
ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp

Carpathian Math. Publ. 2021, 13 (2), 340–351 Карпатськi матем. публ. 2021, Т.13, №2, С.340–351

doi:10.15330/cmp.13.2.340-351

Algebras of symmetric analytic functions on Cartesian powers
of Lebesgue integrable in a power p ∈ [1,+∞) functions

Vasylyshyn T.V.

The work is devoted to the study of Fréchet algebras of symmetric (invariant under the compo-

sition of every of components of its argument with any measure preserving bijection of the domain

of components of the argument) analytic functions on Cartesian powers of complex Banach spaces

of Lebesgue integrable in a power p ∈ [1,+∞) complex-valued functions on the segment [0, 1] and

on the semi-axis. We show that the Fréchet algebra of all symmetric analytic entire complex-valued

functions of bounded type on the nth Cartesian power of the complex Banach space Lp[0, 1] of all

Lebesgue integrable in a power p ∈ [1,+∞) complex-valued functions on the segment [0, 1] is iso-

morphic to the Fréchet algebra of all analytic entire functions on C
m, where m is the cardinality

of the algebraic basis of the algebra of all symmetric continuous complex-valued polynomials on

this Cartesian power. The analogical result for the Fréchet algebra of all symmetric analytic en-

tire complex-valued functions of bounded type on the nth Cartesian power of the complex Banach

space Lp[0,+∞) of all Lebesgue integrable in a power p ∈ [1,+∞) complex-valued functions on the

semi-axis [0,+∞) is proved.
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Introduction

Symmetric polynomials and symmetric analytic functions on Banach spaces with symmet-

ric structures were studied by a number of authors [1–10, 12–19]. In some cases, an algebra of

symmetric continuous polynomials has a countable or even a finite algebraic basis (a subset

of an algebra is called an algebraic basis of this algebra if every element of the algebra can be

uniquely represented as a linear combination of products of powers of elements of this subset).

Since every element of the spectrum (the set of all continuous multiplicative linear functionals)

of a topological algebra of analytic functions is uniquely determined by its values on elements

of an algebraic basis of a dense subalgebra of polynomials, the knowledge of algebraic bases

of algebras of symmetric polynomials is important for the description of spectra of respective

topological algebras of symmetric analytic functions (see [1, 3, 5, 7, 12, 18]). In turn, in some

cases, a topological algebra of analytic functions can be represented as a topological algebra of

analytic functions on its spectrum with a proper topologisation (see, e.g., [7]).

In this work we consider symmetric continuous polynomials and symmetric analytic func-
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tions on Cartesian powers of complex Banach spaces Lp[0, 1] and Lp[0,+∞) of all complex-

valued Lebesgue integrable in a power p functions on [0, 1] and [0,+∞) respectively, where

1 ≤ p < +∞. We represent Fréchet algebras of symmetric entire analytic functions of bounded

type on these Cartesian powers as Fréchet algebras of entire analytic functions on their spectra.

1 Preliminaries

We denote by N the set of all positive integers and by Z+ the set of all nonnegative integers.

Polynomials. A mapping P : X → C, where X is a complex Banach space, is called an

N-homogeneous polynomial, where N ∈ N, if there exists an N-linear mapping AP : XN → C

such that

P(x) = AP

(
x, . . . , x
︸ ︷︷ ︸

N

)

for every x ∈ X.

It is known that an N-homogeneous polynomial P : X → C is continuous if and only if

‖P‖ < +∞, where

‖P‖ = sup
‖x‖≤1

|P(x)|.

Consequently, for a continuous N-homogeneous polynomial P : X → C, we have

|P(x)| ≤ ‖P‖‖x‖N (1)

for every x ∈ X.

A mapping P : X → C is called a polynomial of a degree at most N if it can be represented

in the form

P = P0 + P1 + . . . + PN,

where P0 ∈ C and Pj : X → C is a j-homogeneous polynomial for every j ∈ {1, . . . , N}.

For details on polynomials on Banach spaces, we refer the reader to [11].

Algebraic combinations. Let T be an arbitrary nonempty set. A mapping f : T → C is called

an algebraic combination of mappings f1, . . . , fk : T → C if there exists a polynomial Q : C
k → C

such that

f (x) = Q( f1(x), . . . , fk(x))

for every x ∈ T. Mappings f1, . . . , fk : T → C are called algebraically independent when

Q( f1(x), . . . , fk(x)) = 0 for every x ∈ T if and only if the polynomial Q is identically equal

to zero. If mappings f1, . . . , fk are algebraically independent and polynomials Q1, Q2 : Ck → C

are such that

Q1( f1(x), . . . , fk(x)) = Q2( f1(x), . . . , fk(x))

for every x ∈ T, then the polynomial Q1 is identically equal to the polynomial Q2. Thus, every

algebraic combination of algebraically independent mappings is unique.

