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One-dimensional Wiener process with the properties of
partial reflection and delay

Kopytko B.I.1, Shevchuk R.V.2

In this paper, we construct the two-parameter semigroup of operators associated with a certain
one-dimensional inhomogeneous diffusion process and study its properties. We are interested in
the process on the real line which can be described as follows. At the interior points of the half-lines
separated by a point, the position of which depends on the time variable, this process coincides
with the Wiener process given there and its behavior on the common boundary of these half-lines
is determined by a kind of the conjugation condition of Feller-Wentzell’s type. The conjugation
condition we consider is local and contains only the first-order derivatives of the unknown function
with respect to each of its variables.

The study of the problem is done using analytical methods. With such an approach, the problem
of existence of the desired semigroup leads to the corresponding conjugation problem for a second
order linear parabolic equation to which the above problem is reduced. Its classical solvability is
obtained by the boundary integral equations method under the assumption that the initial function
is bounded and continuous on the whole real line, the parameters characterizing the Feller-Wentzell
conjugation condition are continuous functions of the time variable, and the curve defining the com-
mon boundary of the domains is determined by the function which is continuously differentiable
and its derivative satisfies the Hölder condition with exponent less than 1/2.

Key words and phrases: diffusion process, parabolic equation, simple-layer potential, Feller semi-
group.
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Introduction

Consider the strip
St = {(s, x) : 0 ≤ s < t ≤ T, x ∈ R}

in the plane R
2 (T fixed) and two domains

S
(1)
t = {(s, x) : 0 ≤ s < t ≤ T, −∞ < x < r(s)}

and
S
(2)
t = {(s, x) : 0 ≤ s < t ≤ T, r(s) < x < ∞}

in it, where the function x = r(s) belongs to the Hölder’s class H1+α/2([0, T]), 0 < α < 1,

(see [12, Ch. I, §1]). Denote by St, S
(1)
t , S

(2)
t the closures of St, S

(1)
t , S

(2)
t respectively. Put

D1s = (−∞, r(s)), D2s = (r(s), ∞), C = {(s, r(s)) : s ∈ [0, T]}.
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Our problem is to find a classical solution u(s, x, t) of the equation

∂u

∂s
+

1
2

∂2u

∂x2 = 0, (s, x) ∈ S
(i)
t , i = 1, 2, (1)

which satisfies the “initial” condition

lim
s↑t

u(s, x, t) = ϕ(x), x ∈ R, (2)

and two conjugation conditions

u(s, r(s)− 0, t) = u(s, r(s) + 0, t), 0 ≤ s ≤ t ≤ T, (3)

σ(s)
∂u

∂s
(s, r(s), t) + q1(s)

∂u

∂x
(s, r(s)− 0, t)− q2(s)

∂u

∂x
(s, r(s) + 0, t) = 0, 0 ≤ s < t ≤ T. (4)

The initial function ϕ in (2) belongs to the space of bounded and continuous functions, that
will be denoted by Cb(R). The norm in this space is defined by ‖ϕ‖ = supx∈R

|ϕ(x)|. The
coefficients σ, qi, i = 1, 2, in (4) are continuous on [0, T] and

σ(s) > 0, q1(s) ≥ 0, q2(s) ≥ 0 s ∈ [0, T]; (5)

u(s, r(s) − 0, t)
(

∂u
∂x (s, r(s)− 0, t)

)

and u(s, r(s) + 0, t)
(

∂u
∂x (s, r(s) + 0, t)

)

denote the limits of

the function u(s, x, t)
(

∂u
∂x (s, x, t)

)

at (s, r(s)) as the point (s, x) tends to (s, r(s)) from the side

of the domains S
(1)
t and S

(2)
t respectively.

