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ON COMPARISON OF THE PRINCIPLES OF EQUIVALENT UTILITY AND ITS

APPLICATIONS

An insurance premium principle is a way of assigning to every risk, represented by a non-

negative bounded random variable on a given probability space, a non-negative real number. Such

a number is interpreted as a premium for the insuring risk. In this paper the implicitly defined

principle of equivalent utility is investigated. Using the properties of the quasideviation means,

we characterize a comparison in the class of principles of equivalent utility under Rank-Dependent

Utility, one of the important behavioral models of decision making under risk. Then we apply this

result to establish characterizations of equality and positive homogeneity of the principle. Some

further applications are discussed as well.
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1 INTRODUCTION

Assume that X+ is a family of risks, represented by non-negative bounded random vari-

ables on a non-atomic probability space (Ω,F , P). An insurance premium principle is a way

of assigning to every X ∈ X+ a non-negative real number H(X). The number H(X) is in-

terpreted as a premium for insuring X. There are many methods of defining the principles.

In what follows we deal with the principle of equivalent utility. The principle, postulating a

fairness in terms of utility, has been introduced in [2]. Under the Expected Utility model the

premium for a risk X ∈ X+ is defined through the equation

E[u(w + H(w,u)(X)− X)] = u(w), (1)

where w ∈ [0, ∞) is an initial wealth level and u : R → R is a continuous and strictly increasing

function such that u(0)=0. In general, (1) has no explicit solution. However, in some cases the

premium can be expressed in an explicit way. In particular, if u is linear, then

H(w,u)(X) = E[X] for X ∈ X+,

i.e. the principle of equivalent utility becomes the net premium principle. If u(x) = a(1− e−cx)

for x ∈ R, with some a, c > 0, then from (1) we deduce that the principle of equivalent utility

reduces to the exponential principle

H(w,u)(X) =
1

c
ln E[ecX ] for X ∈ X+.
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Note that in both cases the premium for a given risk does not depend on an initial wealth

level. Some properties of the principle of equivalent utility defined by (1) can be found e.g

in [1, 2, 6, 13].

In this paper we deal with the principle of equivalent utility under Rank-Dependent Utility,

one of the behavioral models of decision making under risk. In this setting the principle has

been introduced and investigated in [7]. In order to define it, recall that if g : [0, 1] → [0, 1]

is a probability distortion function, that is a non-decreasing function such that g(0) = 0 and

g(1) = 1 then, for any bounded random variable X on (Ω,F , P), the Choquet integral with

respect to g is given by

Eg[X] =
∫ 0

−∞
(g(P(X > t))− 1) dt +

∫ ∞

0
g(P(X > t)) dt. (2)

The premium for a risk X ∈ X+ under the Rank-Dependent Utility model is defined as a

solution of the equation

Eg[u(w + H(w,u,g)(X)− X)] = u(w). (3)

It is known (cf. [4, Remark 1]) that if g is a continuous probability distortion function and u :

R → R is a continuous strictly increasing function with u(0) = 0 then, for every X ∈ X+, the

number H(w,u,g)(X) is uniquely determined by (3). Some properties of the premium defined

by (3) have been investigated in [7] under the assumption that g is convex and u is concave and

differentiable.

The main result of this paper provides a characterization of a comparison in the class of the

principles of equivalent utility. Applying this result we establish characterizations of further

natural properties of the principle, namely equality and positive homogeneity. Some results

concerning the risk loading property of the principle of equivalent utility are presented as

well.

It turns out that an effective tool for dealing with this issue is a notion of a quasideviation

mean. Therefore, in the next section we present a definition of the mean and a result concern-

ing a comparison of quasideviation means.

2 QUASIDEVIATION MEANS

The notion of the quasideviation mean has been introduced in [10]. In order to recall the

notion, assume that I ⊆ R is an open interval. A function D : I2 → R is called a quasideviation

if it satisfies the following three conditions:

(i) D(x, x) = 0 for x ∈ I and (x − y)D(x, y) > 0 for x, y ∈ I with x 6= y;

(ii) for every x ∈ I, the function I ∋ t → D(x, t) is continuous;

(iii) for every x, y ∈ I, with x < y, the function (x, y) ∋ t → D(y,t)
D(x,t)

is strictly increasing.

