. As the result,

we have the following table.

sp · π π · sp
sp

︷ ︸︸ ︷

2 → p =⇒

π
︷ ︸︸ ︷

p → d

τ
︷ ︸︸ ︷

2 → d =⇒

sp
︷ ︸︸ ︷

d → d

Subcase x = p. In this case, we have the following table.

sp · π π · sp
sp

︷ ︸︸ ︷

p → 1 =⇒

π
︷ ︸︸ ︷

1 → 1

τ
︷ ︸︸ ︷
p → p =⇒

sp
︷ ︸︸ ︷

p → 1

Subcase x = p−1. From π(p−1) = p it follows that there is the path of the point p−1 in τ,

namely p−1 −→ . . .
x
−→ d1

x,m−2
===⇒ dm−2

m−2
−−→ 1

m−1
−−→ 2, where x is the last position of p in D. As

the result, we have the following table.

sp · π π · sp
sp

︷ ︸︸ ︷

p−1 → p−1 =⇒

π
︷ ︸︸ ︷

p−1 → p

τ
︷ ︸︸ ︷

p−1 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

Let d 6= 2. Then there exists the natural numbers x, y and path of d = dy in π over D such

that d
y
−→ 1

y+1
−−→ 2

y+2
−−→ dy+2 =⇒ . . .

x,m−2
===⇒ dm−2

m−2
−−→ 1

m−1
−−→ 2

m
−→ dm. The last means that

Tr(d, π, D) = (y, t1, r1, . . . , tu, ru, m) for some natural numbers t1, r1, . . . , tu, ru ∈ y + 2, m − 2,

u ≥ 0. Let πk = [dtk−1, dtk
, . . . , drk+1

] for every k ∈ 1, u. Note, that πk satisfies assumption

of the lemma and the length of its decomposition is less than m. Then, based on induction

assumption, for every natural p, p ≥ 3, we have sp · πk = τk · sp for some τk, which length of
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the decomposition is less or equal to rk − tk + 2. Let ν = [d1, . . . , dy−1]S and µ = [dm−1, dm]S.

Then π = ν · sd · π1 · . . . · πu · µ = ν · τ1 · sd · π2 · . . . · πu · µ = . . . = ν · τ1 · . . . · τu · sd · µ.

Note, that transformation from πk to τk does not introduce points d2, dm, because they

are unique represented in D and they are not represented in πk, k ∈ 1, u; there are

no d in the decomposition Y of π, which is the concatenation of considered decompositions

ν, τ1, . . . , τu, [d]S, µ, π(d) = dm.

As the result, from Lemma 4 it follows the proof.

2.2 Multiplication from the right

Let π ∈ A be a permutation with the decomposition D = (d1, . . . , dm), m ≥ 3, over S. Note,

that if the point 2 is fixed in π and has trivial path in π over D, then, based on Proposition 2,

the path of the point 2 over D is the following 2
1
−→ d1

d1,dm−1
====⇒ dm−1

m−1
−−→ 1

m
−→ 2.

Lemma 6. Let π ∈ A be some permutation with the decomposition D = (d1, d2, . . . , dm),

m ≥ 3, 2 is fixed in π over D with trivial path, d = π(d1). Then for every p 6∈ {d1, . . . , dm},

p ≥ 3, we have π · sp = sp · τ, where

τ =

{

[d2, . . . , dm−1, dm, d]S, if d 6= 1,

[d2, . . . , dm−1, dm]S, if d = 1.

Proof. Let σ = [d2, . . . , dm]S. Consider cases d 6= 1 and d = 1 independently.

Let d 6= 1. From the construction of τ it follows that for every point x, x 6∈ {1, 2, p, d1},

we have π(x) 6∈ {1, 2, p, d1}. Therefore, (π · sp)(x) = π(x) = τ(x) = (sp · τ)(x). Hence, it is

enough to show that (π · sp)(x) = (sp · τ)(x) for every point x from {1, 2, p, d1}.

Case x = 1. Note, that π(1) 6= 2. So, π(1) is some number from {d2, d3, . . . , dm} or equal 1.

If π(1) 6= 1, then π(1) = σ(2). So, τ(2) = π(1). If π(1) = 1, then σ(2) = 1. So, τ(2) = 2.

As the result, we have the following table.

π · sp sp · τ

π(1) 6= 1

π
︷ ︸︸ ︷

1 → π(1) =⇒

sp
︷ ︸︸ ︷

π(1) → π(1)

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → π(1)

π(1) = 1

π
︷ ︸︸ ︷

1 → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → 2

Case x = 2. In this case, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

2 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

sp
︷ ︸︸ ︷

2 → p =⇒

τ
︷ ︸︸ ︷
p → p

Case x = p. Note, that σ(1) = π(d1) = d. So, τ(1) = 1. As the result, we have the following

table.

π · sp sp · τ

π
︷ ︸︸ ︷
p → p =⇒

sp
︷ ︸︸ ︷

p → 1

sp
︷ ︸︸ ︷

p → 1 =⇒

τ
︷ ︸︸ ︷

1 → 1
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Case x = d1. Note, that d1 has unique representation in the decomposition of τ on the

(m − 2)th position. So, τ(d1) = d. As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

d1 → d =⇒

sp
︷ ︸︸ ︷

d → d

sp
︷ ︸︸ ︷

d1 → d1 =⇒

π
︷ ︸︸ ︷

d1 → d

Let d = 1. From the construction of τ it follows that for every point x, x 6∈ {1, 2, p, d1},

we have π(x) 6∈ {1, 2, p, d1}. Therefore, (π · sp)(x) = π(x) = τ(x) = (sp · τ)(x). Hence, it is

enough to show that (π · sp)(x) = (sp · τ)(x) for every point x from {1, 2, p, d1}.

Case x = 1. Note, that π(1) 6= 1 and τ(2) = π(1). As the result, we have the following

table.

π · sp sp · τ
π

︷ ︸︸ ︷

1 → π(1) =⇒

sp
︷ ︸︸ ︷

π(1) → π(1)

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → π(1)

Case x = 2. In this case, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

2 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

sp
︷ ︸︸ ︷

2 → p =⇒

τ
︷ ︸︸ ︷
p → p

Case x = p. Note, that τ(1) = π(d1) = 1. As the result, we have the following table.

π · sp sp · τ

π
︷ ︸︸ ︷
p → p =⇒

sp
︷ ︸︸ ︷

p → 1

sp
︷ ︸︸ ︷

p → 1 =⇒

τ
︷ ︸︸ ︷

1 → 1

The proof is complete.

Lemma 7. Let π ∈ A be a permutation with decomposition D = (d1, . . . , dm), m ≥ 3, 2 is fixed

point in π over D with trivial path and π(d1) = d3, which is not in (d4, . . . , dm). Then for every

natural number p, p ≥ 3, there exists τ ∈ A such that π · sp = sp · τ and τ has a decomposition

(t1, . . . , tl), where l ≤ m and p 6∈ {t1, . . . , tl}.

Proof. Note, that if p 6∈ {d1, . . . , dm}, then the statement holds by Lemma 6.

