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On k-Fibonacci balancing and k-Fibonacci
Lucas-balancing numbers

Rihane S.E.

The balancing number n and the balancer r are solution of the Diophantine equation

1 + 2 + · · ·+ (n − 1) = (n + 1) + (n + 2) + · · ·+ (n + r).

It is well known that if n is balancing number, then 8n2 + 1 is a perfect square and its positive

square root is called a Lucas-balancing number. For an integer k ≥ 2, let (F
(k)
n )n be the k-generalized

Fibonacci sequence, which starts with 0, . . . , 0, 1, 1 (k terms) and each term afterwards is the sum

of the k preceding terms. The purpose of this paper is to show that 1, 6930 are the only balancing

numbers and 1, 3 are the only Lucas-balancing numbers, which are a term of k-generalized Fibonacci

sequence. This generalizes the result from [Fibonacci Quart. 2004, 42 (4), 330–340].
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1 Introduction

The first definition of balancing numbers is essentially due to R.P. Finkelstein [8], although

he called them numerical centers. A positive integer n is called balancing number if

1 + 2 + · · ·+ (n − 1) = (n + 1) + (n + 2) + · · ·+ (n + r)

holds for some positive integer r. Then r is called balancer corresponding to the balancing

number n. The n-th term of the sequence of balancing numbers is denoted by Bn. A. Behera

and G.K. Panda [2] proved that the balancing numbers fulfill the recurrence relation

B0 = 1, B1 = 6, Bn = 6Bn−1 − Bn−2 for all n ≥ 2.

It is well known that if n is a balancing number, then 8n2 + 1 is a perfect square, and the

positive square root of 8n2 + 1 is called a Lucas-balancing number which is denoted by Cn

(see [13]). The Lucas-balancing numbers Cn satisfy the recurrence relation

C0 = 1, C1 = 3, Cn = 6Cn−1 − Cn−2 for all n ≥ 2.

The balancing and Lucas-balancing numbers are indexed in The On-Line Encyclopedia of Integer

Sequences (OEIS) as A001109 and A001541, respectively.
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The Fibonacci sequence (Fn)n≥0 is given by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for all n ≥ 2.

It is the sequence A000045 in OEIS.

A balancing number is called Fibonacci balancing number if it is a Fibonacci number (see [9]).

In [9], K. Liptai has shown that 1 is the only Fibonacci balancing number.

Let k ≥ 2 be an integer. We consider a generalization of Fibonacci sequence called the

k-generalized Fibonacci sequence F
(k)
n defined as

F
(k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k for all n ≥ 2,

with the initial conditions F
(k)
−(k−2)

= F
(k)
−(k−3)

= · · · = F
(k)
0 = 0 and F

(k)
1 = 1. If k = 2, we obtain

the classical Fibonacci sequence. Below we present the values of these numbers for the first

few values of k and n ≥ 1. Note that the underlying terms are balancing or Lucas-balancing

numbers.

k Name First non-zero terms

2 Fibonacci 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .

3 Tribonacci 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, . . .

4 Tetranacci 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536, . . .

5 Pentanacci 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3525, 6930, . . .

6 Hexanacci 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, 7617, . . .

7 Heptanacci 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000, 3984, 7936, . . .

8 Octanacci 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080, . . .

9 Nonanacci 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1021, 2040, 4076, 8144, . . .

10 Decanacci 1, 1, 2, 4, 8,16, 32, 64, 128, 256, 512, 1023, 2045, 4088, 8172, . . .

We say that a balancing number (Lucas-balancing number) is k-Fibonacci balancing number

(k-Fibonacci Lucas-balancing number) if it is k-Fibonacci number too. The aim of the present

work is to determine all the k-Fibonacci balancing and k-Fibonacci Lucas-balancing numbers.

We prove the following results.

Theorem 1. 1 and 6930 are the only k-Fibonacci balancing number. Moreover, all the solutions

of the Diophantine equation

F
(k)
n = Bm (1)

are given by (n, k, m) = (1, k, 0), (2, k, 0), (15, 5, 6).

Theorem 2. 1 and 3 are the only k-Fibonacci Lucas-balancing number. Moreover, all the solu-

tions of the Diophantine equation

F
(k)
n = Cm (2)

are given by (n, k, m) = (1, k, 0), (2, k, 0), (4, 2, 1).

Our proofs of Theorems 1 and 2 are mainly based on linear forms in logarithms of algebraic

numbers and a reduction algorithm originaly introduced by A. Baker and H. Davenport in [1].