The problem (1)–(4) appears, in particular, in the theory of stochastic processes while study-
ing the diffusion processes with boundary conditions. Recall that the general form of bound-
ary conditions for one-dimensional diffusion processes was established by W. Feller [4] and
A.D. Wentzell [20]. They proved the assertions from which it follows that if {Tt, t ≥ 0} is
Feller semigroup in C[r1, r2], −∞ < r1 < r2 < ∞, and its generator A is the restriction of
(L, C2[r1, r2]), where L is a second order ordinary differential operator, then functions from
DA ⊂ C2[r1, r2] must satisfy boundary conditions which, generally speaking, have nonlocal
character. These boundary conditions contain the value of the function and its first-order
derivatives with respect to the time variable and with respect to the space variable at bound-
ary points r1, r2, as well as the integral over [r1, r2] with respect to some nonnegative measure
which, furthermore, can be infinite.

The solving of parabolic problems of such kind (see [9, 11]) is one of several ways to de-
scribe the diffusion process by given Feller-Wentzell boundary condition. Other approaches
are reflected in many papers, see, e.g., [4, 13, 18, 20, 21], where there are presented results of
application of the analytical approach to description of the mentioned class of homogeneous
Markov processes based on methods of the semigroup theory and functional analysis in rela-
tion to the elliptic boundary value problems, and [1, 3, 6, 14, 16, 17, 19], which partially give the
development of methods of stochastic analysis for the construction of such type of processes
(see also the references given there).
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In the paper, we prove that there exists a unique solution u(s, x, t) of (1)–(4) and that the
family of operators Tst ϕ(x) ≡ u(s, x, t) is the two-parameter Feller semigroup associated with
an inhomogeneous diffusion process on the line R. The trajectories of this process in ST \ C can
be treated as the trajectories of the Wiener process generated by the operator L ≡ 1

2
∂2u
∂x2 and at

the points of curve C its behavior is described by the conjugation condition (4). The condition
(4) represents one of kinds of the general Feller-Wentzell conjugation condition (see [4,13,20]),
which includes only the terms corresponding to the delay and partial reflection of the process
at the moving point x = r(s).

Note that the scheme, which is used to solve the problem (1)–(4), is partially presented
in [11], where the same conjugation problem is considered for backward Kolmogotov equation
with discontinuous coefficients and for the case when the condition (4) contains the nonlocal
term of the integral type, but does not contain the term with derivative of the function with
respect to the time variable. Note also that similar problems (with different variants of Feller-

Wentzell conjugation condition) were studied in our earlier papers for the cases when S
(i)
t are

finite [10] or semi-infinite [9] rectangular domains.
The rest of this paper is organized as follows. Section 2 is devoted to the proof of the

existence and uniqueness theorem for the conjugation problem (1)–(4). In Section 3, using
the solution of this problem, we construct the two-parameter Feller semigroup on Cb(R) and
prove that this semigroup describes the ordinary diffusion process on R, mentioned above.

1 Existence and uniqueness

The solution of the problem (1)–(4) will be constructed using the heat potentials generated
by the fundamental solution Γ(s, x, t, y), 0 ≤ s < t ≤ T, x, y ∈ R, of the equation (1):

Γ(s, x, t, y) =
1

√

2π(t − s)
exp

{

−(y − x)2

2(t − s)

}

.

The fact that Γ is the fundamental solution of the equation (1) means that the function
Γ(s, x, t, y) satisfies this equation in (s, x) ∈ [0, t)× R for fixed (t, y) and

lim
s↑t

∫

R

Γ(s, x, t, y)ϕ(y)dy = ϕ(x), x ∈ R, (6)

for any bounded continuous function ϕ(x).
We note, among other properties of the fundamental solution Γ, that the function Γ(s, x, t, y)

is nonnegative and, for all 0 ≤ s < t ≤ T, x, y ∈ R,

∣

∣Dr
s D

p
xΓ(s, x, t, y)

∣

∣ ≤ C(t − s)−
1+2r+p

2 exp
{

−c
(y − x)2

t − s

}

, (7)

where r and p are any nonnegative integers, C and c are positive constants (in what follows,
various positive constants depending on the data of the problem (1)–(4) will be denoted by
C or c without specifying their values); Dr

s is the partial derivative with respect to s of order
r, D

p
x is the partial derivative with respect to x of order p (see [12, Ch.IV]).
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Note also that, for all s ∈ [0, t), x ∈ R,
∫