Let p ∈ {d1, . . . , dm}. Consider seven different cases:

1) d1 = p;

2) d1 6= p, d2, d3 6= p;

3) d1 6= p, d2 = p and d3 6= p;

4) d1 6= p, d2 6= p, d3 = p and π(p) 6= 1;

5) d1 6= p, d2, d3 = p and π(p) 6= 1;

6) d1 6= p, d2 6= p, d3 = p and π(p) = 1;

7) d1 6= p, d2, d3 = p and π(p) = 1.
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1) Let d1 = dm−1 = p. Consider two cases.

(a) If dm 6= p, then based on Proposition 1 we have

π · sp = [p, d2, . . . , dm−2, p, dm]S · [p]S = [p]S · [d2, . . . , dm−2, dm, dm, p, p, p]S

= [p]S · [d2, . . . , dm−2, dm, dm]S = sp · τ,

where the length of the decomposition of τ is less than the length of D at least by 1.

(b) If dm = p, then based on Proposition 1 we have

π · sp = [p, d2, . . . , dm−2, p, p]S · [p]S = [p]S · [d2, . . . , dm−2, p, p, p]S

= [p]S · [d2, . . . , dm−2]S = sp · τ,

where the length of the decomposition of τ is less than the length of D at least by 3.

2) Let d2 6= p, d3 6= p. Construct τ as follows

τ = [t2, t3, . . . , tm−1, tm, d3]S, where di =

{

d3, if di = p,

di, otherwise.

Let σ= [t2, . . . , tm]S. From the construction of τ it follows that for every point x, x 6∈ {1, 2, p, d3},

we have π(x) 6∈ {1, 2, p, d3}. Therefore, (π · sp)(x) = π(x) = τ(x) = (sp · τ)(x). Hence, it is

enough to show that (π · sp)(x) = (sp · τ)(x) for every point x from {1, 2, p, d3}.

Case x = 1. Note, that:

(a) if π(1) = 1, then

σ
︷ ︸︸ ︷

2 → 1 =⇒

(1,2,d3)
︷ ︸︸ ︷

1 → 2, which means that τ(2) = 2;

(b) if π(1) = p, then

σ
︷ ︸︸ ︷

2 → d3 =⇒

(1,2,d3)
︷ ︸︸ ︷

d3 → 1, which means that τ(2) = 1;

(c) if π(1) 6= 1, π(1) 6= p, then τ(2) = π(1).

As the result, we have the following table.

π · sp sp · τ

π(1) = 1

π
︷ ︸︸ ︷

1 → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → 2

π(1) = p

π
︷ ︸︸ ︷

1 → p =⇒

sp
︷ ︸︸ ︷

p → 1

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → 1

π(1) 6= 1, p

π
︷ ︸︸ ︷

1 → π(1) =⇒

sp
︷ ︸︸ ︷

π(1) → π(1)

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → π(1)

Case x = 2. Note, that τ(p) = p. As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

2 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → p

Case x = p. Note, that:

(a) if π(p) = 1, then σ(1) = [t2, . . . , tm]S = 1, so

σ
︷ ︸︸ ︷

1 → 1 =⇒

(1,2,d3)
︷ ︸︸ ︷

1 → 2, which means that

τ(1) = 2;

(b) if π(p) = p, then

σ
︷ ︸︸ ︷

1 → d3 =⇒

(1,2,d3)
︷ ︸︸ ︷

d3 → 1, which means that τ(1) = 1;

(c) if π(p) 6= 1, π(p) 6= p, then τ(1) = π(p), based on the construction of τ.
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As the result, we have the following table.

π · sp sp · τ

π(p) = 1

π
︷ ︸︸ ︷

p → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

sp
︷ ︸︸ ︷

p → 1 =⇒

τ
︷ ︸︸ ︷

1 → 2

π(p) = p

π
︷ ︸︸ ︷
p → p =⇒

sp
︷ ︸︸ ︷

p → 1

sp
︷ ︸︸ ︷

p → 1 =⇒

τ
︷ ︸︸ ︷

1 → 1

π(p) 6= 1, p

π
︷ ︸︸ ︷

p → π(p) =⇒

sp
︷ ︸︸ ︷

π(p) → π(p)

sp
︷ ︸︸ ︷

p → 1 =⇒

τ
︷ ︸︸ ︷

1 → π(p)

Case x = d3. Note, that:

(a) if π(d3) = 1, then

σ
︷ ︸︸ ︷

d3 → 1 =⇒

(1,2,d3)
︷ ︸︸ ︷

1 → 2, which means that τ(d3) = 2;

(b) if π(d3) = p, then

σ
︷ ︸︸ ︷

d3 → d3 =⇒

(1,2,d3)
︷ ︸︸ ︷

d3 → 1, which means that τ(d3) = 1;

(c) if π(d3) 6= 1, π(d3) 6= p, then τ(d3) = π(d3).

As the result, we have the following table.

π · sp sp · τ

π(d3) = 1

π
︷ ︸︸ ︷

d3 → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

sp
︷ ︸︸ ︷

d3 → d3 =⇒

τ
︷ ︸︸ ︷

d3 → 2

π(d3) = p

π
︷ ︸︸ ︷

d3 → p =⇒

sp
︷ ︸︸ ︷

p → 1

sp
︷ ︸︸ ︷

d3 → d3 =⇒

τ
︷ ︸︸ ︷

d3 → 1

π(d3) 6= 1, p

π
︷ ︸︸ ︷

d3 → π(d3) =⇒

sp
︷ ︸︸ ︷

π(d3) → π(d3)

sp
︷ ︸︸ ︷

d3 → d3 =⇒

τ
︷ ︸︸ ︷

d3 → π(d3)

3) Let d2 = p and d3 6= p. Construct τ as follows

τ = [t3, . . . , tm−1, tm, d3]S, where ti =

{

d3, if di = p,

di, otherwise.

Let σ= [t3, . . . , tm]S. From the construction of τ it follows that for every point x, x 6∈ {1, 2, p, d3},

we have π(x) 6∈ {1, 2, p, d3}. Therefore, (π · sp)(x) = π(x) = τ(x) = (sp · τ)(x). Hence, it is

enough to show that (π · sp)(x) = (sp · τ)(x) for every point x from {1, 2, p, d3}.

Case x = 1. Note, that:

(a) if π(1) = 1, then σ(2) = π(1) = 1, so, τ(2) = [d3]S(1) = 2;

(b) if π(1) = p, then σ(2) = d3, so, τ(2) = [d3]S(d3) = 1;

(c) if π(1) 6= 1, π(1) 6= p, then τ(2) = π(1).

As the result, we have the following table.