A subset B of some algebra of mappings A is called an algebraic basis of A if every element of

A can be uniquely represented as an algebraic combination of some elements of B. Evidently,

every algebraic basis is algebraically independent.



342 Vasylyshyn T.V.

Symmetric functions. Let p ∈ [1,+∞) and n ∈ N. Let Ω be the Lebesgue measurable subset

of R with positive measure. Let Lp(Ω) be the complex Banach space of (classes of) functions

y : Ω → C, for which the pth power of the absolute value is Lebesgue integrable with the

norm

‖y‖p,Ω =

(∫

Ω
|y(t)|p dt

)1/p

.

Let (Lp(Ω))n be the nth Cartesian power of Lp(Ω) with the norm

‖y‖p,n,Ω =

( n

∑
s=1

∫

Ω
|ys(t)|

p dt

)1/p

,

where y = (y1, . . . , yn) ∈ (Lp(Ω))n.

Let ΞΩ be the set of all bijections σ : Ω → Ω such that both σ and σ−1 are measurable and

preserve the Lebesgue measure. A function f : (Lp(Ω))n → C is called symmetric if

f ((y1 ◦ σ, . . . , yn ◦ σ)) = f ((y1 , . . . , yn))

for every (y1, . . . , yn) ∈ (Lp(Ω))n and for every σ ∈ ΞΩ.

Denote Lp[0, 1] := Lp([0, 1]) and Lp[0,+∞) := Lp([0,+∞)). For every multi-index

k = (k1, . . . , kn) ∈ Zn
+ such that 1 ≤ |k| ≤ p, where |k| = k1 + · · · + kn, let us define a

mapping Rk,[0,1] : (Lp[0, 1])n → C by

Rk,[0,1](y) =
∫

[0,1]

n

∏
s=1
ks>0

(ys(t))
ks dt,

where y = (y1, . . . , yn) ∈ (Lp[0, 1])n. If p ∈ N, for every multi-index k = (k1, . . . , kn) ∈ Z
n
+

such that |k| = p, let us define a mapping Rk,[0,+∞) : (Lp[0,+∞))n → C by

Rk,[0,+∞)(y) =
∫

[0,+∞)

n

∏
s=1
ks>0

(ys(t))
ks dt,

where y = (y1, . . . , yn) ∈ (Lp[0,+∞))n.

Note that Rk,[0,1] and Rk,[0,+∞) are symmetric continuous |k|-homogeneous polynomials.

Theorem 1 ([14, Theorem 2.10]). Let N ∈ N. Every N-homogeneous symmetric continuous

polynomial P : (Lp[0, 1])n → C can be uniquely represented as an algebraic combination of

polynomials Rk,[0,1], where multi-indexes k ∈ Z
n
+ are such that 1 ≤ |k| ≤ min{p, N}.

Theorem 2 ([15, Theorem 3]). Let N ∈ N. Let P : (Lp[0,+∞))n → C be a symmetric continuous

N-homogeneous polynomial. If p 6∈ N or N < p, then P ≡ 0. If p ∈ N and N ≥ p, then P can

be uniquely represented as an algebraic combination of polynomials Rk,[0,+∞), where k ∈ Zn
+

are such that |k| = p.

Theorems 1 implies the following corollary.

Corollary 1. The set of polynomials
{

Rk,[0,1] : k ∈ Z
n
+ such that 1 ≤ |k| ≤ p

}

is algebraically independent.

Analogically, Theorem 2 implies the following corollary.

Corollary 2. Let p ∈ N. The set of polynomials
{

Rk,[0,+∞) : k ∈ Z
n
+ such that |k| = p

}

is algebraically independent.
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Algebras of analytic functions. The set of all continuous multiplicative linear nontrivial func-

tionals (characters) of a topological algebra is called the spectrum of this algebra. Let us denote

M(A) the spectrum of a topological algebra A.

Let X be a complex Banach space. Let Hb(X) be the Fréchet algebra of all entire analytic

functions f : X → C, which are bounded on bounded sets, endowed with the topology of

uniform convergence on bounded sets.