R

Γ(s, x, t, y)dy = 1, (8)

∫

R

Γ(s, x, t, y)(y − x)dy = 0, (9)

∫

R

Γ(s, x, t, y)(y − x)2dy = t − s, (10)

∫

R

Γ(s, x, t, y)(y − x)4dy = 3(t − s)2. (11)

Given the fundamental solution Γ, we define two heat potentials, which will be used to
solve the problem (1)–(4), namely the Poisson potential

u0(s, x, t) =
∫

R

Γ(s, x, t, y)ϕ(y)dy, 0 ≤ s < t ≤ T, x ∈ R, (12)

and the simple-layer potential

u1(s, x, t) =

t
∫

s

Γ(s, x, δ, r(δ))V(δ, t)dδ, (13)

where ϕ(y), y ∈ R, and V(δ, t), δ ∈ [0, t), are given functions.
If we assume that ϕ ∈ Cb(R) and V is bounded measurable for δ ∈ [0, t], then the func-

tions u0 and u1 are continuous for (s, x) ∈ [0, t] × R, satisfy the equation (1) in the domains

(s, x) ∈ [0, t]× R and (s, x) ∈ S
(1)
t ∪ S

(2)
t respectively, and the initial conditions

lim
s↑t

u0(s, x, t) = ϕ(x), lim
s↑t

u1(s, x, t) = 0, x ∈ R.

Furthermore, for all 0 ≤ s < t ≤ T and x ∈ R,
∣

∣Dr
sD

p
x u0(s, x, t)

∣

∣ ≤ C(t − s)−
2r+p

2 ‖ϕ‖, (14)

where r and p are any nonnegative integers.
An important property of the function u1 is described by the so-called theorem on the jump

of conormal derivative of a parabolic simple-layer potential (see [12, Ch.IV, §15], [15, Ch.XXII,
§8]). Regarding the potential u1(s, x, t) in (13), this theorem asserts that if the function V(δ, t)

is continuous in 0 ≤ δ < t ≤ T and satisfies the inequality

|V(δ, t)| ≤ C(t − δ)−µ, µ < 1, (15)

in this domain, then for every point x = r(s), s ∈ [0, t),

lim
x→r(s)±0

∂u1

∂x
(s, x, t) = ∓V(s, t) +

t
∫

s

∂Γ

∂x
(s, r(s), δ, r(δ))V(δ, t)dδ. (16)

The integral in the right-hand side of (16) is called the direct value of conormal derivative of
simple-layer potential. Its existence follows from the inequality

∣

∣

∣

∣

∂Γ

∂x
(s, r(s), δ, r(δ))

∣

∣

∣

∣

≤ C(δ − s)−
1
2 , 0 ≤ s < δ ≤ T, i = 1, 2.
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Theorem 1. Let the function r(s), s ∈ [0, T], belongs to the Hölder’s class H1+α/2([0, T]),
0 < α < 1. Assume also that the functions σ, q1, q2 are continuous on [0, T] and for them
(5) holds. Then for any ϕ ∈ Cb(R) the problem (1)–(4) has a unique solution which is contin-
uous in St.

Proof. We look for a solution u(s, x, t) of the problem (1)–(4) of the form

u(s, x, t) = u0(s, x, t) + u1(s, x, t), (s, x) ∈ St, (17)

where the functions u0 and u1 are defined by the formulas (12) and (13) respectively, in which
ϕ is the initial function in (2) and V is the unknown function to be found.

Suppose a priori that the unknown density V(δ, t), i = 1, 2, is continuous in the domain
0 ≤ δ < t ≤ T and satisfies (15) in this domain. Using the conjugation conditions (3), (4), in
view of (16), we obtain the following relation

∂u

∂s
(s, r(s), t) = Φ0(s, t), 0 ≤ s < t ≤ T, (18)

where

Φ0(s, t) = −q(s)V(s, t) + γ(s)

t
∫

s

∂Γ

∂x
(s, r(s), δ, r(δ))V(δ, t)dδ + γ(s)

∂u0

∂x
(s, r(s), t),

q(s) =
q2(s) + q1(s)

σ(s)
, γ(s) =

q2(s)− q1(s)

σ(s)
+ r′(s).