π · sp sp · τ

π(1) = 1

π
︷ ︸︸ ︷

1 → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → 2

π(1) = p

π
︷ ︸︸ ︷

1 → p =⇒

sp
︷ ︸︸ ︷

p → 1

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → 1

π(1) 6= 1, p

π
︷ ︸︸ ︷

1 → π(1) =⇒

sp
︷ ︸︸ ︷

π(1) → π(1)

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → π(1)
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Case x = 2. Note, that τ(p) = p. As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

2 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → p

Case x = p. Note, that:

(a) if π(p) = 1, then σ(1) = π(d2) = π(p) = 1, so

σ
︷ ︸︸ ︷

1 → 1 =⇒

(1,2,d3)
︷ ︸︸ ︷

1 → 2, which means that

τ(1) = 2;

(b) if π(p) = p, then σ(1) = d3, so

σ
︷ ︸︸ ︷

1 → d3 =⇒

(1,2,d3)
︷ ︸︸ ︷

d3 → 1, which means that τ(1) = 1;

(c) if π(p) 6= 1, π(p) 6= p, then τ(1) = π(p), based on the construction of τ.

As the result, we have the following table.

π · sp sp · τ

π(p) = 1

π
︷ ︸︸ ︷

p → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

sp
︷ ︸︸ ︷

p → 1 =⇒

τ
︷ ︸︸ ︷

1 → 2

π(p) = p

π
︷ ︸︸ ︷
p → p =⇒

sp
︷ ︸︸ ︷

p → 1

sp
︷ ︸︸ ︷

p → 1 =⇒

τ
︷ ︸︸ ︷

1 → 1

π(p) 6= 1, p

π
︷ ︸︸ ︷

p → π(p) =⇒

sp
︷ ︸︸ ︷

π(p) → π(p)

sp
︷ ︸︸ ︷

p → 1 =⇒

τ
︷ ︸︸ ︷

1 → π(p)

Case x = d3. Note, that:

(a) if π(d3) = 1, then

σ
︷ ︸︸ ︷

d3 → 1 =⇒

(1,2,d3)
︷ ︸︸ ︷

1 → 2, which means that τ(d3) = 2;

(b) if π(d3) = p, then

σ
︷ ︸︸ ︷

d3 → d3 =⇒

(1,2,d3)
︷ ︸︸ ︷

d3 → 1, which means that τ(d3) = 1;

(c) if π(d3) 6= 1, π(d3) 6= p, then τ(d3) = π(d3).

As the result, we have the following table.

π · sp sp · τ

π(d3) = 1

π
︷ ︸︸ ︷

d3 → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

sp
︷ ︸︸ ︷

d3 → d3 =⇒

τ
︷ ︸︸ ︷

d3 → 2

π(d3) = p

π
︷ ︸︸ ︷

d3 → p =⇒

sp
︷ ︸︸ ︷

p → 1

sp
︷ ︸︸ ︷

d3 → d3 =⇒

τ
︷ ︸︸ ︷

d3 → 1

π(d3) 6= 1, p

π
︷ ︸︸ ︷

d3 → π(d3) =⇒

sp
︷ ︸︸ ︷

π(d3) → π(d3)

sp
︷ ︸︸ ︷

d3 → d3 =⇒

τ
︷ ︸︸ ︷

d3 → π(d3)

4) Let d2 6= p, d3 = p and d = π(p) 6= 1. Note, that d3 is the unique representation of p in

D. Construct τ as follows τ = [d2, d1, d4, d5, . . . , dm−1, dm, d]S.

that for every point x, x 6∈ {1, 2, p, d1}, we have π(x) 6∈ {1, 2, p, d1}. Therefore, (π · sp)(x) =

π(x) = τ(x) = (sp · τ)(x). Hence, it is enough to show that (π · sp)(x) = (sp · τ)(x) for every

point x from {1, 2, p, d1}.

Case x = 1. Note, that:

(a) if π(1) = 1, then σ(2) = π(1) = 1, so, τ(2) = [d]S(1) = 2;

(b) if π(1) 6= 1, then

σ
︷ ︸︸ ︷

2 → π(1) =⇒

(1,2,d)
︷ ︸︸ ︷

π(1) → π(1), which means that τ(2) = π(1).
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As the result, we have the following table.

π · sp sp · τ

π(1) = 1

π
︷ ︸︸ ︷

1 → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → 2

π(1) 6= 1

π
︷ ︸︸ ︷

1 → π(1) =⇒

sp
︷ ︸︸ ︷

π(1) → π(1)

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → π(1)

Case x = 2. Note, that τ(p) = p. As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

2 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → p

Case x = p. Note, that there is the path of the point 1 over the decomposition of τ, namely

1
1
−→ 2

2
−→ d1

2,m−2
===⇒ dm−1

m−2
−−→ 1

m−1
−−→ 2

m
−→ d, which means that τ(1) = d. As the result, we

have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

p → d =⇒

sp
︷ ︸︸ ︷

d → d

sp
︷ ︸︸ ︷

p → 1 =⇒

τ
︷ ︸︸ ︷

1 → d

Case x = d1. Note, that in this case σ(d1)=π(d3) = d, which means that τ(d1)= [d]S(d)=1.

As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

d1 → p =⇒

sp
︷ ︸︸ ︷

p → 1

sp
︷ ︸︸ ︷

d1 → d1 =⇒

τ
︷ ︸︸ ︷

d1 → 1

5) Let d2 = p, d3 = p and d = π(p) 6= 1. Note, that in this case d2, d3 are unique represen-

tations of p in D. Construct τ as follows

τ = [d1, d1, d4, d5, . . . , dm−1, dm, d]S.

Let σ = [d1, d4, d5, . . . , dm−1, dm]S. From the construction of τ it follows that for every point

x, x 6∈ {1, 2, p, d1}, we have π(x) 6∈ {1, 2, p, d1}. Therefore, (π · sp)(x) = π(x) = τ(x) =

(sp · τ)(x). Hence, it is enough to show that (π · sp)(x) = (sp · τ)(x) for every point x from

{1, 2, p, d1}.

Case x = 1. Note, that:

(a) if π(1) = 1, then σ(2) = π(1) = 1, so, τ(2) = [d]S(1) = 2;

(b) if π(1) 6= 1, then

σ
︷ ︸︸ ︷

2 → π(1) =⇒

(1,2,d)
︷ ︸︸ ︷

π(1) → π(1), which means that τ(2) = π(1).

As the result, we have the following table.

π · sp sp · τ

π(1) = 1

π
︷ ︸︸ ︷

1 → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → 2

π(1) 6= 1

π
︷ ︸︸ ︷

1 → π(1) =⇒

sp
︷ ︸︸ ︷

π(1) → π(1)

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → π(1)
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Case x = 2. Note, that τ(p) = p. As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

2 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → p

Case x = p. Note, that there is the path of the point 1 over the decomposition of τ, namely

1
1
−→ 2

2
−→ d1

2,m−2
===⇒ dm−1

m−2
−−→ 1

m−1
−−→ 2

m
−→ d, which means that τ(1) = d. As the result, we

have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

p → d =⇒

sp
︷ ︸︸ ︷

d → d

sp
︷ ︸︸ ︷

p → 1 =⇒

τ
︷ ︸︸ ︷

1 → d

Case x = d1. Note, that in this case σ(d1)=π(d2) = d, which means that τ(d1)= [d]S(d)=1.