Here, we use a version due to A. Dujella and A. Pethő in [7, Lemma 5 (a)].
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2 Premilmeries and known results

This section is devoted to collect a few definitions, notations and theorems, which will be

used in the rest of this work.

2.1 Linear forms in logarithms

For any non-zero algebraic number η of degree d over Q, whose minimal polynomial over

Z is a ∏
d
j=1

(

X − η(j)
)

, we denote by

h(η) =
1

d

(

log |a|+
d

∑
j=1

log max
{

1, |η(j)|
}

)

the usual absolute logarithmic height of η. In particular, if η = p/q is a rational number

with gcd(p, q) = 1 and q > 0, then h(η) = log max{|p|, q}. The following properties of

the logarithmic height function h( · ), which will be used in the next sections without special

reference, are also known:

h(η ± γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ), (3)

h(ηs) = |s| h(η), s ∈ Z. (4)

The main approach to show Theorems 1 and 2 is the Baker’s theory about lower bounds for

linear forms in logarithms. In [10], E.M. Matveev proved the following theorem.

Theorem 3 ([10]). Let η1, . . . , ηs be a real algebraic numbers and let b1, . . . , bs be nonzero ratio-

nal integer numbers. Let dK be the degree of the number field Q(η1, . . . , ηs) over Q. Define

Γ := η
b1
1 · · · ηbs

s − 1.

If Γ 6= 0, then

|Γ| ≥ exp(−1.4 · 30s+3s4.5d2
K(1 + log dK)(1 + log B)A1 · · · As),

where Aj = max{dKh(η), | log η|, 0.16} for j = 1, . . . , s, and B ≥ max{|b1|, . . . , |bs|}.

2.2 The de Weger reduction algorithm

Here, we present a variant of the reduction method of Baker and Davenport due to

de Weger [14].

Let ϑ1, ϑ2, β ∈ R be given and let x1, x2 ∈ Z be unknowns. Let

Λ = β + x1ϑ1 + x2ϑ2. (5)

Set X = max{|x1|, |x2|}. Let X0, Y be positive. Assume that

|Λ| < c exp(−ρY) (6)

and

Y ≤ X ≤ X0, (7)

where c, ρ be positive constants.

When β = 0 in (5), we get Λ = x1ϑ1 + x2ϑ2. Put ϑ = −ϑ1/ϑ2. We assume that x1 and x2

are coprime. Let the continued fraction expansion of ϑ be given by [a0, a1, a2, . . .], and let the

kth convergent of ϑ be pk/qk for k = 0, 1, 2, . . . . We may assume without loss of generality that

|ϑ1| < |ϑ2| and that x1 > 0. We have the following results.
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Lemma 1 ([14, Lemma 3.1]). If (6) and (7) hold for x1, x2 with X ≥ 1 and β = 0, then

(−x2, x1) = (pk, qk) for an index k that satisfies

k ≤ −1 +
log(1 + X0

√
5)

log
(

1+
√

5
2

) := Y0.

Lemma 2 ([14, Lemma 3.2]). Let A = max0≤k≤Y0
ak+1. If (6) and (7) hold for x1, x2 with X ≥ 1

and β = 0, then

Y <
1

ρ
log

(

c(A + 2)

|ϑ2|

)

+
1

ρ
log X <

1

ρ
log

(

c(A + 2)X0

|ϑ2|

)

.

When β 6= 0 in (5), put ϑ = −ϑ1/ϑ2 and ψ = β/ϑ2. Then we have Λ
ϑ2

= ψ − x1ϑ + x2. Let

p/q be a convergent of ϑ with q > X0. For a real number x we let

‖x‖ = min{|x − n| : n ∈ Z}

be the distance from x to the nearest integer. We have the following result.

Lemma 3 ([14, Lemma 3.3]). Suppose that ‖ qψ ‖> 2X0
q . Then, the solutions of (6) and (7)

satisfy

Y <
1

ρ
log

(

q2c

|ϑ2|X0

)

.

2.3 The balancing and Lucas-balancing sequence

Let δ := (3+ 2
√

2) and δ := (3− 2
√

2) be the roots of the characteristic equation x2 − 6x+ 1

of both the balancing and Lucas-balancing sequences, the Binet formulas

Bn =
δn − δ

n

4
√

2
(8)

and

Cn =
δn + δ

n

2
(9)

hold for all nonnegative integer n’s. Furthermore, the inequalities

δn−1
< Bn < δn (10)

and

δn−1
< Cn < δn (11)

hold for all n ≥ 1.