For r > 0 and f ∈ Hb(X) let

‖ f‖r = sup
‖x‖≤r

| f (x)|.

Note that the topology of Hb(X) is generated by any set of norms {‖ · ‖r : r ∈ U}, where U is

an arbitrary unbounded subset of (0,+∞).

Note that for every x ∈ X the functional δx : f ∈ Hb(X) 7→ f (x) ∈ C, which is called a

point-evaluation functional at the point x, belongs to the spectrum of the algebra Hb(X).

Let Hbs

(
(Lp(Ω))n

)
be the subalgebra of the Fréchet algebra Hb

(
(Lp(Ω))n

)
, which consists

of all symmetric elements of Hb

(
(Lp(Ω))n

)
.

The space c
(m)
00 (Cn). Let M be a finite nonempty subset of Zn

+. Let CM be the vector space

of all mappings from M to C. Note that every element ξ ∈ CM can be considered as an

|M|-dimensional complex vector (ξk)k∈M, where ξk = ξ(k) for k ∈ M and |M| is the cardi-

nality of M. Therefore, C
M is isomorphic to C

|M|. We endow the space C
M with the norm

‖ξ‖∞ = max
k∈M

|ξk|.

For m ∈ N, let c
(m)
00 (Cn) be the space of all sequences x = (x1, . . . , xm, 0, . . .), where xj =

(
x
(1)
j , . . . , x

(n)
j

)
∈ Cn for j ∈ {1, . . . , m}, and 0 = (0, . . . , 0) ∈ Cn. We endow the space c

(m)
00 (Cn)

with the norm

‖x‖ℓp
=

( m

∑
j=1

n

∑
s=1

∣
∣x

(s)
j

∣
∣

p
)1/p

.

For every k ∈ Zn
+ \ {(0, . . . , 0)}, let H

(m)
k : c

(m)
00 (Cn) → C be defined by

H
(m)
k (x) =

m

∑
j=1

n

∏
s=1
ks>0

(
x
(s)
j

)ks . (2)

For an arbitrary nonempty finite set M ⊂ Zn
+ such that |k| ≥ 1 for every k ∈ M, let us define a

mapping π
(m)
M : c

(m)
00 (Cn) → CM by

π
(m)
M (x) =

(
H

(m)
k (x)

)

k∈M
for every x ∈ c

(m)
00 (Cn).

We will use the following result, proved in [9].

Theorem 3 ([9, Theorem 6]). Let M be a finite nonempty subset of Zn
+ such that |k| ≥ 1 for

every k ∈ M. Then

(i) there exists m ∈ N such that for every ξ = (ξk)k∈M ∈ C
M there exists xξ ∈ c

(m)
00 (Cn)

such that π
(m)
M (xξ) = ξ;

(ii) there exists a constant ρ > 0 such that if ‖ξ‖∞ < 1, then ‖xξ‖ℓp
< ρ for every p ∈

[1,+∞).
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For m ∈ N, let Jm : c
(m)
00 (Cn) → (Lp[0, 1])n be defined by

Jm(x) =

( m

∑
j=1

x
(1)
j 1[ j−1

m ,
j

m

], . . . ,
m

∑
j=1

x
(n)
j 1[ j−1

m ,
j

m

]

)

(3)

for x = (x1, . . . , xm, 0, . . .) ∈ c
(m)
00 (Cn). Note that Jm is a linear operator.

Lemma 1 ([14, Lemma 2.6]). For every x ∈ c
(m)
00 (Cn),

‖Jm(x)‖p,n,[0,1] =
1

m1/p
‖x‖ℓp

.

Consequently, Jm is continuous. The following lemma is a partial result of [14, Lemma 2.7].

Lemma 2. For every k ∈ Zn
+ such that 1 ≤ |k| ≤ p and l ∈ N,

Rk,[0,1](J2l(x)) =
1

2l
H

(2l)
k (x) for every x ∈ c

(2l)
00 (Cn).

2 Symmetric analytic functions on Cartesian powers of Lp[0, 1] and

Lp[0,+∞)

Theorem 4. Let X be a complex Banach space. Let m ∈ N and Γ = {P1, P2, . . . , Pm} be a set of

polynomials on the space X, which has the following properties:

1) for every j ∈ {1, . . . , m} the mapping Pj : X → C is a continuous dj-homogeneous

polynomial, where dj ∈ N;

2) the set of polynomials Γ is algebraically independent;

3) there exists a constant C > 0 such that for every vector z = (z1, . . . , zm) ∈ Cm there exists

an element xz ∈ X such that ‖xz‖ ≤ C‖z‖∞ and Pj(xz) = zj for every j ∈ {1, . . . , m},

where ‖z‖∞ = max {|z1|, . . . , |zm|} .