As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

d1 → p =⇒

sp
︷ ︸︸ ︷

p → 1

sp
︷ ︸︸ ︷

d1 → d1 =⇒

τ
︷ ︸︸ ︷

d1 → 1

6) Let d2 6= p, d3 = p and π(p) = 1. Note, that in this case d3 is the unique representation

of p in D. Construct τ as follows

τ = [d2, d1, d4, d5, . . . , dm−1, dm]S.

From the construction of τ it follows that for every point x, x 6∈ {1, 2, p, d1}, we have π(x) 6∈

{1, 2, p, d1}. Therefore, (π · sp)(x) = π(x) = τ(x) = (sp · τ)(x). Hence, it is enough to show

that (π · sp)(x) = (sp · τ)(x) for every point x from {1, 2, p, d1}.

Case x = 1. Note, that τ(2) = π(1). As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

1 → π(1) =⇒

sp
︷ ︸︸ ︷

π(1) → π(1)

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → π(1)

Case x = 2. Note, that τ(p) = p. As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

2 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → p

Case x = p. Note, that there is the path of the point 1 over the decomposition of τ, namely

1
1
−→ 2

2
−→ d1

2,m−2
===⇒ dm−1

m−2
−−→ 1

m−1
−−→ 2, which means that τ(1) = 2.

As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

p → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

sp
︷ ︸︸ ︷

p → 1 =⇒

τ
︷ ︸︸ ︷

1 → 2
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Case x = d1. Note, that in this case τ(d1) = π(p) = 1. As the result, we have the following

table.

π · sp sp · τ
π

︷ ︸︸ ︷

d1 → p =⇒

sp
︷ ︸︸ ︷

p → 1

sp
︷ ︸︸ ︷

d1 → d1 =⇒

τ
︷ ︸︸ ︷

d1 → 1

7) Let d2 = p, d3 = p and π(p) = 1. Note, that in this case d2, d3 are unique representations

of p in D. Construct τ as follows

τ = [d1, d1, d4, d5, . . . , dm−1, dm]S.

From the construction of τ it follows that for every point x, x 6∈ {1, 2, p, d1}, we have π(x) 6∈

{1, 2, p, d1}. Therefore, (π · sp)(x) = π(x) = τ(x) = (sp · τ)(x). Hence, it is enough to show

that (π · sp)(x) = (sp · τ)(x) for every point x from {1, 2, p, d1}.

Case x = 1. Note, that τ(2) = π(1). As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

1 → π(1) =⇒

sp
︷ ︸︸ ︷

π(1) → π(1)

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → π(1)

Case x = 2. Note, that τ(p) = p. As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

2 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → p

Case x = p. Note, that there is the path of the point 1 over the decomposition of τ, namely

1
1
−→ 2

2
−→ d1

2,m−2
===⇒ dm−1

m−2
−−→ 1

m−1
−−→ 2, which means that τ(1) = 2. As the result, we have the

following table.

π · sp sp · τ
π

︷ ︸︸ ︷

p → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

sp
︷ ︸︸ ︷

p → 1 =⇒

τ
︷ ︸︸ ︷

1 → 2

Case x = d1. Note, that in this case τ(d1) = π(p) = 1. As the result, we have the following

table.

π · sp sp · τ
π

︷ ︸︸ ︷

d1 → p =⇒

sp
︷ ︸︸ ︷

p → 1

sp
︷ ︸︸ ︷

d1 → d1 =⇒

τ
︷ ︸︸ ︷

d1 → 1

The proof is complete.

Lemma 8. Let π ∈ A be a permutation with decomposition D = (d1, . . . , dm), m ≥ 3, 2 is fixed

in π over D with trivial path. Then for every natural number p, p ≥ 3, there exists τ ∈ A such

that π · sp = sp · τ and τ has a decomposition (t1, . . . , tl), where l ≤ m and p 6∈ {t1, . . . , tl}.

Proof. Note that the case, when there is no k ∈ 1, m such that dk = p, is already proved in

Lemma 6; the case, when π(d1) = d3 with no k ∈ 4, m such that d3 = dk, is already proved in

Lemma 7.

The proof is by induction on the decomposition length m.
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The basis. Let d = π(d1). Note that due to assumptions of the lemma, the permutation

π requires: 2 positions for d1, dm−1; at least 2 positions for non-trivial path of d1; 1 point for

element d2. The last means that m ≥ 5.

We will prove basis for cases m = 5, 6.

1) If m = 5, then d = 1 and there is the following decomposition of π, namely

π = [d1, d2, d3, d4, d5]S, where d1 = d4, d3 = d5 and d2 6= d1, d2 6= d3. Based on Lemma 6

it is enough to consider three cases depending on p from {d1, d2, d3}.

Case p = d1. Let τ = [d2]S. From direct calculation it follows that π · sd1
= sd1

· τ.

Case p = d2. Let τ = [d1, d1]S. From direct calculation it follows that π · sd2
= sd2

· τ.

Case p = d3. Let τ = [d2, d1, d1]S. From direct calculation it follows that π · sd3
= sd3

· τ.

2) If m = 6, then d is equal to 1 or is not. We consider cases: d = 1 and d 6= 1 separately.

Let d = 1. Then there is the next decomposition of π, namely π = [d1, d2, d3, d4, d5, d6]S,

where d1 = d5, d3 = d6 and d2, d4 are different from d1, d3.

Let d2 6= d4. Based on Lemma 6 it is enough to consider four cases depending on p from

{d1, d2, d3, d4}. In case p = d1 let τ = [d2, d4, d4, d3]S. Direct calculation implies π · sd1
= sd1

· τ.

In case p = d2 let τ = [d3, d4, d1, d3]S. Direct calculation implies π · sd2
= sd2

· τ. In case

p = d3 let τ = [d2, d1, d4]S. Direct calculation implies π · sd3
= sd3

· τ. In case p = d4 let

τ = [d2, d3, d1, d1]S. Direct calculation implies π · sd4
= sd4

· τ.

Let d2 = d4. Note that π(d2) = d2. Based on Lemma 6 it is enough to consider two cases

depending on p from {d1, d3}. In case p = d1 let τ = [d3]S. From direct calculation it follows

that π · sd1
= sd1

· τ. In case p = d3 let τ = [d1, d1]S. From direct calculation it follows that

π · sd3
= sd3

· τ.

Let d 6= 1. Then there is the next decomposition of π, namely π = [d1, d2, d3, d4, d5, d6]S,

where d1 = d5, d3 = d4 and points d1, d2, d3, d6 are pairwise different. Based on Proposition 1

we obtain π = [d1, d2, d3, d3, d1, d6]S = [d1, d2, d3, d3, d6, d6, d1, d1]S = [d1, d2, d6, d3, d1, d1]S.

Statement is directly implied from Lemma 7.

Induction step: case m under assumption that for l < m the statement holds. Let d = π(d1).

Consider cases of d.

Let d = 1. Consider different cases: d1 = dm−1 = p; d1 6= p, dm−1 6= p and π−1(p) = 1;

d1 6= p, dm−1 6= p and π−1(p) 6= 1.

