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Duo property for rings by the quasinilpotent perspective

Harmanci A.1, Kurtulmaz Y.2, Ungor B.3

In this paper, we focus on the duo ring property via quasinilpotent elements, which gives a
new kind of generalizations of commutativity. We call this kind of rings qnil-duo. Firstly, some
properties of quasinilpotents in a ring are provided. Then the set of quasinilpotents is applied to
the duo property of rings, in this perspective, we introduce and study right (resp., left) qnil-duo
rings. We show that this concept is not left-right symmetric. Among others, it is proved that if the
Hurwitz series ring H(R; α) is right qnil-duo, then R is right qnil-duo. Every right qnil-duo ring is
abelian. A right qnil-duo exchange ring has stable range 1.
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Introduction

Throughout this paper, all rings are associative with identity. Let N(R), J(R), U(R), C(R)

and Id(R) denote the set of all nilpotent elements, the Jacobson radical, the set of all invertible
elements, the center and the set of all idempotents of a ring R, respectively. We denote the
n × n full (resp., upper triangular) matrix ring over R by Mn(R) (resp., Un(R)), and Dn(R)

stands for the subring of Un(R) consisting of all matrices which have equal diagonal entries
and Vn(R) = {(aij) ∈ Dn(R) | aij = a(i+1)(j+1) for i = 1, . . . , n − 2 and j = 2, . . . , n − 1} is a
subring of Dn(R). Let Z and Zn denote the ring of integers and the ring of integers modulo n,
where n ≥ 2.

In [4], E.H. Feller introduced the notion of duo rings, that is, a ring is called right (resp., left)
duo if every right (resp., left) ideal is an ideal, in other words, Ra ⊆ aR (resp., aR ⊆ Ra) for
every a ∈ R, and a ring is said to be duo if it is both right and left duo. The duo ring property
was studied in different aspects. For example, in [5], the concept of right unit-duo ring was
introduced, namely, a ring R is called right unit-duo if for every a ∈ R, U(R)a ⊆ aU(R). Left
unit-duo rings are defined similarly. In [9], the normal property of elements on Jacobson and
nil radicals were concerned. A ring R is called right normal on Jacobson radical if J(R)a ⊆ aJ(R)

for all a ∈ R. Left normal on Jacobson radical rings can be defined analogously. Also in [9],
on the one hand, a ring R is said to satisfy the right normal on upper nilradical if N∗(R)a ⊆

aN∗(R) for all a ∈ R, where N∗(R) is the upper nilradical of R. Similarly, left normal on
upper nilradical rings are defined similarly. On the other hand, a ring R is said to satisfy the
right normal on lower nilradical if N∗(R)a ⊆ aN∗(R) for all a ∈ R, where N∗(R) is the lower
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nilradical of R. Similarly, left normal on lower nilradical rings are defined similarly. Also, a
ring R is called right nilpotent-duo if N(R)a ⊆ aN(R) for every a ∈ R. Left nilpotent duo rings
are defined similarly (see [7]).

Motivated by the works on duo property for rings, the goal of this paper is to approach
the notion of duo rings by the way of quasinilpotent elements, in this regard, we introduce the
notion of qnil-duo rings. Firstly, we investigate some properties of quasinilpotent elements,
which we need for the investigation of qnil-duo property. Then we study some properties of
this class of rings and observe that being a qnil-duo ring need not be left-right symmetric. It
is proved that any right (resp., left) qnil-duo ring is abelian, and any exchange right (resp.,
left) qnil-duo ring has stable range 1. It is observed that regularity and strongly regularity
coincide for right (resp., left) qnil-duo rings. We also study on some extensions of rings such
as Dorroh extensions, Hurwitz series rings and some subrings of matrix rings in terms of
qnil-duo property.

1 Some properties of quasinilpotents

Let R be a ring and a ∈ R. The commutant and double commutant of a in R are defined by
comm(a) = {b ∈ R | ab = ba} and comm2(a) = {b ∈ R | bc = cb for all c ∈ comm(a)},
respectively, and Rqnil = {a ∈ R | 1 + ax is invertible in R for every x ∈ comm(a)}. Elements
of the set Rqnil are called quasinilpotent (see [6]). Note that J(R) = {a ∈ R | 1 + ax is invertible
for every x ∈ R}. If a ∈ N(R) and x ∈ comm(a), then ax ∈ N(R) and 1 + ax ∈ U(R). So
J(R) ⊆ Rqnil, N(R) ⊆ Rqnil and Rqnil does not contain invertible elements, 0 ∈ Rqnil but the
identity is not in Rqnil. In this section, we start to expose some properties of Rqnil and continue
to study some other properties of quasinilpotent elements in rings.

Example 1. There are rings R such that J(R) is strictly contained in Rqnil.

Proof. Let F be a field and R = Mn(F) for some positive integer n. Then J(R) = 0 and the
matrix unit E1n belongs to Rqnil but not J(R).

We now mention some of the known facts about quasinilpotents for an easy reference.

Proposition 1. (1) Let R be a ring, n be a positive integer, and a ∈ R. If an ∈ Rqnil, then
a ∈ Rqnil , in particular every nilpotent element is in Rqnil ([3, Proposition 2.7]).

(2) If R is a local ring, then U(R) ∩ Rqnil = ∅ and R = U(R) ∪ Rqnil ([3, Theorem 3.2]).
(3) Let R be a ring, a, b ∈ R. Then ab ∈ Rqnil if and only if ba ∈ Rqnil ([11, Lemma 2.2]).
(4) Let a ∈ Rqnil and r ∈ U(R). Then r−1ar ∈ Rqnil ([3, Lemma 2.3]).
(5) Let e ∈ Id(R). Then (eRe)qnil = (eRe) ∩ Rqnil ([16, Lemma 3.5]).

In the following, we determine quasinilpotent elements in some classes of rings.

Lemma 1. Let R be a ring. Then the following hold.

(1)
{[

a b

0 c

]

| a, c ∈ Rqnil , b ∈ R

}

⊆ U2(R)qnil .

(2)
{[

a b

0 a

]

| a ∈ Rqnil, b ∈ R

}

⊆ D2(R)qnil .

(3) Let A =

[

a b

0 a

]

∈ D2(R)qnil with b ∈ comm2(a). Then a ∈ Rqnil .



Duo property for rings by the quasinilpotent perspective 487

Proof. (1) Let a, c ∈ Rqnil, b ∈ R, A =

[

a b

0 c

]

∈ U2(R) and B =

[

x y

0 z

]

∈ comm(A). Then

AB = BA implies 1 − ax and 1 − cz are invertible. Hence I2 − AB is invertible. So A ∈ Rqnil.

(2) Let A =

[

a b

0 a

]

∈ D2(R) with a ∈ Rqnil , b ∈ R and B =

[

x y

0 x

]

∈ comm(A). Then

AB = BA implies x ∈ comm(a). Then 1 − ax is invertible. Hence I2 − AB is invertible. So
A ∈ D2(R)qnil .

(3) Clear.

One may think of the following question.

Question 1. Are the reverse inclusions (1) and (2) in Lemma 1 true?