Let A(X) be a closed subalgebra of the Fréchet algebra Hb(X) such that for every function

f ∈ A(X) each term of the Taylor series of this function is an algebraic combination of elements

of the set Γ. Then Fréchet algebras A(X) and H(Cm) are isomorphic. The spectrum of the

Fréchet algebra A(X) coincides with the set of all point-evaluation functionals at points of the

space X.

Proof. Let f ∈ A(X). Since A(X) ⊂ Hb(X), it follows that f is an entire analytic function of

bounded type on the space X. Therefore there exists the Taylor series ∑
∞
n=0 fn, where fn is a

continuous n-homogeneous polynomial for every n ∈ Z+, which is uniformly convergent to

the function f on every bounded subset of X. By the conditions of the theorem, every polyno-

mial fn can be represented as an algebraic combination of elements of the set Γ. By the condi-

tion 2), such an algebraic combination is unique. Since the polynomial fn is n-homogeneous, it

follows that this algebraic combination is a linear combination of n-homogeneous polynomials

of the form Pk1
1 Pk2

2 · · · Pkm
m , where k1, k2, . . . , km ∈ Z+, (here 00 = 1). Note that the polynomial
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Pk1
1 Pk2

2 · · · Pkm
m is n-homogeneous if and only if d1k1 + . . . + dmkm = n. Consequently, every

polynomial fn can be uniquely represented in the form

fn = ∑
d1k1+...+dmkm=n

k1,...,km∈Z+

α
(n)
k1,...,km

Pk1
1 Pk2

2 · · · Pkm
m ,

where α
(n)
k1,...,km

∈ C. Thus, every function f ∈ A(X) can be uniquely represented in the form

f =
∞

∑
n=0

∑
d1k1+...+dmkm=n

k1,...,km∈Z+

α
(n)
k1,...,km

Pk1
1 Pk2

2 · · · Pkm
m , (4)

where α
(n)
k1,...,km

∈ C.

Let us define a mapping J : A(X) → H(Cm) in the following way. Let f ∈ A(X). Then f

can be represented in the form (4). We set

J( f )(z) =
∞

∑
n=0

∑
d1k1+...+dmkm=n

k1,...,km∈Z+

α
(n)
k1,...,km

zk1
1 zk2

2 · · · zkm
m , (5)

where z = (z1, . . . , zm) ∈ Cm. Let us show that the function J( f ) belongs to the Fréchet algebra

H(Cm) for every f ∈ A(X). By the conditions of the theorem, there exists C > 0 such that for

every vector z = (z1, . . . , zm) ∈ Cm there exists xz ∈ X such that ‖xz‖ ≤ C‖z‖∞ and Pj(xz) = zj

for every j ∈ {1, . . . , m}. Therefore, taking into account equalities (4) and (5),

J( f )(z) = f (xz) (6)

for every z ∈ Cm. Since the function f is well-defined on the space X, by (6), the function J( f )

is well-defined on the space C
m. Therefore the series in the right hand side of the equality (5)

is convergent for every z ∈ C
m. Consequently, the function J( f ) is analytic on the space C

m,

that is, J( f ) ∈ H(Cm).

Let us prove that the mapping J is an isomorphism between Fréchet algebras A(X) and

H(Cm). It can be checked that the mapping J is linear and multiplicative.

Let us prove that J is injective. Note that for every function f ∈ A(X) and for every element

x ∈ X the following equality holds

f (x) = J( f )
((

P1(x), P2(x), . . . , Pm(x)
))

. (7)

Let functions f , g ∈ A(X) be different. Then there exists x0 ∈ X such that f (x0) 6= g(x0).

Therefore, by (7),

J( f )
((

P1(x0), P2(x0), . . . , Pm(x0)
))

6= J(g)
((

P1(x0), P2(x0), . . . , Pm(x0)
))

.

Thus, J( f ) 6= J(g). Hence, the mapping J is injective.

Let us prove that the mapping J is continuous. Let r > 0. For f ∈ A(X) we have

‖J( f )‖r = sup
‖z‖∞≤r

|J( f )(z)|.
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Taking into account the condition 3) and the equality (6), we obtain

sup
‖z‖∞≤r

|J( f )(z)| = sup
‖z‖∞≤r

| f (xz)| ≤ sup
‖x‖≤Cr

| f (x)| = ‖ f‖Cr .