The relation (18) can be considered as the autonomous differential equation for the function
u(s, r(s), t) in the domain s ∈ [0, t). Taking into account the initial condition

lim
s↑t

u(s, r(s), t) = ϕ(r(t)),

we can write the solution of this equation in the form

u(s, r(s), t) = ϕ(r(t))−
t

∫

s

Φ0(τ, t)dτ. (19)

Thus, we have two different expressions for u(s, r(s), t), namely the relation (17) with
x = r(s) and the relation (19). Equating their right-hand sides, we get the following integral
equation for V

t
∫

s

K0(s, δ)V(δ, t)dδ = ψ0(s, t), (20)

where

K0(s, δ) = Γ(s, r(s), δ, r(δ)) − q(δ) +

t
∫

s

γ(τ)
∂Γ

∂x
(τ, r(τ), δ, r(δ))dτ,

ψ0(s, t) = ϕ(r(t))− u0(s, r(s), t)−
t

∫

s

γ(τ)
∂u0

∂x
(τ, r(τ), t)dτ.
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Note that (20) is the Volterra integral equation of the first kind and that the function ψ0 in
the right-hand side of this equation is continuously differentiable in s, 0 ≤ s < t ≤ T. Using
the Holmgren transform (see [7]), we reduce this equation to the equivalent Volterra integral
equation of the second kind. To do this, we introduce the integro-differential operator E which
acts by the rule

E(s, t) f =

√

2
π

∂

∂s

∫ t

s
(ρ − s)−

1
2 f (ρ, t)dρ, 0 ≤ s < t ≤ T,

and apply it to the both sides of (20).
Consider first the application of the operator E to the right-hand side of (20), i.e. to the

function ψ0(s, t). In view of (14), for the function ψ0(s, t) and its derivative

∂ψ0

∂s
(s, t) = −∂u0

∂s
(s, r(s), t) + γ(s)

∂u0

∂x
(s, r(s), t),

we find the following estimates (here 0 ≤ s < t ≤ T):

|ψ0(s, t)| ≤ C‖ϕ‖, (21)
∣

∣

∣

∣

∂ψ0

∂s
(s, t)

∣

∣

∣

∣

≤ C‖ϕ‖(t − s)−1. (22)

Since ψ0(s, t) is continuously differentiable in s (s ∈ [0, t)), we have

ψ(s, t) ≡ E(s, t)ψ0 = −
√

2
π
(t − s)−

1
2 ψ0(s, t) +

1√
2π

t
∫

s

(ρ − s)−
3
2 [ψ0(ρ, t)− ψ0(s, t)]dρ. (23)

Denote by ψ(1)(s, t) and ψ(2)(s, t) the first and second terms in (23), respectively. It follows
from (21) that

|ψ(1)(s, t)| ≤ C‖ϕ‖(t − s)−
1
2 , 0 ≤ s < t ≤ T. (24)

To estimate ψ(2)(s, t), write it in the form

ψ(2)(s, t) =
1√
2π

s+t
2

∫

s

(ρ − s)−
3
2 [ψ0(ρ, t)− ψ0(s, t)]dρ

+
1√
2π

t
∫

s+t
2

(ρ − s)−
3
2 [ψ0(ρ, t)− ψ0(s, t)]dρ ≡ I1(s, t) + I2(s, t).

(25)

Applying the mean value theorem to the difference ψ0(ρ, t) − ψ0(s, t) in the first term in
(25) and using (22), we see that for this term the inequality (24) holds. Moreover, from (21) it
follows that the same estimate is true also for the second term in (25). Thus, ψ(2)(s, t) allows
the estimate (24).