Let

∆n := [0, ∞)n \ {0}.

In [10] it has been proved that, if D : I2 → R is a quasideviation, then for every n ∈ N,

x = (x1, ..., xn) ∈ In and λ = (λ1, ..., λn) ∈ ∆n, equation

n

∑
i=1

λiD(xi, t) = 0 (4)
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has a unique solution t0. Moreover

min{xi : i ∈ {1, .., n}} ≤ t0 ≤ max{xi : i ∈ {1, .., n}}.

Thus, equation (4) defines a mean, called a D-quasideviation mean of x weighted by λ. Fol-

lowing [10], we denote the mean by M̃D(x; λ). Several properties of quasideviation means

have been proved in [11]. In our considerations we will need the following result, which is a

particular case of [11, Theorem 7].

Theorem 1. Assume that I ⊆ R is an open interval and D1, D2 : I2 → R are quasideviations.

Then the following statements are equivalent:

(i) M̃D1
((x1, x2); (λ, 1 − λ)) ≤ M̃D2

((x1, x2); (λ, 1 − λ)) for x1, x2 ∈ I, λ ∈ [0, 1];

(ii) there exists a function A : I → (0, ∞) such that

D1(x, y) ≤ A(y)D2(x, y) for x, y ∈ I.

3 PRELIMINARY REMARKS

Remark 1. Let g be a probability distortion function. It is known (cf. [5, Proposition 5.1])

that the Choquet integral is monotone and positively homogeneous. Furthermore, for every

bounded random variable X on (Ω, Σ, P), we get

Eg[X + c] = Eg[X] + c for c ∈ R (5)

and

Eg[−X] = −Eḡ[X], (6)

where ḡ : [0, 1] → [0, 1], given by

ḡ(p) = 1 − g(1 − p) for p ∈ [0, 1], (7)

is the probability distortion function conjugated to g.

Remark 2. Note that if g is the identity on [0, 1] then Eg[X] = E[X] for every bounded random

variable X on (Ω, Σ, P). Therefore, applying [5, Proposition 5.2 (iii)], we conclude that:

• if g(p) ≤ p for p ∈ [0, 1] then Eg[X] ≤ E[X] for every bounded random variable X on

(Ω, Σ, P);

• if g(p) ≥ p for p ∈ [0, 1] then Eg[X] ≥ E[X] for every bounded random variable X on

(Ω, Σ, P).

Remark 3. Let g be a continuous probability distortion function. Since the Choquet integral is

monotone, for every X ∈ X+, the function

R ∋ t → Eg[u(w + t − X)]− u(w)

is nondecreasing. Furthermore, H(w,u,g)(X) is its unique zero.
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Remark 4. In view of (3) the premium for a given risk depends only on a probability distribu-

tion of the risk. Thus, we identify the risks with their probability distributions. Note also (cf.

e.g. [12, Lemma 2.7.1]) that, as the probability space (Ω, Σ, P) is non-atomic, for every x, y ∈ R,

with x < y, and every p ∈ (0, 1), there exists a random variable X on (Ω, Σ, P) such that

P(X = x) = p and P(X = y) = 1 − p. Denote any such a random variable by 〈x, y; 1 − p, p〉.

Furthermore, let X (2) be a family of all such random variables and

X
(2)
+ := {〈x, y; 1 − p, p〉 ∈ X (2) : x ≥ 0}.

Remark 5. If X = 〈x1, x2; 1 − p, p〉 ∈ X (2) then, in view of (2), we get (cf. [8])

Eg[X] = (1 − g(p))x1 + g(p)x2 .

Remark 6. Assume that w ∈ [0, ∞), g is a continuous probability distortion function and

u : R → R is a strictly increasing continuous function such that u(0) = 0. Then, taking

X = 〈x, y; p, 1 − p〉 ∈ X
(2)
+ , we obtain

u(w + H(w,u,g)(X)− X) = 〈(u(w + H(w,u,g)(X)− y), u(w + H(w,u,g)(X)− x)); 1 − p, p〉.