Proposition 2. Let (Ri)i∈I be a family of rings for some index set I and let R = ∏i∈I Ri.
Then Rqnil = ∏i∈I R

qnil
i .

Proof. Let (ai), (xi) ∈ R. Then (xi) ∈ comm(ai) if and only if xi ∈ comm(ai) for all i ∈ I. Hence
1 + (ai)(xi) is invertible in R if and only if 1 + aixi is invertible in Ri for every i ∈ I. So the
result follows.

Let R be an algebra over a commutative ring S. The Dorroh extension (or ideal extension) of
R by S denoted by I(R, S) is the direct product R × S with usual addition and multiplication
defined by (a1, b1)(a2, b2) = (a1a2 + b1a2 + b2a1, b1b2) for a1, a2 ∈ R and b1, b2 ∈ S.

Lemma 2. Let I(R, S) be an ideal extension of R by S. Then the following hold.
(1) For (a, b) ∈ I(R, S), (c, d) ∈ comm(a, b) if and only if c ∈ comm(a).
(2) (a, b) has an inverse (c, d) in I(R, S) if and only if (a + b)(c + d) = 1 = (c + d)(a + b)

and bd = db = 1.

Proof. (1) (c, d) ∈ comm(a, b) if and only if (a, b)(c, d) = (c, d)(a, b) if and only if ac+ da+ bc =

ca + da + bc and bd = db if and only if ac = ca and bd = db if and only if c ∈ comm(a).
(2) (a, b)(c, d) = (0, 1) = (c, d)(a, b) if and only if ac + da + bc = ca + da + bc = 0 and bd =

db = 1 if and only if ac + da + bc + bd + (−bd) = (a + b)(c + d)− 1 = 0 and bd = db = 1.

Proposition 3. Let I(R, S) be an ideal extension of R by S. Then
(1) (R, 0)qnil = (R, 0) ∩ I(R, S)qnil ,
(2) (0, S) ∩ I(R, S)qnil ⊆ (0, S)qnil .

Proof. (1) Let (x, 0) ∈ (R, 0)qnil and (a, b) ∈ I(R, S) with (a, b) ∈ comm(x, 0). Then
a ∈ comm(x) and so 1 + xa is invertible in R. We prove (0, 1) + (x, 0)(a, b) is invertible.
Since S lies in the center of R, a + b ∈ comm(x). Hence 1 + x(a + b) is invertible, say
(1 + x(a + b))(u + 1) = (u + 1)(1 + x(a + b)) = 1. This implies that u(x(a + b))+

x(a + b) + u = 0. Hence ((0, 1) + (x, 0)(a, b))(u, 1) = (u, 1)((0, 1) + (x, 0)(a, b)) = (0, 1) for
all (a, b) ∈ comm(x, 0). So (x, 0) ∈ I(R, S)qnil . Conversely, let (x, 0) ∈ (R, 0) ∩ I(R, S)qnil and
(r, 0) ∈ comm(x, 0). Hence, (0, 1) + (x, 0)(r, 0) = (rx, 1) is invertible. Let (a, b) be the inverse
of (rx, 1). Then (rx, 1)(a, b) = (0, 1) implies b = 1 and rxa + rx + a = 0. (a, 1)(rx, 1) = (0, 1)
implies arx + a + rx = 0. Hence (1 + a)(1 + rx) = 1 and (1 + rx)(1 + a) = 1. Hence
(1, 0) + (r, 0)(x, 0) is invertible in (R, 0) for all (r, 0) ∈ comm(x, 0). Thus (x, 0) ∈ (R, 0)qnil

or (R, 0) ∩ I(R, S)qnil ⊆ (R, 0)qnil .
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(2) Let (0, s) ∈ (0, S) ∩ I(R, S)qnil . Let (0, b) ∈ (0, S) with (0, b) ∈ comm(0, s). Then
(0, 1) + (0, s)(0, b) = (0, 1 + sb) is invertible in I(R, S). There exists (u, v) ∈ I(R, S) such that
(0, 1 + sb)(u, v) = ((1 + sb)u, (1 + sb)v) = (0, 1) = (u, v)(0, 1 + sb) = ((1 + sb)u, v(1 + sb)).
Hence (1 + sb)v = v(1 + sb) = 1 and (1 + sb)u = 0. Hence u = 0. Thus (0, 1) + (0, s)(0, b) =

(0, 1 + sb) is invertible in (0, S) with inverse (0, v) ∈ (0, S). It follows that (0, s) ∈ (0, S)qnil and
so (0, S) ∩ I(R, S)qnil ⊆ (0, S)qnil .

The following gives us necessary and sufficient conditions for (0, S)qnil to be contained in
I(R, S)qnil.

Theorem 1. Let I(R, S) be the ideal extension of an algebra R by a commutative ring S. Let
(0, i) ∈ (0, S)qnil . Then (0, i) ∈ I(R, S)qnil if and only if for every (a, b) ∈ comm(0, i) there exists
(u, v) ∈ I(R, S) such that (i(a + b) + 1)(u + v) = (1 + ib)v = 1.

Proof. Assume that (0, i) ∈ I(R, S)qnil. Let (a, b) ∈ comm(0, i) in I(R, S). Then (0, 1) +
(0, i)(a, b) must be invertible. There exists (u, v) ∈ I(R, S) such that (0, 1) = ((0, 1)+
(0, i)(a, b))(u, v). It follows that (0, 1) = ((0, 1) + (0, i)(a, b))(u, v) = (ia, 1 + ib)(u, v) =

(iau+ (1+ ib)u+ v(ia), (1+ ib)v). Then iau+ (1+ ib)u+ iav = 0 and (1+ ib)v = 1. They lead
us (i(a + b) + 1)(u + v) = (1+ ib)v. Hence (i(a + b) + 1)(u + v) is invertible. Conversely, note
that iau + (1 + ib)u + iav = 0 if and only if (i(a + b) + 1)(u + v) = (1 + ib)v. Assume that for
(0, i) ∈ (0, S) there exists (u, v) ∈ I(R, S) such that (i(a + b) + 1)(u + v) = (1 + ib)v = 1. Then
by concealing paranthesis we may reach that (0, 1) = ((0, 1) + (0, i)(a, b))(u, v) for (a, b) ∈

comm(0, i). Hence (0, i) ∈ I(R, S)qnil.

Let R be a ring and S a subring of R with the same identity as that of R and

T[R, S] = {(r1, r2, . . . , rn, s, s, . . . ) : ri ∈ R, s ∈ S, n ≥ 1, 1 ≤ i ≤ n}.

Then T[R, S] is a ring under the componentwise addition and multiplication. Note that
N(T[R, S]) = T[N(R), N(S)] and C(T[R, S]) = T[C(R), C(R) ∩ C(S)].

Proposition 4. Let R be a ring and S a subring of R with the same identity as that of R.
(1) If A = (a1, a2, a3, . . . , an, s, s, s, . . . ) ∈ T[R, S]qnil , then ai ∈ Rqnil for i = 1, 2, 3, . . . , n and

s ∈ Sqnil.
(2) If a ∈ Rqnil and s ∈ Sqnil, then A = (a, s, s, s, . . . ) ∈ T[R, S]qnil .