Therefore, for every r > 0 and f ∈ A(X), we have ‖J( f )‖r ≤ ‖ f‖Cr . Thus, the mapping J is

continuous.

Let us prove that the mapping J is surjective. First we prove some auxiliary fact. Let r > 0

and f ∈ A(X). By (7),

‖ f‖r = sup
‖x‖≤r

| f (x)| = sup
‖x‖≤r

∣
∣J( f )

((
P1(x), P2(x), . . . , Pm(x)

))∣
∣.

By (1), |Pj(x)| ≤ ‖Pj‖‖x‖dj for every x ∈ X and j ∈ {1, . . . , m}. Therefore, if ‖x‖ ≤ r, then
∥
∥
(

P1(x), P2(x), . . . , Pm(x)
)∥
∥

∞
≤ ρ(r),

where

ρ(r) = max
1≤j≤m

(

‖Pj‖rdj

)

.

Therefore

sup
‖x‖≤r

∣
∣J( f )

((
P1(x), P2(x), . . . , Pm(x)

))∣
∣ ≤ sup

‖z‖∞≤ρ(r)

|J( f )(z)| = ‖J( f )‖ρ(r) .

Hence, for every r > 0 and f ∈ A(X),

‖ f‖r ≤ ‖J( f )‖ρ(r) . (8)

Now we prove that J is surjective. Let g ∈ H(Cm). Let us construct a function f ∈ A(X) such

that J( f ) = g. Since the function g belongs to the algebra H(Cm), it can be represented as the

convergent on Cm Taylor series

g(z) =
∞

∑
n=0

∑
l1+...+lm=n
l1,...,lm∈Z+

βl1,...,lm
zl1

1 zl2
2 · · · zlm

m ,

where z = (z1, . . . , zm) ∈ Cm and βl1,...,lm
∈ C. For every N ∈ N let us define a polynomial

gN : Cm → C by

gN(z) =
N

∑
n=0

∑
l1+...+lm=n
l1,...,lm∈Z+

βl1,...,lm
zl1

1 zl2
2 · · · zlm

m ,

where z = (z1, . . . , zm) ∈ Cm. Also we define a polynomial fN : X → C by

fN(x) =
N

∑
n=0

∑
l1+...+lm=n
l1,...,lm∈Z+

βl1,...,lm
Pl1

1 (x)Pl2
2 (x) · · · Plm

m (x),

where x ∈ X. Note that fN ∈ A(X) and J( fN) = gN for every N ∈ N. Also note that the

sequence {gN}
∞
N=1 converges to the function g with respect to the topology of the Fréchet

algebra H(Cm). By (8), for every r > 0, j, N ∈ N,

‖ fN+j − fN‖r ≤ ‖gN+j − gN‖ρ(r),
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therefore, the fundamentality of the sequence {gN}
∞
N=1 implies the fundamentality of the se-

quence { fN}
∞
N=1. Since the algebra A(X) is complete, it follows that the sequence { fN}

∞
N=1

converges to some function f ∈ A(X). By the continuity of the mapping J,

J( f ) = lim
N→∞

J( fN) = lim
N→∞

gN = g.

Thus, the mapping J is surjective.

Hence, the mapping J is linear, multiplicative, bijective and continuous. The continuity of

the inverse mapping J−1 follows from (8). Thus, the mapping J is an isomorphism.

Let us describe the spectrum M(A(X)) of the Fréchet algebra A(X). Let us show that

every character of the Fréchet algebra A(X) is a point-evaluation functional at some point of

the space X. Let ϕ ∈ M(A(X)). Let

z =
(

ϕ(P1), ϕ(P2), . . . , ϕ(Pm)
)
.

By the conditions of the theorem, there exists xz ∈ X such that Pj(xz) = ϕ(Pj) for every

j ∈ {1, . . . , m}. Consider the action of characters ϕ and δxz to the arbitrary function f ∈ A(X).

The function f can be represented in the form (4). Then

δxz( f ) =
∞

∑
n=0

∑
d1k1+...+dmkm=n

k1,...,km∈Z+

α
(n)
k1,...,km

(
P1(xz)

)k1
(

P2(xz)
)k2 · · ·

(
Pm(xz)

)km

=
∞

∑
n=0

∑
d1k1+...+dmkm=n

k1,...,km∈Z+

α
(n)
k1,...,km

(
ϕ(P1)

)k1
(

ϕ(P2))
)k2 · · ·

(
ϕ(Pm)

)km.