2.4 Properties of k-generalized Fibonacci sequence

In this subsection, we recall some facts and properties of the k-generalized Fibonacci se-

quence which will be used later. The characteristic polynomial of the k-generalized Fibonacci

numbers (F
(k)
n )n is

Ψk(x) = xk − xk−1 − · · · − x − 1.
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Ψk(x) is irreducible over Q[x] and has just one root α(k) outside the unit circle (see, for exam-

ple, [11, 12, 15]). It is real and positive, so it satisfies α(k) > 1. The other root are strictly inside

the unit circle. Furthermore, in [15] D.A. Wolfram showed that

2(1 − 2−k) < α(k) < 2 for all k ≥ 2. (12)

To simplify the notation, in general, we omit the dependence on k of φ. For s ≥ 2, let

fs(x) :=
x − 1

2 + (s + 1)(x − 2)
.

In [6], G.P.B. Dresden, Z. Du gave the Binet-type formula

F
(k)
n =

k

∑
i=1

fk(αi)α
n−1
i ,

where αi are the zeros of Ψk(x), and proved that
∣

∣

∣
F
(k)
n − fk(α)α

n−1
∣

∣

∣
<

1

2
(13)

hold for all n ≥ k − 2. Furthermore, it was showed in [3] that

αn−2 ≤ F
(k)
n ≤ αn−1 (14)

hold for all n ≥ 1.

In [4], J.J. Bravo, C.A. Gómez and F. Luca proved that 1/2 < fk(α) < 3/4 and | fk(αi)| < 1,

2 ≤ i ≤ k, hold. So, the number fk(α) is not an algebraic integer. In addition, they proved that

the logarithmic height of f satisfies

h( fk(α)) < log(k + 1) + log 4 for all k ≥ 2. (15)

Finally, in [5, pp. 542, 543] the authors proved that for all n ≥ k + 2 we have

F
(k)
n = 2n−2(1 + ζ), where |ζ| < 1

2k/2
. (16)

3 k-Fibonacci balancing numbers

This section is devoted to show Theorem 1.

3.1 An inequality for n and m versus k

If 2 ≤ n ≤ k + 1, we have F
(k)
n = 2n−2 and since 1 is the only perfect power in the balancing

sequence, we deduce that equation (1) has only the solution (n, k, m) = (2, k, 0) in this range.

The fact that F
(k)
1 = F

(k)
2 imply that (1, k, 0) is also a solution of the Diophantine equation (1).

From now, we assume that n ≥ k + 2. Further we may suppose that k ≥ 3 because that case

k = 2 is already studied.

Using inequalities (14) and (10), we get from equation (1) that

αn−2 ≤ δm−1 and δm−2 ≤ αn−1.

The above inequalities give

(n − 2)

(

log α

log δ

)

+ 1 ≤ m ≤ (n − 1)

(

log α

log δ

)

+ 2.

Using the fact that 7/4 < α < 2 for all k ≥ 3 (see (12)), we deduce that

0.3n − 0.6 < m < 0.4n + 1.7. (17)
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Lemma 4. If (n, k, m) is a solution in integers of equation (1) with k ≥ 3 and n ≥ k + 2, then

the inequalities 2.4m < n < 6.8 · 1015k4 log3 k hold.

Proof. From equation (1), estimate (13) and identity (8), we have
∣

∣

∣

∣

fk(α)α
n−1 − δm

4
√

2

∣

∣

∣

∣

<
1

2
+

1

4
√

2
.

If we multiply through by 4
√

2δ−m we arrive at

|Γ1| < 3.9δ−m, (18)

where Γ1 = (4
√

2 fk(α))α
n−1δ−m − 1.

With the aim of applying Theorem 3 we choose

(η1, b1) := (4
√

2 fk(α), 1), (η2, b2) := (α, n − 1), (η3, b3) := (δ,−m).

For this choice, the field K := Q(α,
√

2) contains η1, η2, η3 and has dK ≤ 2k. Since

h(η2) = (log α)/k < (log 2)/k and h(η3) = (log δ)/2, we deduce that

max{2kh(η2), |log η2| , 0.16} = 2 log 2 := A2

and

max{2kh(η3), |log η3| , 0.16} = k log δ := A3.