Proof. (1) Let A = (a1, a2, . . . , an, s, s, s, . . . ) ∈ T[R, S]qnil and bi ∈ comm(ai) and t ∈ comm(s).
Then B = (b1, b2, . . . , bn, t, t, t, . . . ) ∈ comm(A). Let 1 = (1, 1, . . . , 1, . . . ) denote the identity of
T[R, S]. So 1 + AB is invertible. Therefore 1 + aibi is invertible for i = 1, 2, . . . , n and 1 + st is
invertible in S. Hence ai ∈ Rqnil for i = 1, 2, . . . , n and s ∈ Sqnil.

(2) Let a ∈ Rqnil, s ∈ Sqnil, A = (a, s, s, . . . ). If B = (b1, b2, . . . , bm, t, t, t, . . . .) ∈ T[R, S] lies
in comm(A), then b1 ∈ comm(a), bi ∈ comm(s) for i = 2, 3, . . . , m and t ∈ comm(s). Hence
1 + ab1 and 1 + sbi are invertible in R, where i = 2, 3, . . . , m and 1 + st is invertible in S. Hence
1 + AB is invertible in T[R, S]. So A = (a, s, s, . . . ) ∈ T[R, S]qnil .

Let R be a ring with an endomorphism α and let H(R; α) be the set of formal expressions
of the type f (x) = ∑

∞
n=0 anxn, where an ∈ R for all n ≥ 0. Define addition as componentwise

and ∗-product on H(R; α) as follows: for f (x) = ∑
∞
n=0 anxn and g(x) = ∑

∞
n=0 bnxn, f ∗ g =

∑
∞
n=0 cnxn, where cn = ∑

n
i=0 (

n
i )aibn−i. Then H(R; α) becomes a ring with identity containing
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R under these two operations. The ring H(R; α) is called the Hurwitz series ring over R. The
Hurwitz polynomial ring h(R; α) is the subring of H(R; α) consisting of formal expressions of the
form ∑

n
i=0 (

n
i)aix

i. Let ǫ : H(R; α) → R defined by ǫ( f (x)) = a0. Then ǫ is a homomorphism
with ker(ǫ) = xH(R; α) and H(R; α)/ker(ǫ) ∼= R. There exist one-to-one correspondences
between H(R; α) and R relating to invertible elements, commutants and ideals. Let R[[x; α]] be
the skew formal power series ring over R. The sum is the same but multiplication in H(R, α) is
similar to the usual multiplication of R[[x; α]], except that binomial coefficients appear in each
term in the multiplication defined in H(R, α). Also, there is a ring homomorphism ǫ between
R[[x; α]] and R, defined by ǫ( f (x)) = a0, where f (x) = a0 + a1x + a2x2 + · · · ∈ R[[x; α]].
Clearly, ǫ is an onto map and R[[x; α]]/ker(ǫ) ∼= R.

Lemma 3. Let R be a ring and α a ring endomorphism of R. Then
(1) U(H(R; α)) = ǫ

−1U(R),
(2) U(R[[x; α]]) = ǫ

−1U(R).

Proof. It is routine.

In the next result, we determine the quasinilpotent elements of H(R; α) and R[[x; α]].

Proposition 5. (1) Let H(R; α) be a skew Hurwitz series ring over R. Then

H(R; α)qnil = ǫ
−1Rqnil .

(2) Let R[[x; α]] be a skew formal power series ring over R. Then R([[x; α]])qnil = ǫ
−1Rqnil.

Proof. (1) Let f (x) = a0 + a1x + a2x2 + · · · ∈ H(R; α)qnil and r ∈ R with r ∈ commR(a0). Then
r ∈ commH(R;α)(a0). Then 1+ f (x)r ∈ U(H(R; α)). Hence 1+ a0r ∈ U(R). So a0 ∈ Rqnil . Since
a0 = ǫ( f (x)), f (x) ∈ ǫ

−1(Rqnil). Conversely, let g(x) = b0 + b1x + b2x2 + · · · ∈ ǫ
−1(Rqnil).

Then ǫ(g(x)) = b0 ∈ Rqnil. Let h(x) = c0 + c1x + c2x2 + · · · ∈ commH(R,α)(g(x)). Then c0 ∈

commR(b0) and so 1 + b0c0 ∈ U(R). So 1 + g(x)h(x) ∈ U(H(R, α)). Hence g(x) ∈ H(R, α)qnil.
This completes the proof.

(2) Similar that of (1).

2 Qnil-duo rings

In this section, we deal with the right duo property on the set of quasinilpotent elements.
By this means we give a generalization of commutativity from the perspective of quasinilpo-
tents.

Definition 1. A ring R is called right qnil-duo if Rqnila ⊆ aRqnil for every a ∈ R. Similarly, R is
called left qnil-duo if aRqnil ⊆ Rqnila for every a ∈ R. If R is both right and left qnil-duo, then it
is called qnil-duo, i.e. Rqnila = aRqnil for every a ∈ R.

The qnil-duo property of rings is not left-right symmetric as the following example shows.

Example 2. Let S = F(t) denote the quotient field of the polynomial ring F[t] over a field F

and α : S → S defined by α( f (t)/g(t)) = f (t2)/g(t2). Let R = S[[x; α]] denote the skew power
series ring with xa = α(a)x for a ∈ S. Every element of R is of the form a = ∑

∞
i=0 aix

i. For any
r = a0 + ∑

∞
i=1 aix

i with a0 6= 0 is invertible. Hence Rqnil = xR.
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This ring is considered in [2, Lemma 1.3 (3)], [8, Example 1] and in [7, Example 1.5]. As
in the proof of [8, Example 1], for txm ∈ tRqnil, there is no g(x) ∈ Rqnil such that txm =

g(x)t. Hence R is not left qnil-duo. We show that R is right qnil-duo. Let f (x) ∈ Rqnil,
g(x) ∈ R. We show that there exists f1(x) ∈ Rqnil such that f (x)g(x) = g(x) f1(x). Assume
that g(x) is invertible. Then f (x)g(x) = g(x)(g(x)−1 f (x)g(x)) ∈ g(x)Rqnil , otherwise, let
g(x) = h(x)xm , where h(x) = a0 + a1x+a2x2 + · · · is invertible. Then

f (x)g(x) = f (x)h(x)xm = f (x)xmh1(x) = xm f1(x)h1(x)

= xmh1(x)(h1(x)−1 f1(x)h1(x)) = g(x)(h1(x)−1 f1(x)h1(x)) ∈ g(x)Rqnil

since f (x) is not invertible and f1(x) is an application of xm to f (x) from the right, therefore
f1(x) = xk f2(x) ∈ Rqnil for some k ≥ 1, by Proposition 1 (4), h1(x)−1 f1(x)h1(x) ∈ Rqnil. Thus
R is right qnil-duo.

Example 3. (1) All commutative rings, all division rings are qnil-duo.
(2) There are local rings that are not right qnil-duo.

Proof. (1) When R is a commutative ring, it is both right and left qnil-duo. If R is a division
ring, then Rqnil = {0}, therefore R is both right and left qnil-duo.