Therefore, applying Remark 5, from (3) we derive that H(w,u,g)(X) is a unique solution of the

equation

(1 − g(p))(u(w + H(w,u,g)(X)− y) + g(p)u(w + H(w,u,g)(X)− x) = u(w). (8)

4 RESULTS

The following theorem is the main result of this paper.

Theorem 2. Let w1, w2 ∈ [0, ∞). Assume that g is a continuous probability distortion function

and u, v : R → R are strictly increasing continuous functions such that u(0) = v(0) = 0. Then

the following statements are pairwise equivalent:

(i)

H(w1,v,g)(X) ≤ H(w2,u,g)(X) for X ∈ X
(2)
+ ; (9)

(ii)

H(w1,v,g)(X) ≤ H(w2,u,g)(X) for X ∈ X+; (10)

(iii) there exists c ∈ (0, ∞) such that

u(x) ≤ cv(x + w1 − w2) + u(w2)− cv(w1) for x ∈ R. (11)

Proof. Let D1, D2 : (0, ∞)2 → R be given by

D1(x, y) = v(w1)− v(w1 + y − x) for x, y ∈ (0, ∞), (12)

and

D2(x, y) = u(w2)− u(w2 + y − x) for x, y ∈ (0, ∞), (13)
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respectively. Then, as one can easily check, D1 and D2 are quasideviations. Furthermore, since

g is continuous with g(0) = 0 and g(1) = 1, for every λ ∈ (0, 1) there exists (not necessarily

unique) pλ ∈ (0, 1) such that

g(pλ) = λ. (14)

First we show that (i) =⇒ (iii). Assume that (9) holds. Let x1, x2 ∈ (0, ∞) and λ ∈ [0, 1].

We claim that

M̃D1
((x1, x2); (λ, 1 − λ)) ≤ M̃D2

((x1, x2); (λ, 1 − λ)). (15)

If x1 = x2 or λ = 1, then both sides of (15) are equal to x1. Moreover, if λ = 0, then both

sides of (15) are equal to x2. So, assume that λ ∈ (0, 1) and x1 6= x2, say x1 < x2. Let

X = 〈x1, x2; pλ, 1 − pλ〉, where pλ ∈ (0, 1) satisfies (14). Then X ∈ X
(2)
+ whence, taking into

account (8) and (12), we get

λD1(x1, H(w1,v,g)(X)) + (1 − λ)D1(x2, H(w1,v,g)(X))

=g(pλ)(v(w1)− v(w1 + H(w1,v,g)(X)− x1))+(1 − g(pλ))(v(w1)− v(w1+H(w1,v,g)(X)−x2))

=v(w1)− ((1 − g(pλ))v(w1 + H(w1,v,g)(X)− x2) + g(pλ)v(w1 + H(w1,v,g)(X)− x1)) = 0.

Thus

H(w1,v,g)(X) = M̃D1
((x1, x2); (λ, 1 − λ)).

The similar arguments show that

H(w2,u,g)(X) = M̃D2
((x1, x2); (λ, 1 − λ)).

Hence, in view of (9), we get (15). In this way we have proved that (15) holds for every x1, x2 ∈

(0, ∞) and λ ∈ [0, 1]. Therefore, applying Theorem 1 and making use of (12)-(13), we obtain

that there exists a function A : (0, ∞) → (0, ∞) such that

v(w1)− v(w1 + y − x) ≤ A(y)(u(w2)− u(w2 + y − x)) for x, y ∈ (0, ∞).

Since u and v are strictly increasing with u(0) = v(0) = 0, replacing in the last inequality x by

y − x, we get

v(w1)− v(w1 + x) ≤ A(y)(u(w2)− u(w2 + x)) for x ∈ R, y ∈ (max{0, x}, ∞).