On the other hand, by using the estimate (15) and the proprieties (3) together with (4), it follows

that for all k ≥ 3

h(η1) ≤ h( fk(α)) + h(4
√

2) < log(k + 1) + log 4 + log(4
√

2) < 4.2 log k.

Thus, we obtain

max{2kh(η1), |log η1| , 0.16} < 8.4k log k := A1.

The fact that 0.4n + 1.7 < n hold for all n ≥ 5 and the inequality (17), imply that we can

take B := n.

Before applying Theorem 3, we need to check that Γ1 6= 0. Indeed, if we assume that Γ1 = 0,

we get that

fk(α) =
δm

4
√

2
α−n+1,

and so fk(α) would be an algebraic integer, contradicting some thing previously mentioned.

Thus, Γ1 6= 0. Therefore, by Theorem 3, it result

|Γ1| > exp
(

−1.432 · 1011(2k)2(1 + log(2k))(1 + log n)(8.4k log k)(2 log 2)(k log δ)
)

. (19)

When we compare the lower bound (19) and the upper bound (18) of |Γ1| we obtain

m log δ − log 3.9 < 1.18 · 1013k4 log k(1 + log 2k)(1 + log n),

taking into account the facts 1 + log 2k < 2.6 log k and 1 + log n < 1.7 log n which hold for

k ≥ 3 and n ≥ 5, we conclude that m < 3 · 1013k4 log2 k log n. By the inequality (17), the last

inequality becomes
n

log n
< 1014k4 log2 k. (20)



On k-Fibonacci balancing and k-Fibonacci Lucas-balancing numbers 265

Since the function x 7→ x/ log x is increasing for all x > e, it is easy to check that

x

log x
< T =⇒ x < 2T log T whenever T ≥ 3. (21)

Thus, fixing T := 1014k4 log2 k, inequality (20) together with 32.3 + 4 log k + 2 log log k <

34 log k, which holds for all k ≥ 2, gives

n < (2 · 1014k4 log2 k) log(1014k4 log2 k)

< (2 · 1014k4 log2 k)(32.3 + 4 log k + 2 log log k) < 6.8 · 1015k4 log3 k.

Whence the result.

3.2 The case 3 ≤ k ≤ 220

In this subsection, we treat the case k ∈ [3, 220]. We show the following result.

Lemma 5. The Diophantine equation (1) has no solution, when k ∈ [3, 220] and n ≥ k + 2.

Proof. Let us set

Λ1 = log(Γ1 + 1) = (n − 1) log α − m log δ + log(4
√

2 fk(α)).

Then, (18) can be rewritten as
∣

∣

∣
eΛ1 − 1

∣

∣

∣
< 3.9δ−m. (22)

Note that Λ1 6= 0, since Γ1 6= 0, so we distinguish the following cases. If Λ1 > 0, then

eΛ1 − 1 > 0. Using the fact that x ≤ ex − 1 for all x ∈ R, from (22) we obtain 0 < Λ1 < 3.9δ−m.

Now, if Λ1 < 0, it is easy to see that 3.9δ−m < 1/2 holds for all m ≥ 4. Thus, from (22) we have

that
∣

∣eΛ1 − 1
∣

∣ < 1/2 and therefore e|Λ1| < 2. Since Λ1 < 0, we have

0 < |Λ1| ≤ e|Λ1| − 1 = e|Λ1|
∣

∣

∣
eΛ1 − 1

∣

∣

∣
< 7.8δ−m.

Hence, in both cases one has

0 < |Λ1| < 7.8δ−m. (23)

In order to apply Lemma 3, we fix

c := 7.8, ρ := 1.76, ψ :=
log(4

√
2 fk(α))

log δ
,

ϑ :=
log δ

log α
, ϑ1 := − log δ, ϑ2 := log α, β := log(4

√
2 fk(α)).

For each k ∈ [3, 220], we find a good approximation of α and a convergent pℓ/qℓ of the contin-

ued fraction of ϑ such that qℓ > X0, where X0 = ⌊6.8 · 1015k4 log3 k⌋, which is an upper bound

of max{n − 1, m} from Lemma 4. After doing this, we use Lemma 3 on inequality (23). A

computer search with Mathematica revealed that the maximum value of

⌊

1

δ
log(q2c/ |ϑ2| X0)

⌋

over all k ∈ [3, 220] is 45.6224 . . ., which according to Lemma 3, is an upper bound on m.

Hence, we deduce that the possible solutions (m, n, k) of the equation (1) for which k ∈ [3, 220]

have m ≤ 45, therefore we use inequalities (17) to obtain n ≤ 151.