(2) Let A = Z4[x, y] be the polynomial ring with non-commuting indeterminates x and y

and I be the ideal generated by the set {x3, y2, yx, x2 − xy, x2 − 2, 2x, 2y}. Consider the ring
R = A/I. By [15, Example 7], R is a local ring. It is easily checked that

Rqnil = {0, 2, x, y, 2 + x, 2 + y, 2 + x + y, x + y} and (Rqnil)2 6= 0,

2 + x belongs to Rqnil since it is nilpotent, for x ∈ Rqnil and y ∈ R, xy ∈ Rqnily. It is easily
checked that there is no t ∈ Rqnil such that xy = yt ∈ yRqnil . Hence R is not right qnil-duo.

Lemma 4. Let R be a ring with Rqnil central in R. Then R is qnil-duo.

Proof. Assume that Rqnil is central in R. Let a ∈ R and b ∈ Rqnil. Then b being central implies
ab = ba ∈ aRqnil .

Theorem 2. Let {Ri}i∈I be a family of rings for some index set I and R = ∏i∈I Ri. Then Ri is
right (resp., left) qnil-duo for each i ∈ I if and only if R is right (resp., left) qnil-duo.

Proof. Assume that Ri is right (resp., left) qnil-duo for each i ∈ I. Let a = (ai) ∈ R, b = (bi) ∈

Rqnil. By Proposition 2, bi ∈ R
qnil
i for each i ∈ I. By assumption there exists ci ∈ R

qnil
i such

that biai = aici for each i ∈ I. Set c = (ci). Then ba = ac ∈ aRqnil . Hence Rqnila ⊆ aRqnil .
Conversely, suppose that R is right qnil-duo. Let ai ∈ Ri and bi ∈ R

qnil
i , where i ∈ I. Let

a = (ai), b = (bi) ∈ R, where ith-entry of a is ai and the other entries are 0 and ith-entry of b is
bi and the other entries are 0, respectively. Then a = (ai) ∈ R and by Proposition 2, b ∈ Rqnil.
The supposition implies there exists c = (ci) ∈ Rqnil such that ba = ac. Comparing entries of
both sides we have biai = aici. By Proposition 2, ci ∈ R

qnil
i . Thus for each i ∈ I, Ri is right

qnil-duo. Similarly, it is proven that for each i ∈ I, Ri is left qnil-duo.

Recall that a ring R is called abelian if every idempotent in R is central.
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Theorem 3. Let R be a ring. Then the following hold.
(1) ex − exe and xe − exe ∈ Rqnil for every x and e2 = e ∈ R.
(2) Right (resp., left) qnil-duo rings are abelian.
(3) Let R be a ring and e ∈ Id(R). If R is a right (resp., left) qnil-duo ring, then eR and

(1 − e)R are right (resp., left) qnil-duo rings. The converse holds if e is central.

Proof. (1) Let t ∈ comm(ex− exe). Then t(ex− exe)=(ex− exe)t. So we have (t(xe− exe))2 =0.
Hence 1 − (ex − exe)t is invertible and so ex − exe ∈ Rqnil. Similarly, xe − exe ∈ Rqnil.

(2) Let e2 = e ∈ R. By hypothesis, Rqnile ⊆ eRqnil . By (1), xe − exe ∈ Rqnil for all x ∈ R.
It implies for any x ∈ R, there exists t ∈ Rqnil such that (xe − exe)e = et. Multiplying the
latter equality by e from the left we have et = 0. So, xe = exe. Similarly, ex = exe since
ex − exe ∈ Rqnil by (1). Hence R is abelian.

(3) It is clear by Theorem 2.

Corollary 1. Let R be a right (resp., left) qnil-duo ring and e ∈ Id(R). Then the corner ring eRe

is a right (resp., left) qnil-duo ring.

Proof. The ring R being right (resp., left) qnil-duo implies that e is central in R by Theorem 3
(2). Hence Theorem 3 (3) completes the proof.

Theorem 4. Every right (resp., left) qnil-duo ring is directly finite.

Proof. Let R be a right qnil-duo ring and a, b ∈ R with ab = 1. Set e = 1 − ba. Then e is an
idempotent. By Theorem 3, e is central. So, 0 = ae = ea. Hence 0 = a − ba2. Multiplying the
latter by b from the right, we get 1 = ba.

There is a directly finite ring that is neither right nor left qnil-duo.

Example 4. Consider the ring R = M2(Z2). Then R is a directly finite ring but not abelian.
Hence it is neither right nor left qnil-duo.

We apply Theorem 3 to show that full matrix rings and upper triangular matrix rings need
not be right (resp., left) qnil-duo. But there are some subrings of full matrix rings that are
qnil-duo.

Example 5. (1) For any ring R and any positive integer n, Mn(R) and Un(R) are neither right
nor left qnil-duo.

(2) If R is commutative, then Vn(R) is qnil-duo.
(3) Vn(R[[x; σ]]) is neither right nor left qnil-duo.

Proof. (1) The rings Mn(R) and Un(R) are not abelian. By Theorem 3 (2), they are neither right
nor left qnil-duo.

(2) If R is a commutative ring, Vn(R) is also commutative, therefore it is right and left
qnil-duo.

(3) Let R be a ring with an endomorphism σ. Assume that there exists a1 ∈ R such that

σ(a1) /∈ a1R. Let A =





x x x

0 x x

0 0 x



 ∈ V3(R[[x; σ]])qnil , B =





a1 a2 a3

0 a1 a2

0 0 a1



 ∈ V3(R[[x; σ]]). As-

sume that there exists D ∈ V3(R[[x; σ]])qnil such that AB = BD. Then (1, 1) entry of AB is
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σ(a1)x and that of BD is a1x f (x) for some f (x) ∈ R[[x; σ]]. This contradicts the choice of σ and
a1. Therefore V3(R[[x; σ]]) is not right qnil-duo. Similarly, it can be shown that V3(R[[x; σ]]) is
not left qnil-duo.

Theorem 5. Let R be a local ring with (Rqnil)2 = 0. Then R is right (resp., left) qnil-duo.

Proof. By Proposition 1 (2), we have R = U(R) ∪ Rqnil. We prove Rqnila ⊆ aRqnil . Let a ∈ R,
b ∈ Rqnil. If ba = 0, then we are done since ba = 0 = a0 ∈ aRqnil . Otherwise, i.e. if ba 6= 0,
then we divide the proof in some cases.

Case I. Let a /∈ Rqnil. Then a ∈ U(R). By Proposition 1 (4), a−1ba ∈ Rqnil since b ∈ Rqnil.
Then ba = a(a−1ba) ∈ aRqnil .

Case II. Let a ∈ Rqnil. By hypothesis, ba = 0, this contradicts with ba 6= 0.
Therefore R is a right qnil-duo ring. Similarly, we may prove aRqnil ⊆ Rqnila for

each a ∈ R.

As an illustration of Theorem 5, we give the following examples. Also, the condition
(Rqnil)2 = 0 in Theorem 5 is not superfluous.

Example 6. (1) Consider the ring R =











a b c

0 a 0
0 0 a



 ∈ D3(Z4)







. Then

Rqnil =











a b c

0 a 0
0 0 a



 ∈ R | a ∈ 2Z4, b, c ∈ Z4







.