1) Let d1 = dm−1 = p. Then there are possible the next options.

i) Let dm = p. From Proposition 1 we have

π · sp=[p, d2, . . . , dm−2, p, p]S · [p]s =[p]S · [d2, . . . , dm−2, p, p, p]S =[p]S · [d2, . . . , dm−2]S = sp · τ,

where τ = [d2, . . . , dm−2]S.

ii) Let dm 6= p. From Proposition 1 we have

π · sp = [p, d2, . . . , dm−2, p, dm]S · [p]S = [p]S · [d2, . . . , dm−2, dm, dm, p, p, p]S

= [p]S · [d2, . . . , dm−2, dm, dm]S = sp · τ,

where τ = [d2, . . . , dm−2, dm, dm]S.

2) Let d1 6= p, dm−1 6= p and π−1(p) = 1. Then there are possible the next options.

i) Let d2 = p and there is no k ∈ 3, m such that p = dk. Construct τ as follows

τ = [d3, . . . , dm]S.
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From the construction of τ it follows that for every point x, x 6∈ {1, 2, p, d1}, we have π(x) 6∈

{1, 2, p, d1}. Therefore, (π · sp)(x) = π(x) = τ(x) = (sp · τ)(x). Hence, it is enough to show

that (π · sp)(x) = (sp · τ)(x) for every point x from {1, 2, p, d1}.

Case x = 1. Note, that π(1) = τ(2). As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

1 → p =⇒

sp
︷ ︸︸ ︷

p → 1

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → 1

Case x = 2. Note, that τ(p) = p, because there are no p in the decomposition of τ. As the

result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

2 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

sp
︷ ︸︸ ︷

2 → p =⇒

τ
︷ ︸︸ ︷
p → p

Case x = p. From d2 = p it follows that π(p) = τ(1). As the result, we have the following

table.

π · sp sp · τ
π

︷ ︸︸ ︷

p → π(p) =⇒

sp
︷ ︸︸ ︷

π(p) → π(p)

sp
︷ ︸︸ ︷

p → 1 =⇒

τ
︷ ︸︸ ︷

1 → π(p)

Case x = d1. Note, that d1 has the unique representation in the decomposition of τ on the

(m − 1)th position. It follows that there is the path of d1 over the decomposition of τ, namely

d1
m−1
−−→ 1

m
−→ 2. As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

d1 → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

sp
︷ ︸︸ ︷

d1 → d1 =⇒

τ
︷ ︸︸ ︷

d1 → 2

ii) Let there is the non-trivial path of the point 1 over D such that

1
1
−→ 2

2
−→ d2

2,t1=⇒ . . .
t2,x−2
===⇒ dx−2

x−2
−−→ 1

x−1
−−→ 2

x
−→ p,

where x is the last position of p in D and t1, t2 are some natural numbers such that t2 > t1.

Denote [dt1 , . . . , dx−1]S by σ and note that σ satisfies conditions of the lemma. From the

induction assumption it follows that there exists the decomposition of some permutation µ

with the length less or equal x − t1 such that σ · sp = sp · µ.

As the result, for the permutation π with the decomposition, which is transformed in cor-

responding way, the path of 1 will be trivial: 1
1
−→ 2

2
−→ p. This case is already considered.

3) Let d1 6= p, dm−1 6= p, π−1(p) 6= 1. Denote π−1(p) by d. Similar to the previous case,

if Tr(d1) 6= (1, 3, m), then there exists the transformation of the decomposition D into an-

other decomposition Y, which has length less or equal m. And in this decomposition the

equality Tr(d1, π, Y) = (1, 3, m) holds. Without loosing the generality, we can assume that

Tr(d1, π, D) = (1, 3, m).

Consider different cases.

i) Let d2 = p. Construct τ as follows

τ = [t3, . . . , tm]S, where ti =

{

dm, if di = p,

di, otherwise.
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From the construction of τ it follows that for every point x, x 6∈ {1, 2, p, d1, d}, we have

π(x) 6∈ {1, 2, p, d1, d}. Therefore, (π · sp)(x) = π(x) = τ(x) = (sp · τ)(x). Hence, it is enough

to show that (π · sp)(x) = (sp · τ)(x) for every point x from {1, 2, p, d1, d}.

Case x = 1. Note, that there is the next path of the point 1 in D, namely 1
1
−→ 2

2
−→ d2

2,x
=⇒

dx −→ . . . −→ π(1), where x is the first position of p in D after 2. In the decomposition of τ

we have the next path of the point 2, namely 2
1
−→ d3

1,x−1
===⇒ tx −→ . . . −→ π(1), because of the

substitution p into dm = d3. As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

1 → π(1) =⇒

sp
︷ ︸︸ ︷

π(1) → π(1)

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → π(1)

Case x = 2. Note, that τ(p) = p, because there are no p in the decomposition of τ. As the

result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

2 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

sp
︷ ︸︸ ︷

2 → p =⇒

τ
︷ ︸︸ ︷
p → p

Case x = p. From d2 = p it follows that π(p) = τ(1). As the result, we have the following

table.

π · sp sp · τ
π

︷ ︸︸ ︷

p → π(p) =⇒

sp
︷ ︸︸ ︷

π(p) → π(p)

sp
︷ ︸︸ ︷

p → 1 =⇒

τ
︷ ︸︸ ︷

1 → π(p)

Case x = d1. Note, that d1 has the unique representation in the decomposition of τ on the

(m − 1)th position. From this it follows that there is the path of d1 over the decomposition of

τ, namely d1
m−1
−−→ 1

m
−→ 2. As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

d1 → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

sp
︷ ︸︸ ︷

d1 → d1 =⇒

τ
︷ ︸︸ ︷

d1 → 2

Case x = d. Note, that there is the next path of d in π: d −→ . . .
x
−→ dx = p, where x is

the last position of p in D. In case τ, based on substitution p by dm, we have the next path:

d −→ . . .
x
−→ dm

x,m
=⇒ dm

m
−→ 1. As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

d → p =⇒

sp
︷ ︸︸ ︷

p → 1

sp
︷ ︸︸ ︷

d → d =⇒

τ
︷ ︸︸ ︷

d → 1

ii) Let d2 6= p. Construct τ as follows

τ = [t2, t3, . . . , tm]S, where ti =

{

dm, if di = p,

di, otherwise.

From the construction of τ it follows that for every point x, x 6∈ {1, 2, p, d1, d}, we have

π(x) 6∈ {1, 2, p, d1, d}. Therefore, (π · sp)(x) = π(x) = τ(x) = (sp · τ)(x). Hence, it is enough

to show that (π · sp)(x) = (sp · τ)(x) for every point x from {1, 2, p, d1, d}.
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Case x = 1. Note, that π(1) = τ(2). As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

1 → π(1) =⇒

sp
︷ ︸︸ ︷

π(1) → π(1)

sp
︷ ︸︸ ︷

1 → 2 =⇒

τ
︷ ︸︸ ︷

2 → π(1)

Case x = 2. Note, that τ(p) = p, because there are no p in the decomposition of τ. As the

result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

2 → 2 =⇒

sp
︷ ︸︸ ︷

2 → p

sp
︷ ︸︸ ︷

2 → p =⇒

τ
︷ ︸︸ ︷
p → p

Case x = p. Note, that in the decomposition of τ, the path of the point 1 is the following

1
1
−→ 2

2
−→ t3

3,x
=⇒ tx −→ . . . −→ π(p), where x is the first position of p in the decomposition D.