Finally, we used Mathematica to compare F
(k)
n and Bm for the range 5 ≤ n ≤ 151 and

2 ≤ m ≤ 45, with m < n/2.4 and checked that the only solution of the equation (1) is

6930 = B6 = F
(5)
15 .
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3.3 The case k > 220

In this subsection, we analyze the case k > 220.

Lemma 6. The Diophantine equation (1) has no solution when k > 220 and n ≥ k + 2.

Proof. For k > 220 we have 2.4m < n < 6.8 · 1015k4 log3 k < 2k/2. Using (8) and (16), we express

the equation (1) as

2n−2 − δm

4
√

2
= 2n−2ζ − δ

m

4
√

2
,

by taking absolute value we obtain

∣

∣

∣

∣

2n−2 − δm

4
√

2

∣

∣

∣

∣

<
2n−2

2k/2
+

1

4
√

2
,

which gives
∣

∣

∣
1 − (

√
2)−12−nδm

∣

∣

∣
<

1.1

2k/2
, (24)

where we have used the fact 1/(
√

2 · 2n) < 0.1/2k/2, because n ≥ k + 2. We will apply Theo-

rem 3 to obtain a lower bound to the left-hand side of inequality (24). Choose

t := 3, (η1, b1) := (
√

2,−1), (η2, b2) := (2,−n), (η3, b3) := (δ, m).

Since η1, η2, η3 ∈ K := Q(
√

2), then dK = 2. The left-hand side of (24) is not zero. Indeed,

if this is zero, we would then get that δ2m is a rational numbers, which is impossible for all

positive integers m.

We can choose B := n, because m ≤ n. On the other hand, since

h(η1) = log(
√

2), h(η2) = log 2, h(η3) = (log δ)/2,

we deduce that

max{2h(η1), |log η1| , 0.16} = log 2 := A1, max{2h(η2), |log η2| , 0.16} = 2 log 2 := A2

and

max{2h(η3), |log η3| , 0.16} = log δ := A3

Therefore, according to Theorem 3 we have

∣

∣

∣
1 − (

√
2)−12−nδm

∣

∣

∣
> exp

(

−2.81 · 1012 log n
)

, (25)

where we have used the fact that 1+ log n < 1.7 log n for all n ≥ 5. Comparing of (24) and (25)

gives k < 8.2 · 1012 log n.

From Lemma 4 and the fact that 36.5 + 4 log k + 3 log log k < 11.8 log k for all k > 220, we

obtain
k < 8.2 · 1012 log(6.8 · 1015k4 log3 k)

< 8.2 · 1012 log(36.5 + 4 log k + 3 log log k) < 9.7 · 1013 log k.

Hence, we obtain k < 3.5 · 1015, and so again from Lemma 4 we get

n < 4.7 · 1082 and m < 2.1 · 1082. (26)
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Let Λ2 := m log δ − n log 2 − log(
√

2). By a similar method to show the inequality (23), one

can see that 0 < |Λ2| <
2.2

2k/2
< 2.2 exp (−0.34k) holds for all k > 220.

Now, we will apply Lemma 3. The inequality (26) implies that we can take X0 := 4.7 · 1082.

Further, we can choose

c := 2.2, ρ := 0.34, ψ := − log(
√

2)

log δ
,

ϑ :=
log 2

log δ
, ϑ1 := log 2, ϑ2 := − log δ, β := log(

√
2).

With the help of Maple, we find that q163 ≈ 4.14 · 1083 satisfies the hypotheses of Lemma 3.

Furthermore, according to Lemma 3 we obtain k < 618.

With this new upper bound on k, we get from Lemma 4

n < 2 · 1029 and m < 8.4 · 1028.

Applying again Lemma 3 with X0 := 2 · 1029 and

q60 := 2089037648971932599649375001624

in this time, we obtain k < 216, which contradicts our assumption that k > 220. Hence, we

have shown that there are no solutions (n, k, m) to equation (1) with k > 220.

Thus, the Theorem 1 is proved.

4 k-Fibonacci Lucas-balancing numbers

This section is devoted to prove Theorem 2. The proof of Theorem 2 is similar to that of

Theorem 1. For the sake of completeness, we will give some details.

4.1 An inequality for n and m in terms of k

Since F
(k)
1 = F

(k)
2 = 1 = C0, then we may assume that n ≥ 3. For 3 ≤ n ≤ k + 1, we have

F
(k)
n = 2n−2, but Cm is an odd number for all m ≥ 0, thus we deduce that the Diophantine

equation (2) has no solution when 3 ≤ n ≤ k + 1. From now, we suppose that n ≥ k + 2.