Thus
u(w2)− u(w2 + x)

v(w1)− v(w1 + x)
≤

1

A(y)
for x ∈ (0, ∞), y > x (16)

and
u(w2)− u(w2 + x)

v(w1)− v(w1 + x)
≥

1

A(y)
for x ∈ (−∞, 0], y ∈ (0, ∞). (17)

Hence, taking

c := sup

{

1

A(y)
: y ∈ (0, ∞)

}

,

we conclude that 0 < c < ∞. Moreover, it follows from (16) that the inequality

u(w2 + x) ≤ cv(w1 + x) + u(w2)− cv(w1) (18)
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holds for all x ∈ (0, ∞). Furthermore, taking in (17) the supremum over all y ∈ (0, ∞), we

obtain

c = sup

{

1

A(y)
: y ∈ (0, ∞)

}

≤
u(w2)− u(w2 + x)

v(w1)− v(w1 + x)
for x ∈ (−∞, 0],

which implies (18) for x ∈ (−∞, 0]. Therefore, (18) holds for all x ∈ R. Replacing in (18) x by

x − w2, we obtain (11). So, (i) ⇒ (iii).

Now, assume that (11) is satisfied. Then, as the Choquet integral is monotone and positively

homogeneous, in view of (3) and (5), for every X ∈ X+, we have

Eg[u(w2 + H(w1,v,g)(X)− X)]− u(w2) ≤ c(E[v(w1 + H(w1,v,g)(X)− X)]− v(w1)) = 0.

Moreover, according to Remark 3, for every X ∈ X+, the function

R ∋ t → Eg[u(w2 + t − X)]− u(w2)

is nondecreasing and H(w2,u,g)(X) is its unique zero. Hence, (10) is valid. In this way we have

proved that (iii) ⇒ (ii).

The implication (ii) ⇒ (i) is obvious.

From Theorem 2 we derive the following characterization of equality in the class of princi-

ples of equivalent utility under the Rank-Dependent Utility model.

Corollary 1. Let w1, w2 ∈ [0, ∞). Assume that g is a continuous probability distortion function

and u, v : R → R are strictly increasing continuous functions such that u(0) = v(0) = 0. Then

the following statements are pairwise equivalent:

(i)

H(w1,v,g)(X) = H(w2,u,g)(X) for X ∈ X
(2)
+ ; (19)

(ii)

H(w1,v,g)(X) = H(w2,u,g)(X) for X ∈ X+;

(iii) there exists c ∈ (0, ∞) such that

u(x) = cv(x + w1 − w2) + u(w2)− cv(w1) for x ∈ R. (20)

Proof. Assume that (19) holds. Then, according to Theorem 2, there exist c, c̃ ∈ (0, ∞) such that

(11) is valid and

v(x) ≤ c̃u(x + w2 − w1) + v(w1)− c̃u(w2) for x ∈ R.

Hence

u(x)− u(w2) ≤ c(v(x + w1 − w2)− v(w1)) ≤ c̃c(u(x)− u(w2)) for x ∈ R.

Therefore, since v is strictly increasing, we get cc̃ = 1 and so (20) is valid. This proves that

(i) ⇒ (iii).

If (20) holds then, replacing x by x + w2 − w1, we get

v(x) =
1

c
u(x + w2 − w1) + v(w1)−

1

c
u(w2) for x ∈ R. (21)

Taking into account (20) and (21), from Theorem 2 we derive (19). Thus (iii) ⇒ (ii). Obviously,

we have also (ii) ⇒ (i).
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Applying Corollary 1 we are going to characterize the positive homogeneity of the principle

of equivalent utility. Recall that the principle H(w,u,g) is positively homogeneous provided, for

every X ∈ X+ and λ ∈ (0, ∞), it holds

H(w,u,g)(λX) = λH(w,u,g)(X). (22)

If (22) holds for every X ∈ X
(2)
+ and λ ∈ (0, ∞), then the principle H(w,u,g) is said to be posi-

tively homogeneous on X
(2)
+ . The positive homogeneity of H(w,u,g) in the case w = 0 has been

characterized in [7]. It is proved there that if g is convex and u is concave and differentiable

then H(0,u,g) is positively homogeneous if and only if u is linear.