Having estimated ψ(1)(s, t) and ψ(2)(s, t), in view of (23), we conclude that

|ψ(s, t)| ≤ C‖ϕ‖(t − s)−
1
2 , 0 ≤ s < t ≤ T. (26)
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Consider now the application of the operator E to the left-hand side of (20). After simple
transformations, we get

√

2
π

∂

∂s

t
∫

s

(ρ − s)−
1
2 dρ

t
∫

ρ

K0(ρ, δ)V(δ, t)dδ = −V(s, t) +

t
∫

ρ

N(s, δ)V(δ, t)dδ,

where

N(s, δ) =
1
π

∂

∂s

δ
∫

s

(δ − ρ)−
1
2 (ρ − s)−

1
2

[

exp
{

−(r(δ)− r(ρ))2

2(δ − ρ)

}

− 1
]

dρ

+

√

2
π

q(δ)(δ − s)−
1
2 +

√

2
π

∂

∂s

δ
∫

s

(ρ − s)−
1
2 dρ

δ
∫

ρ

γ(τ)
∂Γ

∂x
(τ, r(τ), δ, r(δ))dτ.

Using the considerations similar to those leading to (26), one can establish the following
estimate

|N(s, δ)| ≤ C(δ − s)−
1
2 , 0 ≤ s < δ ≤ t ≤ T. (27)

Thus, the application of the operator E to both sides of (20) gives the following Volterra
integral equation of the second kind, which is equivalent to (20),

V(s, t) =

t
∫

s

N(s, δ)V(δ, t)dδ − ψ(s, t), (28)

where the function ψ(s, t) is defined by the formula (23) and the kernel of this equation, i.e
the function N(s, δ) is defined by (1). Furthermore, the estimates (26) and (27) hold. These
estimates ensure the existence and uniqueness of the solution of (28) in the class of continuous
functions in 0 ≤ s < t ≤ T which can be found by the method of successive approximations
and for which the estimate (26) holds.

From the estimates (7) (with r = p = 0) and (26) (with ψ replaced by V), it follows that the
simple-layer potential u1(s, x, t) in (17) is well-defined and for it the estimate

|u1(s, x, t)| ≤ C‖ϕ‖, (s, x) ∈ St,

holds. It is clear (see (14)) that the same estimate is also true for the Poisson potential u0(s, x, t)

in (12) and thus for the function u(s, x, t) itself.
Concerning the “initial” condition (2), note that the function u in (17) satisfies it, because

lim
s↑t

u0(s, x, t) = ϕ(x), lim
s↑t

u1(s, x, t) = 0, x ∈ R. (29)

However, since the function V(s, t) is “weakly” bounded by C(t − s)−
1
2 , the second relation in

(29) is not obvious and must be verified. To do this, we consider the function V(s, t), s ∈ [0, t),
and study its behavior in a neighborhood of the point s = t. Using the considerations similar
to those leading to (26), one can prove the following assertion: for every t ∈ (0, T] and ε > 0
there exists s0 ∈ [0, t) such that the inequality

|V(s, t)| ≤ εC(t − s)−
1
2 (30)
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holds for all s ∈ [s0, t), where the constant C is independent of ε.
Let ε > 0 and choose s0 such that (30) holds for all s ∈ [s0, t). Then, from (30) and (7), we

deduce that

|u1(s, x, t)| ≤ εC

t
∫

s

(τ − s)−
1
2 (t − τ)−

1
2 dτ = εCπ

(the constant C is independent of ε) for all s ∈ [s0, t) and x ∈ R. Because of the arbitrariness of
ε this implies that u1(s, x, t) tends to zero if s ↑ t (for all x ∈ R).

Thus, the function u(s, x, t) ((s, x) ∈ St) of the form (17), where the density V (in the expres-
sion for the simple-layer potential u1) is defined as the solution of (28), is the desired solution
of the conjugation problem (1)–(4).