So, (Rqnil)2 = 0. By Theorem 5, R is qnil-duo.
(2) Let R denote the ring in Example 3. Then Rqnil = {0, 2, x, y, 2+ x, 2+ y, 2+ x + y, x + y}

and (Rqnil)2 6= 0 and 2 + x belongs to Rqnil since it is nilpotent and (2 + x)2 6= 0. Since R is
local and Rqnil does not contain invertible elements, Rqnil = J(R). To complete the proof we
may assume that x, y ∈ Rqnil . Then xy = 2 and xy ∈ Rqnily. It is easily checked that there is no
t ∈ Rqnil such that xy = yt ∈ yRqnil . Hence R is not right qnil-duo. Compare to Theorem 5.

Note that by Theorem 5, if R is a division ring, D2(R) is a qnil-duo ring. One may ask
whether D2(R) is qnil-duo over a domain R. The following example answers negatively.

Example 7. Consider the ring D2(R[[x]]) in [9, Example 1.4 (1)]. It is proved that D2(R[[x]]) is
neither right nor left normal property of elements on Jacobson radical. Since J(D2(R[[x]])) =

D2(R[[x]])qnil , D2(R[[x]]) is neither right nor left qnil-duo.

Theorem 6. Let R be a domain. If D2(R) is right (resp., left) qnil-duo, then R is right
(resp., left) qnil-duo.

Proof. Assume that D2(R) is right qnil-duo. Let a ∈ R and b ∈ Rqnil . Consider A =

[

a 0
0 a

]

6= 0,

B =

[

b 0
0 b

]

6= 0. Let X =

[

x y

0 x

]

∈ comm(B). Then I2 − BX is invertible since 1 − bx is

invertible in R. Hence BA ∈ D2(R)qnil A. There exists C =

[

c d

0 c

]

∈ D2(R)qnil such that

BA = AC. Then ba = ac and ad = 0. By hypothesis d = 0. By Lemma 1(3), c ∈ Rqnil. It follows
that ba = ac ∈ aRqnil . Hence Rqnila ⊆ aRqnil .
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Recall that a ring R is said to have stable range 1 if for any a, b ∈ R satisfying aR + bR = R,
there exists y ∈ R such that a + by is right invertible (cf. [14]). In [12], a ring R is called exchange

if for any x ∈ R, there exists e ∈ Id(R) such that e ∈ Rx and 1 − e ∈ R(1 − x), and it is proved
that for an abelian ring R, R is exchange if and only if it is clean, and R is exchange if and only
if idempotents lift modulo every left (or right) ideal.

Theorem 7. The following hold.
(1) Right (resp., left) qnil-duo exchange rings have stable range 1.
(2) Right (resp., left) qnil-duo regular rings (in the sense of von Neumann) are strongly

regular.

Proof. (1) Let R be a right qnil-duo exchange ring. By Theorem 3, R is abelian. Hence [17,
Theorem 6] implies R has stable range 1.

(2) Let R be a qnil-duo regular ring and a ∈ R. There exists b ∈ R such that a = aba. Then
ab = (ab)2, ba = (ba)2 ∈ Id(R). By Theorem 3, ab is central. So, a = aba = a2b. Hence R is
strongly regular.

Let R be a ring. The Jacobson radical of the polynomial ring R[x] is J(R[x]) = N[x], where
N = J(R[x]) ∩ R is a nil ideal of R. Then N ⊆ Rqnil and J(R[[x]]) = xR[[x]]. Therefore,
R[[x]]qnil = xR[[x]]. One may wonder whether or not R[x] and R[[x]] are qnil-duo. The follow-
ing example shows that R[x] and R[[x]] need not be right qnil-duo.

Example 8. (1) Let F be a field, R = Mn(F) and consider the ring R[x]. Observe that Mn(F[x])

is not right (or left) qnil-duo for any positive integer n ≥ 2 by Example 5. It follows that R[x]

is not right (or left) qnil-duo since Mn(F)[x] ∼= Mn(F[x]).
(2) Let R = A/(ab − ba − 1) denotes the Weyl algebra discussed in [9, Example 1.2 (2)]. Let

S = R[[x]]. Then Sqnil = xR[[x]] = J(R[[x]]), R is a domain and R[[x]] is abelian. It is proved
that R[[x]] is neither right normal nor left normal on J(R). Therefore, R[[x]] is neither right
qnil-duo nor left qnil-duo.

Question 2. Under what conditions are the rings R[x] and R[[x]] right qnil-duo?

Theorem 8. Let R be an algebra over a commutative ring S. Consider the Dorroh extension (or
ideal extension) I(R, S) of R by S. If I(R, S) is right qnil-duo, then so is R.

Proof. Assume that I(R, S) is right qnil-duo. Let a ∈ R, b ∈ Rqnil. Then (a, 0) ∈ I(R, S) and
(b, 0) ∈ I(R, S)qnil . Indeed, let (x, y) ∈ comm(b, 0). By Lemma 2, x ∈ comm(b). Since R is an
algebra over S, we have x + y ∈ comm(b). Then 1 + b(x + y) is invertible in R with inverse t.
Again by Lemma 2, (0, 1) + (b, 0)(x, y) is invertible in I(R, S) with the inverse (t − 1, 1). Then
(b, 0)(a, 0) ∈ I(R, S)qnil(a, 0). There exists (c, s) ∈ I(R, S)qnil such that (b, 0)(a, 0) = (a, 0)(c, s).
So, ba = a(c + s).

To complete the proof we show c + s ∈ Rqnil . Let x ∈ comm(c + s). Then cx + sx = sc + xs.
Since R is an algebra over S, sx = xs, this implies cx = xc, and so x ∈ comm(c). Hence
(x, 0) ∈ comm(c, s). Since (c, s) ∈ I(R, S)qnil, (0, 1) + (c, s)(x, 0) is invertible in I(R, S). Thus
1 + (c + s)x is invertible in R by Lemma 2(2). So, c + s ∈ Rqnil . Therefore R is right qnil-
duo.
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Proposition 6. Let R be a ring and S a subring of R. If T[R, S] is right qnil-duo, then so are R

and S. The converse holds if Sqnil ⊆ Rqnil.

Proof. Assume that T[R, S] is right qnil-duo. Let a ∈ R, b ∈ Rqnil . Let A = (a, 0, 0, 0, . . . ),
B = (b, 0, 0, 0, . . . ) ∈ T[R, S]. By Proposition 4, B ∈ T[R, S]qnil . By supposition there exists C =

(c1, c2, · · · , cm, t, t, . . . .) ∈ T[R, S]qnil such that BA = AC. Hence ba = ac1. By Proposition 4,
c1 ∈ Rqnil. Similarly, let s ∈ S, t ∈ Sqnil and C = (0, s, s, s, . . . ), D = (0, t, t, t, . . . .) ∈ T[R, S].
By Proposition 4, D ∈ T[R, S]qnil . There exists D′ = (d1, d2, d3, . . . , dl , u, u, u, . . . ) ∈ T[R, S]qnil

such that DC = CD′. By Proposition 4, u ∈ Sqnil and ts = su ∈ sSqnil.
Suppose that R and S are right qnil-duo and Sqnil ⊆ Rqnil. Let A ∈ T[R, S], B ∈ T[R, S]qnil ,

where A = (a1, a2, . . . , an, s, s, . . . ), B = (b1, b2, . . . , bm, t, t, . . . ), we prove BA = AC for some
C ∈ T[R, S]qnil . By Proposition 4, bi ∈ Rqnil for i = 1, 2, . . . , m and t ∈ Sqnil. By supposition
bi ∈ Rqnil implies biai = aici for some ci ∈ Rqnil . We divide the proof in some cases.