As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

p → π(p) =⇒

sp
︷ ︸︸ ︷

π(p) → π(p)

sp
︷ ︸︸ ︷

p → 1 =⇒

τ
︷ ︸︸ ︷

1 → π(p)

Case x = d1. Note, that d1 has the unique representation in the decomposition of τ on the

(m − 1)th position. It follows that there is the path of d1 over the decomposition of τ, namely

d1
m−1
−−→ 1

m
−→ 2. As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

d1 → 1 =⇒

sp
︷ ︸︸ ︷

1 → 2

sp
︷ ︸︸ ︷

d1 → d1 =⇒

τ
︷ ︸︸ ︷

d1 → 2

Case x = d. Note, that we have the next path of d in π, namely d −→ . . .
x
−→ dx = p, where

x is the last position of p in D. In case τ, based on the substitution p by dm, we have the next

path of d, namely d −→ . . .
x
−→ dm

x,m
=⇒ dm

m
−→ 1. As the result, we have the following table.

π · sp sp · τ
π

︷ ︸︸ ︷

d → p =⇒

sp
︷ ︸︸ ︷

p → 1

sp
︷ ︸︸ ︷

d → d =⇒

τ
︷ ︸︸ ︷

d → 1

Let d 6= 1. Then there exist natural numbers x, y and the path of d = dy in π over D such

that

d1
1
−→ 1

2
−→ 2

3
−→ d3 =⇒ . . .

x,y−2
===⇒ dy−2

y−2
−−→ 1

y−1
−−→ 2

y
−→ dy,

where y is the last position of d in D.

The above means that Tr(d1, π, D) = (t1, r1, . . . , tu, ru, y) for some natural numbers

t1, r1, . . . , tu, ru ∈ 3, y − 2, u ≥ 0. Let πk = [dtk
, . . . , drk+1

, drk+1+1] for every k ∈ 1, u. Note,

that πk satisfies assumptions of the lemma and the length of its decomposition is less than m.

So, based on the induction assumption, for every natural p, p ≥ 3, we have πk · sp = sp · τk

for some τk with the length of the decomposition less or equal to rk − tk + 2. Let fix τk for case

p = d. Let ν = [d1, d2]S and µ = [dy+1, . . . , dm]S. Then

π = ν · π1 · . . . · πu · sd · µ = ν · π1 · . . . · πu−1 · sd · τu · µ = . . . = ν · sd · τ1 · . . . · τu · µ.
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Note, that the transformation from πk to τk does not introduce points d1, dm−1, because

they are unique represented in D and they are not represented in the decomposition of πk,

k ∈ 1, u; there are no d in the decomposition Y of π, which is the concatenation of considered

decompositions ν, [d]S, τ1, . . . , τu, µ, π(d1) = d on the 3rd position in Y.

Applying Lemma 7 the statement follows.

3 Stability and strong growing

3.1 Stability of A

Proposition 3. Let π be a permutation from A, D = (d1, . . . , dm) be its decomposition over

S, p be a point from {d1, . . . , dm}, π(p) 6= 1, 2 and Tr(p, π, D) = (x, t1, r1, . . . , tu, ru, y) for

some natural u, where x is the first position of p in D, y is the last position of π(p) in D,

t1, r1, . . . , tu, ru ∈ x + 2, y − 2. Then π has a decomposition

Y = (d1, . . . , dx−1, q1, . . . , qz−1, p, dy−1, dy, . . . , dm)

of length ≤ m such that p has trivial path in π over Y, i.e. Tr(p, π, Y) = (v − 2, v), where v is

the last position of dy in Y.

Proof. Set πk = [dtk−1, dtk
, . . . , drk

]S, k ∈ 1, u. Lemma 5 implies that sp · πk = τk · sp for some τk

with a decomposition, whose length is less or equal to rk − tk + 2 and that does not contain p.

Let ν = [d1, . . . , dx−1]S and µ = [dy−1, . . . , dm]S. Then

π = ν · sp · π1 · . . . πu · µ = . . . = ν · τ1 · . . . · τu · sp · µ.

Let Y be a decomposition of π, obtained as the concatenation of decompositions of permu-

tations ν, τ1, . . . , τu, sp, µ. Then the length of the decomposition Y is not greater than m and p

has trivial path in π over Y. The proof is complete.

Corollary 1. Let π be a permutation from A, D = (d1, . . . , dm) be its decomposition over S,

p be a point from {d1, . . . , dm}, π(p) ∈ {1, 2} and Tr(p, π, D) = (x, t1, r1, . . . , tu, ru) for some

natural u, where x is the first position of p in D, t1, r1, . . . , tu, ru ∈ x + 2, m − 2. Then π has a

decomposition

Y =

{

(d1, . . . , dx−1, q1, . . . , qz−1, p), if π(p) = 1,

(d1, . . . , dx−1, q1, . . . , qz−1, p, dm), if π(p) = 2

of length ≤ m such that p has trivial path in π over Y, i.e. Tr(p, π, Y) = (v), where v =

x + z − 1.

Proof. The statement directly follows from Proposition 3.

Proposition 4. Let π be a permutation from A, D = (d1, . . . , dm) be its decomposition over S

such that there exists a point p ∈ {d1, . . . , dm}, not contained in supp(π). Then the decompo-

sition D can be transformed to another decomposition of π with the length, which is shorter

at least by 1.

Proof. Note that p 6∈ supp(π) implies that π(p) = p 6= 1, 2. Using Proposition 3, we can

assume that the point p has trivial path in π over D. Hence, there exists y ∈ 1, m − 2 such that

Tr(p, π, D) = (y − 2, y).
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Consider different cases depending on the value of dy−1.

1) If dy−1 = p, then sp · dy−1 · sp = e. As the result, we have

π = [d1, . . . , dy−3, p, p, p, dy+1, . . . , dm]S = [d1, . . . , dy−3, dy+1, . . . , dm]S.

Hence, Y = (d1, . . . , dy−3, dy+1, . . . , dm) is the decomposition of π with the length less than

m by 3 and p 6∈ {d1, . . . , dy−3, dy+1, . . . , dm}.

2) If dy−1 6= p, then sp · dy−1 · sp = dy−1 · dy−1, and

π = [d1, . . . , dy−3, p, dy−1, p, dy+1, . . . , dm]S = [d1, . . . , dy−3, dy−1, dy−1, dy+1, . . . , dm]S.

Hence, Y = (d1, . . . , dy−3, dy−1, dy−1, dy+1, . . . , dm) is the decomposition of π with the

length less than m by 1 and p 6∈ {d1, . . . , dy−1, dy+3, . . . , dm}.