In order to complete the proof of the theorem, it remains to establish the uniqueness of
the solution of the problem (1)–(4). For this purpose, it suffices to note that the constructed

function u(s, x, t) in each of two domains S
(1)
t , S

(2)
t can be treated as a unique solution of the

following first boundary-value parabolic problem

∂u

∂s
+

1
2

∂2u

∂x2 = 0, (s, x) ∈ S
(i)
t , i = 1, 2,

lim
s↑t

u(s, x, t) = ϕ(x), x ∈ Dit, i = 1, 2,

u(s, r(s), t) = ν(s, r(s), t),

where the function ν is defined by the right-hand side of (19).
The proof of Theorem 1 is complete.

2 Construction of the Feller semigroup

Let the conditions of Theorem 1 hold. Define the two-parameter family of operators Tst,
0 ≤ s < t ≤ T, in Cb(R) by the formula

Tst ϕ(x) = T
(0)
st ϕ(x) + T

(1)
st ϕ(x), 0 ≤ s < t ≤ T, x ∈ R, (31)

where

T
(0)
st ϕ(x) = u0(s, x, t) =

∫

R

Γ(s, x, t, y)ϕ(y)dy,

T
(1)
st ϕ(x) = u1(s, x, t) =

t
∫

s

Γ(s, x, δ, r(δ))V(δ, t)dδ,

and the function V is the solution of the second kind Volterra integral equation (28).
The presence of the integral representation for the family of operators Tst, 0 ≤ s < t ≤ T,

allows us to verify easily the following conditions:

1) if ϕn ∈ Cb(R), n = 1, 2, . . . , sup
n

‖ϕn‖ < ∞ and for all x ∈ R, lim
n→∞

ϕn(x) = ϕ(x), where

ϕ ∈ Cb(R), then for all (s, x) ∈ St,

lim
n→∞

Tst ϕn(x) = Tst ϕ(x);
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2) Tst ϕ(x) ≥ 0 for all (s, x) ∈ St if ϕ ∈ Cb(R) and ϕ(x) ≥ 0 for all x ∈ R;

3) the operators Tst are contractive, i.e.

‖Tst ϕ‖ ≤ ‖ϕ‖

for any ϕ ∈ Cb(R);

4) for all 0 ≤ s ≤ τ ≤ t ≤ T,
Tst = TsτTτt.

Let us get down to proving these properties. The first one follows from the Lebesgue
bounded convergence theorem and the relation

lim
n→∞

V(s, t, ϕn) = V(s, t, ϕ), s ∈ [0, t),

which holds for the solution of the integral equation (28).
We now prove that the operators Tst do not increase the norm of element. In view of the

property 1), it suffices to show that Tst ϕ(x) ≥ 0 for all (s, x) ∈ St in case the nonnegative
function ϕ ∈ Cb(R) has a compact support. Suppose that ϕ is just that. Suppose also that

min
s∈[0,t], x∈R

Tst ϕ(x) = u∗ < 0.

Note that the function Tst ϕ(x) satisfies the equation (1) in (s, x) ∈ S
(i)
t , i = 1, 2, and that

Tst ϕ(x) tends to zero as |x| → ∞. From this and from the minimum principle for parabolic
equations it follows that there exists s0 ∈ [0, t) for which Ts0t ϕ(r(s0)) = u∗. Then, at point
(s0, r(s0))), the following relations hold:

∂

∂s
Ts0t ϕ(r(s0)) = 0,

∂

∂x
Ts0t ϕ(r(s0)− 0) ≤ 0,

∂

∂x
Ts0t ϕ(r(s0) + 0) ≥ 0.

Moreover, it follows from Theorem 1 in [8] (cf. Theorem 14 in [5, Ch.II, §4]) that in the last
two estimates, the equal signs should be excluded. Hence, at point (s0, r(s0)), the conjuga-
tion condition (4) cannot hold. The contradiction we arrived at indicates that u∗ ≥ 0. This
completes the proof.

The property 3) of the operator Tst is an easy consequence of the property 2) and the obvi-
ous relation Tst1 ≡ 1.