On the other hand, by the continuity, the linearity and the multiplicativity of ϕ, we have

ϕ( f ) =
∞

∑
n=0

∑
d1k1+...+dmkm=n

k1,...,km∈Z+

α
(n)
k1,...,km

(
ϕ(P1)

)k1
(

ϕ(P2))
)k2 · · ·

(
ϕ(Pm)

)km.

Thus, ϕ( f ) = δxz( f ) for every function f ∈ A(X), that is, ϕ = δxz . Therefore the spectrum

M(A(X)) is the set of all point-evaluation functionals at points of the space X. This completes

the proof.

The following simple lemma will be used for proving that the subalgebra of symmetric

functions is closed in the algebra Hb

(
(Lp(Ω))n

)
.

Lemma 3. Let X be a complex Banach space. Let a sequence of functions { fn}∞
n=1 ⊂ Hb(X)

converges to some function f ∈ Hb(X). Let A : X → X be an arbitrary mapping. If x ∈ X is

such that fn(A(x)) = fn(x) for every n ∈ N, then f (A(x)) = f (x).

Proof. Let x ∈ X be such that fn(A(x)) = fn(x) for every n ∈ N. Let r = max{‖x‖, ‖A(x)‖}.

Since the sequence { fn}∞
n=1 converges to f , it follows that, in particular, lim

n→∞
‖ fn − f‖r = 0,

that is,

lim
n→∞

sup
‖y‖≤r

| f (y) − fn(y)| = 0. (9)

By (9), taking into account the inequalities ‖x‖ ≤ r and ‖A(x)‖ ≤ r, we obtain

lim
n→∞

fn(x) = f (x) and lim
n→∞

fn(A(x)) = f (A(x)).

Since fn(A(x)) = fn(x) for every n ∈ N, it follows that lim
n→∞

fn(x) = f (A(x)). By the unique-

ness of the limit of a sequence, f (x) = f (A(x)). This completes the proof.
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Corollary 3. The algebra Hbs

(
(Lp(Ω))n

)
is a closed subalgebra of the Fréchet algebra

Hb

(
(Lp(Ω))n

)
.

Proof. By Lemma 3, if the sequence of symmetric functions { fn}∞
n=1 ⊂ Hb

(
(Lp(Ω))n

)

converges to f ∈ Hb

(
(Lp(Ω))n

)
, then f is symmetric. Thus, Hbs

(
(Lp(Ω))n

)
is closed in

Hb

(
(Lp(Ω))n

)
.

Lemma 4. Let M be a nonempty subset of the set
{

k ∈ Zn
+ : 1 ≤ |k| ≤ p

}
. There exists a

constant C > 0 such that for every z = (zk)k∈M ∈ CM there exists an element xz ∈ (Lp[0, 1])n

such that ‖xz‖p,n,[0,1] ≤ C‖z‖∞ and Rk,[0,1](xz) = zk for every k ∈ M.

Proof. By Theorem 3, for the set M there exist numbers l ∈ N and ρM > 0 such that for every

ξ = (ξk)k∈M ∈ CM, for which ‖ξ‖∞ < 1, there exists a sequence yξ ∈ c
(2l)
00 (Cn) such that

‖yξ‖ℓp
< ρM and H

(2l)
k (yξ) = ξk for every k ∈ M, where polynomials H

(2l)
k are defined by (2).

Let z = (zk)k∈M be an arbitrary element of C
M. Consider the case ‖z‖∞ > 0. Let

a = 2l+1‖z‖∞ and ξ =

(

2lzk

a|k|

)

k∈M

.

Then

‖ξ‖∞ = max
k∈M

∣
∣
∣
∣
∣

2lzk

a|k|

∣
∣
∣
∣
∣
≤ max

k∈M

∣
∣
∣
∣
∣

2lzk

a

∣
∣
∣
∣
∣
=

2l‖z‖∞

a
=

1

2
< 1.

Therefore there exists a sequence yξ ∈ c
(2l)
00 (Cn) such that ‖yξ‖ℓp

< ρM and

H
(2l)
k (yξ) =

2lzk

a|k|
(10)

for every k ∈ M. Let

xz = J2l

(
ayξ

)
,

where the mapping J2l is defined by the equality (3). By Lemma 1, taking into account the

inequality ‖yξ‖ℓp
< ρM, we have

‖xz‖p,n,[0,1] =
1

2l/p
‖ayξ‖ℓp

<
aρM

2l/p
=

2l+1ρM

2l/p
‖z‖∞.