Case I. n ≤ m. Then biai ∈ Rqnilai. Since R is right qnil-duo, there exist ci ∈ Rqnil such
that biai = aici for each 1 ≤ i ≤ n. For n + 1 ≤ i ≤ m, bis ∈ Rqnils. There exist ci ∈ Rqnil

such that bis = sci. For ts ∈ Sqnils, there exists l ∈ Sqnil such that ts = sl ∈ sSqnil. Let C =

(c1, c2, . . . , cm, l, l, l, . . . ). By Proposition 4 (2), C ∈ T[R, S]qnil . Then BA = AC ∈ AT[R, S]qnil .
Case II. n > m. Let 1 ≤ i ≤ m. Then biai ∈ Rqnilai and since R is right qnil-duo, there exist

ci ∈ Rqnil such that biai = aici. For m + 1 ≤ i ≤ n, tai ∈ Sqnilai. By Sqnil ⊆ Rqnil , we have
tai = aici ∈ aiR

qnil for some ci ∈ Rqnil . For ts ∈ Sqnils, by supposition, there exists l ∈ Sqnil

such that ts = sl ∈ sSqnil. Let C = (c1, c2, . . . , cn, l, l, l, . . . ). By Proposition 4 (2), C ∈ T[R, S]qnil .
Then BA = AC. Hence T[R, S]qnil A ⊆ AT[R, S]qnil . It completes the proof.

Theorem 9. (1) Let H(R; α) be a skew Hurwitz series ring over a ring R. If H(R; α) is right
qnil-duo, then R is right qnil-duo.

(2) Let R[[x; α]] be a skew formal power series ring over a ring R. If R[[x; α]] is right
qnil-duo, then R is right qnil-duo.

Proof. (1) Suppose that H(R; α) is a right qnil-duo ring. Let a ∈ Rqnil and b ∈ R. By the
definition of ǫ and Proposition 5, there exist f (x), g(x) ∈ H(R; α) with f (x) ∈ H(R; α)qnil and
ǫ( f (x)) = a, ǫ(g(x)) = b. There exists h(x) = c0 + c1x + c2x2 + · · · ∈ H(R; α)qnil such that
f (x)g(x) = g(x)h(x). Hence ǫ( f (x)g(x)) = ǫ(g(x)h(x)) implies ab = bc0 ∈ bRqnil . Thus
Rqnilb ⊆ bRqnil . The proof of (2) is similar to that of (1).

Note that by Proposition 5, we have the following equalities

H(R; α)qnil = ǫ
−1Rqnil and R([[x; α]])qnil = ǫ

−1Rqnil.

Here we raise the following two questions.

Question 3. By using the preceding equalities, one can prove the inverse statements in Theo-
rem 9 (1) and (2) as: if R is right qnil-duo, then

(1) is H(R; α) right qnil-duo?
(2) is R[[x; α]] right qnil-duo?

3 Some subrings of matrix rings

Besides, for any ring R and any positive integer n ≥ 2, Mn(R) is not right (or left) qnil-duo,
in this section, quasinilpotent elements of some subrings of full matrix rings are determined
for the purpose of the use whether or not their subrings to be right (or left) qnil-duo.
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The rings L(s,t)(R). Let R be a ring and s, t ∈ C(R).

Let L(s,t)(R) =











a 0 0
sc d te

0 0 f



 ∈ M3(R) | a, c, d, e, f ∈ R







, where the operations are defined

as those in M3(R). Then L(s,t)(R) is a subring of M3(R).

Lemma 5. Let A =





a 0 0
sc d te

0 0 f



 ∈ L(s,t)(R). Then the following hold.

(1) A is invertible in L(s,t)(R) if and only if a, d and f are invertible in R.

(2) If a, d, f ∈ Rqnil, then A ∈ L(s,t)(R)qnil .

Proof. (1) One way is clear. Let A =





a 0 0
sc d te

0 0 f



 ∈ L(s,t)(R). Assume that a, d and f are

invertible with ax = xa = 1, dz = zd = 1 and f v = v f = 1, where x, z, v ∈ R. Consider

B =





x 0 0
sy z tu

0 0 v



 ∈ L(s,t)(R), where y = −zcx and u = −zev. Then AB = BA = I3.

(2) Assume that a, d, f ∈ Rqnil . We prove that A ∈ L(s,t)(R)qnil . Let B =





x 0 0
sy z tu

0 0 v



 ∈ L(s,t)(R)

with B ∈ comm(A). It is easily checked that x ∈ comm(a), z ∈ comm(d), v ∈ comm( f ). Then

1 + ax, 1 + dz, 1 + f v are invertible in R. By (1), I3 + AB =





1 + ax 0 0
scx + sdy 1 + dz tdu + tev

0 0 1 + f v



 is

invertible. So A ∈ L(s,t)(R)qnil .

Lemma 6. Let A =





a 0 0
sc d te

0 0 f



 ∈ L(s,t)(R). Then the following hold.

(1) If A ∈ L(0,t)(R)qnil , then a ∈ Rqnil.

(2) If A ∈ L(s,0)(R)qnil , then f ∈ Rqnil.

(3) A ∈ L(0,0)(R)qnil if and only if a, d, f ∈ Rqnil.

Proof. (1) Let A =





a 0 0
0 d te

0 0 f



 ∈ L(0,t)(R)qnil and x ∈ comm(a). Consider B =





x 0 0
0 0 0
0 0 0



 ∈

L(0,t)(R). Then B ∈ comm(A). Since A ∈ L(0,t)(R)qnil , I + AB is invertible in L(0,t)(R). By
Lemma 5 (1), 1 + ax ∈ U(R). Therefore a ∈ Rqnil .

(2) Similar to the proof of (1).
(3) The sufficiency follows from Lemma 5 (2). For the necessity, a, f ∈ Rqnil by (1) and (2),

respectively. Also, by the similar discussion in (1), we obtain d ∈ Rqnil.
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Theorem 10. Let R be a ring. If L(0,t)(R) is right qnil-duo, then R is a right qnil-duo ring.

Proof. Assume that L(0,t)(R) is right qnil-duo and let a ∈ R and b ∈ Rqnil. Consider A =




a 0 0
0 0 0
0 0 0



, B =





b 0 0
0 0 0
0 0 0



 ∈ L(0,t)(R). By Lemma 5, B ∈ L(0,t)(R)qnil . By supposition there

exists B′ =





x 0 0
0 z tu

0 0 v



 ∈ L(0,t)(R)qnil such that BA = AB′. It implies ba = ax. By Lemma 6 (1),

x ∈ Rqnil. Hence ba = ax ∈ aRqnil . Thus Rqnila ⊆ aRqnil .