The last property, which means that the family of operators Tst is a two-parameter semi-
group, follows from the assertion of Theorem 1 on uniqueness of the solution of the problem
(1)–(4). Indeed, to find u(s, x, t) when u(t, x, t) = ϕ(x), one can do the following: solve the
equation in the time interval [τ, t] and then solve it in the time interval [s, τ] starting with
u(τ, x, t) which was obtained; in other words, Tst ϕ = Tsτ(Tτt ϕ), ϕ ∈ Cb(R), or Tst = TsτTτt.

From the properties 1)–4) if follows that (see, e.g., [2, Ch.II, §1]) the family of operators Tst,
0 ≤ s ≤ t ≤ T, is a semigroup associated with some inhomogeneous Feller process on R. If
we denote by P(s, x, t, dy) its transition function, then Tst ϕ(x) can be represented as

Tst ϕ(x) =
∫

R

ϕ(y)P(s, x, t, dy).
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Finally, taking into account (8)–(11), we find by direct calculation that

sup
x∈R

∫

R

|y − x|4P(s, x, t, dy) ≤ C(t − s)2, 0 ≤ s < t ≤ T, (32)

a(s, x) ≡ lim
∆s↓0

1
∆s

∫

R

(y − x)P(s, x, s + ∆s, dy)

=

{

0 for (s, x) ∈ S
(i)
t , i = 1, 2,

γ(s) for x = r(s),

(33)

b(s, x) ≡ lim
∆s↓0

1
∆s

∫

R

(y − x)2P(s, x, s + ∆s, dy) = b(s, x)

=

{

1 for (s, x) ∈ S
(i)
t , i = 1, 2,

0 for x = r(s).

(34)

The inequality (32) shows that the sample paths of the constructed process are continuous.
The relations (33) and (34) mean that this process can be treated as the ordinary diffusion
process with the drift coefficient a(s, x) and the diffusion coefficient b(s, x).

Thus, the following theorem is a conclusion of the second part of our research.

Theorem 2. Let the conditions of Theorem 1 be satisfied. Then the two-parameter family
of the operators Tst, 0 ≤ s < t ≤ T, defined by (31) is the semigroup associated with the
inhomogeneous diffusion process on R, the transition function P(s, x, t, dy) of which satisfies
the relations (33), (34).
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Копитко Б.I., Шевчук Р.В. Одновимiрний вiнерiвський процес з властивостями часткового вiдбит-

тя i затримки // Карпатськi матем. публ. — 2021. — Т.13, №2. — C. 534–544.

Метою статтi є побудова та дослiдження властивостей двопараметричної напiвгрупи Фел-
лера, якiй вiдповiдає неоднорiдний дифузiйний процес на прямiй такий, що у внутрiшнiх то-
чках пiвпрямих, роздiлених мiж собою точкою, положення якої на прямiй залежить вiд часо-
вої змiнної, вiн збiгається iз заданим там вiнерiвським процесом, а його поведiнка на спiльнiй
межi областей визначається одним iз варiантiв умови спряження типу Феллера-Вентцеля. У
розглядуваному нами випадку ця умова є локальною i мiстить в якостi складових лише похi-
днi першого порядку невiдомої функцiї по кожнiй змiннiй.

Для розв’язання цiєї задачi в роботi застосовано аналiтичнi методи. За такого пiдходу пита-
ння про iснування шуканої напiвгрупи зводиться до розв’язання вiдповiдної задачi спряження
для лiнiйного параболiчного рiвняння другого порядку, до якої редукується вихiдна пробле-
ма. Її класичну розв’язнiсть отримано в роботi методом граничних iнтегральних рiвнянь за
припущення, що початкова функцiя є обмеженою i неперервною на всiй числовiй прямiй, па-
раметри, якi характеризують умову спряження Феллера-Вентцеля є неперервними функцi-
ями часової змiнної, а крива, що визначає спiльну межу областей, задається функцiєю, що є
неперервно диференцiйовною, до того ж її похiдна задовольняє умову Гельдера з показником
меншим, нiж 1/2.

Ключовi слова i фрази: дифузiйний процес, параболiчне рiвняння, потенцiал простого шару,
напiвгрупа Феллера.