Theorem 3. Assume that w ∈ [0, ∞), g is a continuous probability distortion function and

u : R → R is a strictly increasing continuous function with u(0) = 0. Then the following

statements are pairwise equivalent:

(i) H(w,u,g) is positively homogeneous on X
(2)
+ ;

(ii) H(w,u,g) is positively homogeneous;

(iii) there exist a, b, r ∈ (0, ∞) and γ ∈ R such that

u(x) =

{

−a(w − x)r + γ for x ∈ (−∞, w],

b(x − w)r + γ for x ∈ (w, ∞).
(23)

Proof. Assume that (i) holds. For every t ∈ (0, ∞), define ut : R → R as follows

ut(x) = u(w + tx)− u(w) for x ∈ R. (24)

Then, taking into account (3) and (5), for every X ∈ X
(2)
+ and t ∈ (0, ∞), we get

Eg[ut(H(w,u,g)(X)− X)] = Eg[u(w + tH(w,u,g)(X)− tX)]− u(w)

= Eg[u(w + H(w,u,g)(tX)− tX)]− u(w) = 0 = ut(0) = Eg[ut(H(0,ut,g)(X)− X)].

Therefore,

H(0,ut,g)(X) = H(w,u,g)(X) for X ∈ X
(2)
+ , t ∈ (0, ∞)

and so, applying Corollary 1 with w1 = 0, w2 = w and v = ut, we conclude that for every

t ∈ (0, ∞) there exists c(t) ∈ (0, ∞) such that

u(x) = c(t)ut(x − w) + u(w) for x ∈ R.

Hence, replacing x by x + w, in view of (24), we get

ut(x) =
1

c(t)
u1(x) for x ∈ R, t ∈ (0, ∞).

Moreover, it follows from (24) that

ut(x) = u1(tx) for x ∈ R, t ∈ (0, ∞).
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Thus, we have

u1(tx) =
1

c(t)
u1(x) for x ∈ R, t ∈ (0, ∞). (25)

Since u1(x) > 0 for x ∈ (0, ∞), applying (25) with x = 1, we obtain

c(t) =
u1(1)

u1(t)
for t ∈ (0, ∞).

Hence (25) becomes

ū(tx) = ū(t)ū(x) for x ∈ R, t ∈ (0, ∞), (26)

where ū : R → R is given by

ū(x) =
u1(x)

u1(1)
for x ∈ R. (27)

Note that as u is strictly increasing and continuous, so is ū. Moreover, it follows from (26) that

ū(tx) = ū(t)ū(x) for x, t ∈ (0, ∞).

Thus, according to [9, Theorem 13.3.8], there exist β, r ∈ (0, ∞) such that

ū(x) = βxr for x ∈ (0, ∞).

Furthermore, replacing in (26) x and t by −1 and −x, respectively, we get

ū(x) = ū(−1)ū(−x) for x ∈ (−∞, 0).

Therefore, as u(0) = 0 and, in view of (24),

u(x) = u1(x − w) + u(w) for x ∈ R,

taking into account (27), we obtain (23) with a := −βu1(−1) > 0, b := βu1(1) > 0 and

γ := u(w). In this way we have proved that (i) ⇒ (iii).

If u is of the form (23) with some a, b, r ∈ (0, ∞) and γ ∈ R then, for every x ∈ R and

λ ∈ (0, ∞), we have

u(w + λx) = λru(w + x) + (1 − λr)γ = λru(w + x) + (1 − λr)u(w).

Thus, as the Choquet integral is positively homogeneous, in view of (3) and (5), for every

X ∈ X+ and λ ∈ (0, ∞), we obtain

Eg[u(w + λH(w,u,g)(X)−λX)] = λrEg[u(w + H(w,u,g)(X)− X)] + (1 − λr)u(w)

=λru(w) + (1 − λr)u(w) = u(w) = Eg[u(w + H(w,u,g)(λX)− λX)].

Hence

H(w,u,g)(λX) = λH(w,u,g)(X) for X ∈ X+, λ ∈ (0, ∞).

This means that H(w,u,g) is positively homogeneous and shows that (iii) ⇒ (ii).