There are right qnil-duo rings R such that the rings L(s,t)(R) need not be right qnil-duo as
shown below.

Example 9. The ring L(1,1)(Z4) is not right qnil-duo.

Proof. Let A =





0 0 0
1 2 1
0 0 3



 ∈ L(1,1)(Z4) and B =





2 0 0
1 2 3
0 0 2



 ∈ L(1,1)(Z4)
qnil . Assume that

there exists C =





x 0 0
y z v

0 0 u



 ∈ L(1,1)(Z4)
qnil such that BA = AC. Then BA =





0 0 0
2 0 3
0 0 2



 and

AC =





0 0 0
x + 2y 2z 2v + u

0 0 3u



. BA = AC implies 3 = 2v + u and 2 = 3u. These equations lead

us to contradiction. Hence L(1,1)(Z4) is not right qnil-duo.

The rings H(s,t)(R). Let R be a ring and s, t ∈ C(R) be invertible in R. Let

H(s,t)(R) =











a 0 0
c d e

0 0 f



 ∈ M3(R) | a, c, d, e, f ∈ R, a − d = sc, d − f = te







.

Then H(s,t)(R) is a subring of M3(R).

Lemma 7. Let A =





a 0 0
c d e

0 0 f



, B =





x 0 0
y z u

0 0 v



 ∈ H(s,t)(R). Then

(1) AB = BA if and only if ax = xa, dz = zd, f v = v f .
(2) A is invertible with inverse B if and only if ax = xa = 1, dz = zd = 1, f v = v f = 1.
(3) A ∈ H(s,t)(R)qnil if and only if a, d, f ∈ Rqnil.

Proof. (1) The necessity is clear. For the sufficiency, suppose that ax = xa, dz = zd, f v = v f .
The matrix AB has cx + dy as (2, 1) entry, du + ev as (2, 3) entry and BA has ya + zc as (2, 1)
entry, ze + u f as (2, 3) entry. To show AB = BA it is enough to get cx + dy = ya + zc and
du+ ev = ze+ u f . Now scx + sdy = ax + d(sy− x) = ax − dz = xa− za+ za− dz = sya+ szc.
So, cx + dy = ya + zc since s is invertible. Similarly, we get du + ev = ze + u f .

(2) One way is clear. Assume that ax = xa = 1, dz = zd = 1, f v = v f = 1. Let B ∈ H(s,t)(R)

with y = −zcx and u = −zev. Then AB = BA = I3.
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(3) Assume A ∈ H(s,t)(R)qnil . Let x ∈ comm(a), y ∈ comm( f ) and D =





x 0 0
s−1x 0 −t−1y

0 0 y



.

Then D ∈ comm(A). In fact, scx = (a − d)x and tey = (d − f )y. Hence I3 + AD is invertible
in H(s,t)(R). It follows that 1 + ax, 1 + f y ∈ U(R). So, a, f ∈ Rqnil . As for d ∈ Rqnil , let

r ∈ comm(d) and D =





0 0 0
−s−1r r t−1r

0 0 0



. Then D ∈ comm(A). By assumption I3 + AD ∈

U(H(s,t)(R)). Hence 1 + dr ∈ U(R). Hence d ∈ Rqnil . Conversely, suppose that a, d, f ∈ Rqnil.
Let B ∈ comm(A). Then x ∈ comm(a), z ∈ comm(d) and v ∈ comm( f ). By supposition,
1 + ax, 1 + dy and 1 + f v are invertible. By part (2), I3 + AB ∈ U(H(s,t)(R)). Hence A ∈

H(s,t)(R)qnil . This completes the proof.

Theorem 11. Let R be a ring. Then R is right qnil-duo if and only if H(s,t)(R) is right qnil-duo.

Proof. Assume that R is a right qnil-duo ring. Let A =





a 0 0
c d e

0 0 f



 ∈ H(s,t)(R) and

B =





x 0 0
y z u

0 0 v



 ∈ H(s,t)(R)qnil . By Lemma 7, x, z, v ∈ Rqnil. There exist x′, z′, v′ ∈ Rqnil

such that xa = ax′, zd = dz′, v f = f v′. Let y′ = s−1(x′ − z′) and u′ = t−1(z′ − v′) and

B′ =





x′ 0 0
y′ z′ u′

0 0 v′



. Then B′ ∈ H(s,t)(R)qnil . We next show that BA = AB′. It is enough to see

ya + zc = cx′ + dy′ and ze + u f = du′ + ev′. We start with, cx′ + dy′ = cx′ + ds−1x′ − ds−1z′.
Multiplying the latter from the left by s and using the fact that s is central, we have

s(cx′ + dy′) = scx′ + dx′ − dz′ = (sc + d)x′ − zd = ax′ − zd = xa − zd

= (xa − za) + (za − zd) = sya + szc = s(ya + zc).

Since s is invertible, ya + zc = cx′ + dy′. Similarly, du′ + ev′ = dt−1z′ − dt−1v′ + ev′. Multiply-
ing the latter from the left by t and using the fact that t is central, we have

t(du′ + ev′) = dz′ − dv′ + tev′ = zd + (te − d)v′ = zd − f v′ = zd − v f

= zd − z f + z f − v f = z(d − f ) + (z − v) f = t(ze + u f ).

By using invertibility of t, we get du′ + ev′ = ze + u f . Conversely, suppose that H(s,t)(R) is
a right qnil-duo ring. Let a ∈ R and b ∈ Rqnil. Consider A = aI3, B = bI3 ∈ H(s,t)(R). By

Lemma 7, B ∈ H(s,t)(R)qnil . By supposition, there exists B′ =





x 0 0
y z u

0 0 v



 ∈ H(s,t)(R)qnil such

that BA = AB′. It implies ba = ax. Again by Lemma 7, x ∈ Rqnil. Hence ba = ax ∈ aRqnil .
Thus Rqnila ⊆ aRqnil .
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Generalized matrix rings. Let R be a ring and s ∈ U(R). Then
[

R R

R R

]

becomes a ring denoted

by Ks(R) with addition defined componentwise and multiplication defined in [10] by
[

a1 x1

y1 b1

] [

a2 x2

y2 b2

]

=

[

a1a2 + sx1y2 a1x2 + x1b2

y1a2 + b1y2 sy1x2 + b1b2

]

.

In [10], Ks(R) is called a generalized matrix ring over R.

Lemma 8. Let R be a ring. Then the following hold.

(1) U(K0(R)) =

{[

a b

c d

]

∈ K0(R) | a, d ∈ U(R)

}

.

(2) C(K0(R)) =

{[

a 0
0 a

]

∈ K0(R) | a ∈ C(R)

}

.

Proof. (1) Let A =

[

a b

c d

]

∈ U(K0(R)). There exists B =

[

x y

z t

]

∈ K0(R) such that AB =

BA = I, where I is the identity matrix. Then we have ax = xa = 1 and dt = td = 1. So, a and

d are invertible. Conversely, let A =

[

a b

c d

]

∈ K0(R) with a, d ∈ U(R). Let x = a−1, t = d−1,

k = −a−1bd−1 and l = −d−1ca−1. Then B =

[

x k

l t

]

is the inverse of A in K0(F).