Therefore

‖xz‖p,n,[0,1] ≤ C‖z‖∞,

where C = 2l+1ρM

2l/p . Note that the constant C does not depend on z. By Lemma 2, taking into

account the equality (10) and the |k|-homogeneity of the polynomial H
(2l)
k , we obtain

Rk,[0,1](xz) =
1

2l
H

(2l)
k (ayξ ) =

1

2l
a|k|H

(2l)
k (yξ) =

1

2l
a|k|

2lzk

a|k|
= zk

for every k ∈ M. Consider the case ‖z‖∞ = 0. In this case we set xz ≡ 0. Evidently, Rk,[0,1](xz) =

0 for every k ∈ M. This completes the proof.
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Lemma 5. Let p ∈ N. Let M =
{

k ∈ Zn
+ : |k| = p

}
. There exists a constant C > 0 such that for

every z = (zk)k∈M ∈ CM there exists an element x̃z ∈ (Lp[0,+∞))n such that ‖x̃z‖p,n,[0,+∞) ≤

C‖z‖∞ and Rk,[0,+∞)(x̃z) = zk for every k ∈ M.

Proof. Let us define a mapping I : (Lp[0, 1])n → (Lp[0,+∞))n by

I(x)(t) =

{
x(t), if t ∈ [0, 1],

(0, . . . , 0), if t ∈ (1,+∞),

where x ∈ (Lp[0, 1])n, t ∈ [0, 1]. It can be checked that

‖I(x)‖p,n,[0,+∞) = ‖x‖p,n,[0,1]

for every x ∈ (Lp[0, 1])n and

Rk,[0,+∞)(I(x)) = Rk,[0,1](x)

for every x ∈ (Lp[0, 1])n, k ∈ Zn
+ such that |k| = p.

By Lemma 4, there exists a constant C > 0 such that for every z = (zk)k∈M ∈ CM there

exists an element xz ∈ (Lp[0, 1])n such that ‖xz‖p,n,[0,1] ≤ C‖z‖∞ and Rk,[0,1](xz) = zk for every

k ∈ M. For z = (zk)k∈M ∈ C
M, let x̃z = I(xz). Then

‖x̃z‖p,n,[0,+∞) = ‖xz‖p,n,[0,1] ≤ C‖z‖∞

and

Rk,[0,+∞)(x̃z) = Rk,[0,1](xz) = zk

for every k ∈ M. This completes the proof.

Integral Cauchy formula [11, Corollary 7.3, p. 47] implies the following corollary.

Corollary 4. Let f ∈ Hbs

(
(Lp(Ω))n

)
. Then every term of the Taylor series of f is a symmetric

continuous homogeneous polynomial.

Theorem 1 and Corollary 4 imply the following corollary.

Corollary 5. Let f ∈ Hbs

(
(Lp[0, 1])n

)
. Then every term of the Taylor series of f can be uniquely

represented as an algebraic combination of polynomials Rk,[0,1], where k ∈ Z
n
+ such that

1 ≤ |k| ≤ p.

Analogically, Theorem 2 and Corollary 4 imply the following corollary.

Corollary 6. Let p ∈ N. Let f ∈ Hbs

(
(Lp[0,+∞))n

)
. Then every term of the Taylor series

of f can be uniquely represented as an algebraic combination of polynomials Rk,[0,+∞), where

k ∈ Zn
+ such that |k| = p.

Theorem 5. The Fréchet algebra Hbs

(
(Lp[0, 1])n

)
is isomorphic to the Fréchet algebra H(Cm),

where m is the cardinality of the set of multi-indexes

M =
{

k ∈ Z
n
+ : 1 ≤ |k| ≤ p

}
.

The spectrum of the Fréchet algebra Hbs

(
(Lp[0, 1])n

)
coincides with the set of all point-evalu-

ation functionals at points of the space (Lp[0, 1])n .



350 Vasylyshyn T.V.

Proof. Let X = (Lp[0, 1])n , A(X) = Hbs((Lp[0, 1])n) and Γ = {Rk,[0,1] : k ∈ M}. Let us check

the conditions of Theorem 4. Since Rk,[0,1] is a continuous |k|-homogeneous polynomial for

every k ∈ M, it follows that condition 1) is satisfied. By Corollary 1, condition 2) is satisfied.