The implication (ii) ⇒ (i) is obvious.

Corollary 2. Assume that w ∈ [0, ∞), g is a continuous probability distortion function and

u : R → R is a strictly increasing continuous function with u(0) = 0. Then the following

statements are pairwise equivalent:
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(i)

H(w,u,g)(X) ≥ Eḡ[X] for X ∈ X
(2)
+ ;

(ii)

H(w,u,g)(X) ≥ Eḡ[X] for X ∈ X+; (28)

(iii) there exists c ∈ (0, ∞) such that

u(x) ≤ c(x − w) + u(w) for x ∈ R. (29)

Proof. Let v be the identity on R. Then, taking into account (3) and (5)-(6), for every X ∈ X+,

we get

w = v(w) =Eg[v(w + H(w,v,g)(X)− X)]

=Eg[w + H(w,v,g)(X)− X] = w + H(w,v,g)(X)− Eḡ[X]

which implies that

H(w,v,g)(X) = Eḡ[X] for X ∈ X+.

Therefore, applying Theorem 2, we get the assertion.

The next result concerns the risk loading property of the principle of equivalent utility

under the Rank-Dependent Utility model. Let us recall that the principle H(w,u,g) has the risk

loading property, provided

H(w,u,g)(X) ≥ E[X] for X ∈ X+. (30)

Corollary 3. Assume that w ∈ [0, ∞) and u : R → R is a strictly increasing continuous function

with u(0) = 0. Let g be a continuous probability distortion function such that

g(p) ≥ p for p ∈ [0, 1]. (31)

If the premium principle H(w,u,g) has the risk loading property, then there exists c ∈ (0, ∞)

such that (29) holds.

Proof. It follows from (7) and (31) that ḡ(p) ≤ p for p ∈ [0, 1]. Therefore, if H(w,u,g) has the risk

loading property then, applying Remark 2, we get (28). Hence, according to Corollary 2, (29)

is valid with some c ∈ (0, ∞).

Remark 7. Suppose that g(p) ≤ p for p ∈ [0, 1]. Then ḡ(p) ≥ p for p ∈ [0, 1] and so, according

to Remark 2, we have

E[X] ≤ Eḡ[X] for X ∈ X+.

Hence, if (29) is valid, then using a monotonicity of the Choquet integral, in view of (3) and

(5)-(6), for every X ∈ X+, we get

Eg[u(w + E[X] − X)] ≤ Eg[u(w + Eḡ[X]− X)] ≤ c(Eg[Eḡ[X]− X]) + u(w) = u(w).

Therefore, applying Remark 3, we conclude that (30) holds, that is H(w,u,g) has the risk loading

property.

We complete the paper with a result which is a direct consequence of Corollary 3 and

Remark 7. In fact, it is a slight generalization of [3, Theorem 7].

Corollary 4. Assume that w ∈ [0, ∞), g is the identity on [0, 1] and u : R → R is a strictly

increasing continuous function with u(0) = 0. Then the premium principle H(w,u,g) has the

risk loading property if and only if there exists c ∈ (0, ∞) such that (29) holds.
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Принцип страхової винагороди є способом поставити у вiдповiднiсть кожному ризику, зо-

браженому за допомогою невiд’ємної обмеженої випадкової величини на заданому ймовiрнi-

сному просторi, деяке дiйсне невiд’ємне число. Таке число можна iнтерпретувати як вина-

городу за страховий ризик. У цiй статтi дослiджено неявно заданий принцип еквiвалентної

корисностi. Використовуючи властивостi середнього квазiвiдхилення ми характеризуємо по-

рiвняння в класi принципiв еквiвалентної корисностi за ранг-залежною кориснiстю, однiєю з

важливих поведiнкових моделей прийняття рiшення в умовах ризику. Ми використовуємо

цей результат для встановлення рiвностi i додатної однорiдностi цього принципу. Також ви-

свiтлено деякi iншi застосування.

Ключовi слова i фрази: страхова винагорода, середне квазiвiдхилення, порiвняння, рiвнiсть,

додатна однорiднiсть, ризик.