(2) Let A =

[

a b

c d

]

∈ C(K0(R)). By commuting A in turn with the matrices
[

1 0
0 0

]

and
[

0 1
0 0

]

in K0(R) we reach at A =

[

a 0
0 a

]

. For the converse, let A =

[

a 0
0 a

]

∈ K0(R), where

a ∈ C(R). Then clearly, A commutes with every element of K0(R). So, A ∈ C(K0(R)).

Proposition 7. Let R be a ring and A =

[

a b

c d

]

∈ K0(R). If a, d ∈ Rqnil, then A ∈ K0(R)qnil .

Proof. Suppose that a, d ∈ Rqnil. Let B =

[

x y

z t

]

∈ K0(R) with B ∈ comm(A). Then

x ∈ comm(a), t ∈ comm(d). Let r = 1 + ax, v = 1 + dt, s = ay + bt and u = cx + dz. By as-
sumption, r = 1 + ax and v = 1 + dt are invertible in R. Let k = −r−1sv−1 and l = −v−1ur−1.

Then I2 + AB =

[

r s

u v

]

is invertible with the inverse C =

[

r−1 k

l v−1

]

.

Let R be a ring, a, b ∈ R. Define la − rb : R → R by (la − rb)(r) = ar − rb and lb − ra : R → R

by (lb − ra)(r) = br − ra. In [1], a local ring R is called bleached if for any a ∈ J(R) and any
b ∈ U(R), the abelian group endomorphisms lb − ra and la − rb of R are surjective. Such rings
are called uniquely bleached if the appropriate maps are injective as well as surjective. In [13],
R is a weakly bleached ring provided that for any a ∈ J(R), b ∈ 1 + J(R), la − lb and lb − la

are surjective and it is proved that matrices over 2-projective free rings are strongly J-clean.
It is proved that all upper triangular matrices over bleached local rings are strongly clean.
In [12, Example 2] and [1, Theorem 18] it is proved that a local ring R is weakly bleached if
and only if the 2 × 2 upper triangular matrix ring U2(R) is strongly clean. In the preceding,
the maps of the form la − rb play a central role. In this vein, we make use of the abelian group
endomorphisms la − rb to get the following result as partly the converse of Proposition 7.
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Theorem 12. Let R be a ring and A =

[

a b

c d

]

∈ K0(R)qnil . If for any x ∈ comm(a) and

y ∈ comm(d) and for the abelian group endomorphisms ly − rx and lx − ry, b ∈ Ker(lx − ry)

and c ∈ Ker(ly − rx), then a, d ∈ Rqnil.

Proof. Assume that A =

[

a b

c d

]

∈ K0(R)qnil , x ∈ comm(a) and y ∈ comm(d), for ly − rx and

lx − ry, b ∈ Ker(lx − ry) and c ∈ Ker(ly − rx). Then b ∈ Ker(lx − ry) implies (lx − ry)(b) = 0.

So, xb = by. c ∈ Ker(ly − rx) implies (ly − rx)(c) = 0. So, yc = cx. Let B =

[

x 0
0 y

]

∈ K0(R).

Then xb = by and yc = xc give rise to B ∈ comm(A). By hypothesis, I2 + AB is invertible.
Then Lemma 8 implies 1 − ax and 1 − dy are invertible. Hence a, d ∈ Rqnil.

We may determine the set K0(R)qnil for some rings R.

Proposition 8. (1) If R is a local ring, then A =

[

a b

c d

]

∈ K0(R)qnil if and only if a, d ∈ Rqnil .

(2) Let R be a ring. Then A =

[

a 0
0 d

]

∈ K0(R)qnil if and only if a, d ∈ Rqnil .

Proof. (1) Assume that R is a local ring and A =

[

a b

c d

]

∈ K0(R)qnil , and d /∈ Rqnil. By

Proposition 1, d ∈ U(R). In this case, 1 + d can not belong to U(R). By Lemma 8, I + A can
not belong to U(K0(R)). This contradicts A ∈ K0(R)qnil . It follows that d ∈ Rqnil . Similarly, we
obtain a ∈ Rqnil . The converse is clear by Proposition 7. Proof of (2) is clear.

There are some classes of rings R in which K0(R) being a right qnil-duo ring implies R

being a right qnil-duo ring.

Theorem 13. Let R be a ring. Then K0(R) being a right qnil-duo ring implies R being a right
qnil-duo ring if R is one of the following rings.

(1) R is local.
(2) R has no nonzero zero divisors.

Proof. (1) Let R be a local ring. Assume that K0(R) is a right qnil-duo ring. Let a ∈ R, b ∈ Rqnil.

Consider A =

[

a 0
0 a

]

, X =

[

b 0
0 b

]

∈ K0(R). By Proposition 7, X ∈ K0(R)qnil . There exists

X′ =

[

x′ y′

z′ t′

]

∈ K0(R)qnil such that XA = AX′. Hence ba = ax′. By Proposition 8, x′ ∈ Rqnil.

So, ba = ax′ ∈ aRqnil .
(2) Let R be a ring having no nonzero zero divisors. Assume that K0(R) is a right qnil-duo

ring. Let a ∈ R, b ∈ Rqnil. If a = 0 or b = 0, there is nothing to do. Let a 6= 0 and b 6= 0

and consider A =

[

a 0
0 a

]

, B =

[

b 0
0 b

]

∈ K0(R). By Proposition 7, B ∈ K0(R)qnil . There exists

B′ =

[

x′ y′

z′ t′

]

∈ K0(R)qnil such that BA = AB′. It implies ba = ax′ = at′, ay′ = 0 and az′ = 0.

Hence x′ = t′ and y′ = z′ = 0. Hence x′ ∈ Rqnil by Proposition 8.
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Гарманчi А., Куртулмаз Й., Унгор Б. Дуальна властивiсть для кiлець з перспективи квазiнiльпо-

тентностi // Карпатськi матем. публ. — 2021. — Т.13, №2. — C. 485–500.

У цiй статтi ми зосереджуємось на дуальнiй властивостi для кiлець через квазiнiльпотентнi
елементи, що дає новий вид узагальнень комутативностi. Ми називаємо цей вид кiлець qnil-duo.
Насамперед доведено деякi властивостi квазiнiльпотентiв у кiльцi. Потiм множину квазiнiль-
потентiв застосовано до дуальної властивостi кiлець, з цiєї точки зору ми вводимо i вивчаємо
правi (вiдповiдно лiвi) qnil-duo кiльця. Ми показуємо, що це поняття не є лiво-право симетри-
чним. Серед iншого доведено, що якщо кiльце H(R; α) рядiв Гурвiца є правим qnil-duo, то R

є правим qnil-duo. Кожне праве qnil-duo кiльце є абелевим. Праве qnil-duo кiльце обмiну має
стабiльний ранг 1.

Ключовi слова i фрази: квазiнiльпотентний елемент, duo кiльце, qnil-duo кiльце.