By Lemma 4, condition 3) is satisfied. By Corollary 3, Hbs((Lp[0, 1])n) is a closed subalgebra

of Hb((Lp[0, 1])n). By Corollary 5, every term of the Taylor series of every f ∈ Hbs

(
(Lp[0, 1])n

)

can be uniquely represented as an algebraic combination of polynomials Rk,[0,1], where k ∈

M. Therefore, by Theorem 4, the Fréchet algebra Hbs((Lp[0, 1])n) is isomorphic to the Fréchet

algebra H(Cm), where m is the cardinality of the set M and the spectrum of the Fréchet algebra

Hbs((Lp[0, 1])n) coincides with the set of all point-evaluation functionals at points of the space

(Lp[0, 1])n. This completes the proof.

Theorem 6. Let p ∈ N. The Fréchet algebra Hbs

(
(Lp[0,+∞)n

)
is isomorphic to the Fréchet

algebra H(Cm), where m is the cardinality of the set of multi-indexes

M =
{

k ∈ Z
n
+ : |k| = p

}
.

The spectrum of the Fréchet algebra Hbs

(
(Lp[0,+∞)n

)
coincides with the set of all point-

evaluation functionals at points of the space (Lp[0,+∞))n.

Proof. Let X = (Lp[0,+∞))n, A(X) = Hbs((Lp[0,+∞))n) and Γ = {Rk,[0,+∞) : k ∈ M}. Let

us check the conditions of Theorem 4. Since Rk,[0,+∞) is a continuous |k|-homogeneous poly-

nomial for every k ∈ M, it follows that condition 1) is satisfied. By Corollary 2, condition 2)

is satisfied. By Lemma 4, condition 3) is satisfied. By Corollary 3, Hbs((Lp[0,+∞))n) is a

closed subalgebra of Hb((Lp[0,+∞))n). By Corollary 6, every term of the Taylor series of every

f ∈ Hbs

(
(Lp[0,+∞))n

)
can be uniquely represented as an algebraic combination of polynomi-

als Rk,[0,+∞), where k ∈ M. Therefore, by Theorem 4, the Fréchet algebra Hbs((Lp[0,+∞))n) is

isomorphic to the Fréchet algebra H(Cm), where m is the cardinality of the set M and the spec-

trum of the Fréchet algebra Hbs((Lp[0,+∞))n) coincides with the set of all point-evaluation

functionals at points of the space (Lp[0,+∞))n. This completes the proof.
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Василишин Т.В. Алгебри симетричних аналiтичних функцiй на декартових степенях iнтегровних

за Лебегом у степенi p ∈ [1,+∞) функцiй // Карпатськi матем. публ. — 2021. — Т.13, №2. — C.

340–351.

Роботу присвячено дослiдженню алгебр Фреше симетричних (iнварiантних щодо дiї ком-

позицiї кожної координати аргументу iз довiльною бiєкцiєю областi визначення координат,

яка зберiгає мiру) аналiтичних функцiй на декартових степенях комплексних банахових про-

сторiв iнтегровних за Лебегом у степенi p ∈ [1,+∞) комплекснозначних функцiй на вiдрiзку

[0, 1] i на пiвосi. Показано, що алгебра Фреше всiх симетричних аналiтичних цiлих компле-

кснозначних функцiй обмеженого типу на n-тому декартовому степенi комплексного бана-

хового простору Lp[0, 1] всiх iнтегровних за Лебегом у степенi p ∈ [1,+∞) комплекснозна-

чних функцiй на вiдрiзку [0, 1] є iзоморфною до алгебри Фреше всiх аналiтичних цiлих фун-

кцiй на просторi Cm, де m — це потужнiсть алгебраїчного базису алгебри всiх симетричних

неперервних комплекснозначних полiномiв на цьому декартовому степенi. Аналогiчний ре-

зультат доведено для алгебри Фреше всiх симетричних аналiтичних цiлих комплекснозначних

функцiй обмеженого типу на n-тому декартовому степенi комплексного банахового простору

Lp[0,+∞) всiх iнтегровних за Лебегом у степенi p ∈ [1,+∞) комплекснозначних функцiй на

пiвосi [0,+∞).

Ключовi слова i фрази: симетричний полiном, симетрична аналiтична функцiя, алгебра Фре-

ше аналiтичних функцiй.