Proposition 5. Let π be a permutation from A and D be its decomposition over S, p be a

point from D, p 6∈ supp(π) and the last two occurrences of p in D are beside. Then the

decomposition D can be transformed to another decomposition of π with the length, which is

shorter at least by 3.

Proof. It follows from proof of Proposition 4 with dy−1 = p.

Proposition 6. Let π be a permutation from A, D = (d1, . . . , dm) be its decomposition over

S, p be a point from {d1, . . . , dm}, π(p) 6= 1, 2 and Tr(p, π, D) = (x, t1, r1, . . . , tu, ru, y) for

some natural u, where x is the first position of p in D, y is the last position of π(p) in D,

t1, r1, . . . , tu, ru ∈ x + 2, y − 2.

Then π has decomposition

Y = (d1, . . . , p, q1, dy, q3, . . . , qz, dy+1, . . . , dm)

of length ≤ m such that p has trivial path in π over Y, i.e. Tr(p, π, Y) = (x, x + 2).

Proof. Let πk = [dtk
, . . . , drk

, drk+1]S for every k ∈ 1, u and d = dy. From Lemma 8 it follows that

πk · sd = sd · τk for some τk with decomposition, whose length is less or equal to rk − tk + 2 and

that does not include d.

Let ν = [d1, . . . , dx+1]S and µ = [dy+1, . . . , dm]S. Then

π = ν · π1 · . . . πu · sd · µ = . . . = ν · sd · τ1 · . . . · τu · µ.

Then required decomposition Y is the concatenation of decompositions ν, sd, τ1, . . . , τu, µ.

Its length is less or equal to the length of D. Finally, Tr(p, π, Y) = (x, x + 2).

Corollary 2. Let π be a permutation from A, D = (d1, . . . , dm) be its decomposition over S,

p ∈ {1, 2} be a point, π(p) ∈ {d1, . . . , dm} and Tr(p, π, D) = (t1, r1, . . . , tu, ru, y) for some

natural u, where y is the last position of π(p) in D, t1, r1, . . . , tu, ru ∈ x + 2, y − 2. Then π has

decomposition

Y =

{

(d1, dy, q1, . . . , qz, dy+1, . . . , dm), if p = 1,

(dy, q1, . . . , qz, dy+1, . . . , dm), if p = 2

of length ≤ m such that p has trivial path in π over Y, i.e. Tr(p, π, Y) = (1) or Tr(p, π, Y) = (2)

based on p = 1, 2.

Proof. The statement directly follows from from Proposition 6.
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Proposition 7. Let π be a permutation from A and D be its decomposition over S, p be a

point from D, p 6∈ supp(π) and the first two occurrences of p in D are beside. Then the

decomposition D can be transformed to another decomposition of π with the length, which is

shorter at least by 3.

Proof. From p 6∈ supp(π) it follows that π(p) = p 6= 1, 2. By Proposition 3 we can assume that

there exists x ∈ 1, m − 2 such that Tr(p, π, D) = (x, x + 2). Then dx+1 = p. From Proposition 1

we have

[d1, . . . , dx−1, p, p, p, dx+3, . . . , dm]S = [d1, . . . , dx−1, dx+3, . . . , dm].

Hence, Y = (d1, . . . , dx−1, dx+3, . . . , dm) is the decomposition of π, whose length is less than

m by 3 and p 6∈ {d1, . . . , dx−1, dx+3, . . . , dm}.

Theorem 1. The series A is stable.

Proof. Suppose that the series A is not stable. Then there are some natural numbers N1, N2,

N1 > N2, and there is a permutation π ∈ Alt(N1) such that |a|SoG(N1)
> |a|SoG(N2) =: m.

Let D be the minimal decomposition of π over SoG(N2). Note, that D contains at least

one generator from SoG(N2)\SoG(N1). Otherwise, π can be decomposed over D in Alt(N1),

with the length ≤ |a|SoG(N1)
. Then there is at least one point from N1 + 1, N2, which is in

D and not in supp(π), as π ∈ Alt(N1). Then the decomposition D can be transformed into

shorter decomposition T with length l by removing all points {N1 + 1, . . . , N2}
⋂

D based on

Proposition 4. Note, that the decomposition T, obtained by this way, is over SoG(N1). As the

result, we have

|a|SoG(N1)
> |D| = m > l = |T| ≥ |a|SoG(N1)

.

This leads to a contradiction, which complete the proof.

3.2 Strong growing of systems of generators SoG(n), n ≥ 3

Lemma 9. Let a be some element of Alt(n) with the minimal decomposition D = (d1, . . . , dm)

over SoG(n). Then for a · sn+1 the decomposition Y = (d1, . . . , dm, n + 1) will be the minimal

decomposition over SoG(n + 1).

Proof. Suppose that there exists the minimal decomposition Y = (y1, . . . , yl) of a · sn+1 over

SoG(n + 1) such that l < m + 1. Then the decomposition R = (y1, . . . , yl , n + 1, n + 1) will be

the decomposition of a · sn+1 · sn+1 · sn+1 = a over SoG(n + 1). Note, that the decomposition R

can be transformed to the decomposition W, which length is shorter at least 3 to R and without

point n + 1, according to Proposition 5. So, the decomposition W will be the decomposition of

a over SoG(n) with length ≤ l + 2 − 3 = l − 1. As the result, we have the following inequality

m + 1 = |a|SoG(n) + 1 ≤ |W|+ 1 ≤ l = |a · sn+1|SoG(n+1) < m + 1.

This contradiction completes the proof.

Lemma 10. Let a be an element from Alt(n) with the minimal decomposition D = (d1, . . . , dm)

over SoG(n). Then for sn+1 · a the decomposition Y = (n + 1, d1, . . . , dm) is the minimal de-

composition over SoG(n + 1).

Proof. Proof is similar to Lemma 9 with using Proposition 7.
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Theorem 2. The system of generators SoG(n) is strong growing for every natural number n≥3.

Proof. Let π be a diameter element from Alt(n). Suppose that the element π is not full gen-

erated. Then there is some point p ∈ 3, n such that p 6∈ supp(π). So, based on Lemma 9 we

obtain the inequality

|π · sp| = |a|SoG(n) + 1 > |a|SoG(n) = DiamS(Alt(n)).

This leads to a contradiction, which complete the proof.

4 Computation of diameters

In this section we show that the groups-generators series A is C-constant, uniform and

homogeneous. These properties were introduced in [8]. It gives us an opportunity to apply

the homogeneous down search algorithm to obtain exact values for the diameter of Alt(n)

over SoG(n) for n ≤ 43.

4.1 Properties of groups-generators series

Let G be a groups-generators series. Let GDi f f (n) be the set of generators, which appear

exactly on the nth, n ≥ 1, i.e.

GDi f f (1) = SoG(1), GDi f f (n) = SoG(n)\SoG(n − 1), n ≥ 2.

Definition 4. The groups-generators series G is called uniform if

〈
t⋃

k=1

GDi f f (ik )〉 ≃ G(t)

for every index tuple I = (ii, i2, · · · , it) of cardinality t.

Let C be a natural number.

Definition 5. The groups-generators series G is called C-stable if |GDi f f (t)| = C, t ≥ 1.

Let the groups-generators series G be C-stable. Suppose that elements from
⋃

n≥1
SoG(n) are

enumerated, i.e.
⋃

n≥1

SoG(n) = {si ∈ G|i ∈ N}

and the following conditions hold:

1) SoG(n) = {s1, s2, ..., sC, sC+1, . . . , sn·C}, n ≥ 1,

2) GDi f f (n) = {s(n−1)·C+1, s(n−1)·C+2, . . . , sn·C}, n ≥ 1.

Let I = (i1, i2, · · · , it) be an index tuple. Define the mapping hC
I from 1, t · C to

t⋃

k=1
(ik − 1) · C + 1, ik · C by the rule

hC
I (x) = (i[(x−1)/C]+1 − 1) · C + (x − 1)mod C + 1.
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Note, that the unique representation of x = (k − 1) · C + r, k ∈ 1, n, r ∈ 1, C leads to the

equality

hC
I ((k − 1) · C + r) = (ik − 1) · C + r.

The last equality can be reinterpreted as follows: if x is the index of the rth generator of

GDi f f (k), then hC
I (x) is the index of the rth generator of GDi f f (ik ).

Now define the mapping ψC
I : SoG(n) →

n⋃

k=1
GDi f f (ik ) by the rule

ψC
I (si) = shC

I (i)
.

We will use notations

1) SoGI(n) =
n⋃

k=1
GDi f f (ik );

2) GI(n) = 〈SoGI(n)〉.

Note, that SoGI(n) is the image of SoG(n) under ψC
I .

Definition 6. A uniform and C-stable groups-generators series G is called homogeneous if for

every natural t and every index tuple I of cardinality t the mapping ψC
I can be extended to the

group isomorphism between G(t) and GI(t).

We will omit the letter C in notations ψC
I , hC

I . In this paper, we will use notations ψI, hI

instead, unless otherwise stated.

4.2 Homogeneity of A

It is straightforward that the groups-generators series A is 1-constant and GDi f f (n) =

{(1, 2, n)}, n ≥ 3. We consider index tuples as tuples of natural numbers, which are greater

of equal 3. Note, that in case of alternating groups-generators series A for every index tuple

I = (i3, . . . , it) we have hC
I (x) = ix−1+1 − 1 + 1 = ix.

So, ψ1
I : SoG(n) →

n⋃

k=1
GDi f f (ik ); ψ1

I (sk) = sik
for every k ∈ 3, n.

We will use notation ψI instead of ψ1
I .

Theorem 3. The groups-generators series A is homogeneous.

Proof. Let n be some natural number greater than 2 and I = (i3, . . . , in) be some index tuple of

cardinality n − 2. For uniform property, it is enough to show that

A := 〈
n⋃

k=3

GDi f f (ik )〉 h Alt(n).

Note, that for any natural k ∈ 3, n we have GDi f f (ik ) = {(1, 2, ik)}. So,

〈
n⋃

k=3

GDi f f (ik )〉 = 〈
n⋃

k=3

{(1, 2, ik)}〉 = 〈{(1, 2, ik)|k ∈ 3, n}〉.

Consider the mapping ψI: SoG(n) → SoGI(n) which maps the set {(1, 2, k) : k ∈ 3, n} into

{(1, 2, ik) : k ∈ 3, n} as follows ψI((1, 2, k)) = (1, 2, ik). Note, that the mapping ψI,
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which is bijection from SoG(n) to SoGI(n), is based on the bijection of natural numbers

φI : {1, 2, 3, . . . , n} → {1, 2, i3, . . . , in}, defined by

φI(x) =







1, if x = 1,

2, if x = 2,

ix, if x ∈ 3, n.

From the last it follows that ψI is isomorphism over groups G(n) and GI(n). Based on defini-

tion, the groups-generators series A is uniform. Moreover, the mapping ψI, which is defined

from 1-constant property of A, has been extended to the group isomorphism. Hence, the

groups-generators series A is homogeneous.

4.3 Application of homogeneous down search algorithm

Theorem 3 implies that the homogeneous down search algorithm, which was introduced

in [8], can be applied to the alternating group Alt(n) and the system of generators SoG(n) for

every natural number n ≥ 3.

Homogeneous down search algorithm was implemented on computer algebra system

SageMath. The solution was run with the system resources, stated in the following table.

OS cpu memory SageMath Python

Ubuntu 18.04 i7-9750H 16 gb 9.1 3.7.3

The results of the application of homogeneous down search to alternating groups Alt(n)

with systems of generators SoG(n) = ((1, 2, 3), . . . , (1, 2, n)) for n ∈ 3, 43 are summirazied in

the following table, where D(n) denotes the diameter of Alt(n) over the system of generators

SoG(n).

n D(n) n D(n) n D(n) n D(n) n D(n)

4 4 12 16 20 28 28 40 36 52

5 5 13 17 21 29 29 41 37 53

6 6 14 18 22 30 30 42 38 54

7 8 15 20 23 32 31 43 39 56

8 10 16 22 24 34 32 44 40 58

9 11 17 23 25 35 33 47 41 59

10 12 18 24 26 36 34 48 42 60

11 14 19 26 27 38 35 50 43 62
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Ольшевський М.С. Метричнi властивостi графiв Келi знакозмiнних груп // Карпатськi матем.

публ. — 2021. — Т.13, №2. — C. 545–581.

Дана робота розглядається в контекстi розв’язку добре вiдомої задачi пошуку дiаметру

скiнченної групи по заданiй системi твiрних. На основi заданої групи та її системи твiрних

будується граф Келi. Для цього графа знаходиться дiаметр, що називається дiаметром групи

вiдносно системи твiрних.

Розглядаються групи парних пiдстановок з класичною незвiдною системою твiрних, що

складається з циклiв довжини три виду (1, 2, k). В роботi проводиться аналiз властивостей роз-

кладiв парних пiдстановок вiдносно даної системи твiрних i послiдовностi знакозмiнних груп

з вказаними системами твiрних. Виводиться певне правило пересування твiрного елемента в

розкладi пiдстановки, окремо для руху злiва направо та справо налiво. Таким чином введене

правило дозволяє прибирати з розкладу тi твiрнi елементи, що визначають нерухомi точки

пiдстановки. Даний результат дає можливiсть довести, що система твiрних зберiгає мiнiмаль-

нiсть розкладiв елементiв при зростаннi. Як наслiдок, показано, що система твiрних є строго

зростаючою системою твiрних.

В роботi використовується теорiя однорiдностi, введена у попереднiй роботi автора. Для

послiдовностi груп парних пiдстановок з вказаними системами твiрних доводиться, що ви-

конуються властивостi рiвномiрностi i однорiдностi. Це дозволяє для знаходження дiаметра

застосовувати однорiдний алгоритм пошуку вниз. При застосуванi були отриманi точнi зна-

чення дiаметрiв знакозмiнних груп для перших 43 степенiв.

Ключовi слова i фрази: граф Келi, дiаметр графа, система твiрних, знакозмiнна група.