By relations (14), (11) and equation (2) we have

αn−2 ≤ δm and δm−1 ≤ αn−1,

hence we get

(n − 2)

(

log α

log δ

)

≤ m ≤ (n − 1)

(

log α

log δ

)

+ 1.

Using the fact that 3/2 < α < 2 for all k ≥ 2 (see (12)), we deduce that

0.2n − 0.5 < m < 0.4n + 0.7. (27)

Lemma 7. If (n, k, m) is a solution in integers of equation (2) with k ≥ 2 and n ≥ k + 2, then

the inequalities

2.4m < n < 2.4 · 1016k4 log3 k (28)

hold.
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Proof. By combining (2) with (9) and (13), we obtain

∣

∣

∣

∣

fk(α)α
n−1 − δm

2

∣

∣

∣

∣

<
1

2
+

|β|m
2

< 2.

Multiplying both sides by 2δ−m we get

∣

∣

∣
2 fk(α)α

n−1δ−m − 1
∣

∣

∣
< 2δ−m. (29)

In order to show inequality (28), we will apply Theorem 3 with the parameters t := 3,

(η1, b1) := (2 fk(α), 1), (η2, b2) := (α, n − 1), (η3, b3) := (δ,−m), and Γ3 := 2 fk(α)α
n−1δ−m − 1.

From (29), we have that

|Γ3| < 2δ−m. (30)

For this choice, the field K := Q(α,
√

2) contains η1, η2, η3 and has dK ≤ 2k. As calculated

before, we can choose A2 := 2 log 2 and A3 := k log δ.

On the other hand, using (15) and the proprieties (3) together with (4), we deduce

h(η1) ≤ h(2) + h( fk(α)) < log 2 + log(k + 1) + log 4 < 4.6 log k

for all k ≥ 2. Thus, we obtain max{2kh(η1), |log η1| , 0.16} = 9.2k log k := A1. The fact that

0.4n + 0.7 < n hold for all n ≥ 4 and the inequality (17) imply that we may take B := n.

To apply Theorem 3, we need to show that Γ3 6= 0, if it were, then

fk(α) =
δm

2
α−n+1.

Hence fk(α) is an algebraic integer, which is impossible. Thus, Γ3 6= 0. Therefore, after apply-

ing Theorem 3 and comparing the resulting inequality with inequality (30), we obtain

m log δ − log 2 < 1.3 · 1013k4 log k(1 + log 2k)(1 + log n).

Taking into account the facts 1 + log 2k < 3.5 log k and 1 + log n < 1.8 log n, which hold for

k ≥ 2 and n ≥ 4, we deduce that

m < 4.65 · 1013k4 log2 k log n.

From the above inequality together with (27), it comes

n

log n
< 2.33 · 1014k4 log2 k. (31)

Using (31) and (21) with T := 2.33 · 1014k4 log2 k we get

n < 2(2.33 · 1014k4 log2 k) log(2.33 · 1014k4 log2 k)

< (4.66 · 1014k4 log2 k)(33.1 + 4 log k + 2 log log k) < 2.4 · 1016k4 log3 k,

where we have used that 33.1 + 4 log k + 2 log log k < 51 log k, which holds for all k ≥ 2.
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4.2 The case 2 ≤ k ≤ 230

In this subsection, we study the case k ∈ [2, 230]. We prove the following assertion.

Lemma 8. The Diophantine equation (2) has no solution when k ∈ [2, 230] and n ≥ k + 2.

Proof. Put Λ3 = log(Γ3 + 1) = (n − 1) log α − m log δ + log(2 fk(α)).

Using a similar method to prove the inequality (23), we prove that

0 < |Λ3| < 4δ−m
< 4 exp(−1.76m).

In Lemma 3, we fix

c := 4, δ := 1.76, ψ :=
log(2 fk(α))

log δ
,

ϑ :=
log δ

log α
, ϑ1 := − log δ, ϑ2 := log α, β := log(2 fk(α)).

For each k ∈ [2, 230], we find a good approximation of α and a convergent pℓ/qℓ of the contin-

ued fraction of ϑ such that qℓ > X0, where X0 = ⌊2.4 · 1016k4 log3 k⌋, which is an upper bound

of max{n − 1, m} from Lemma 7. After doing this, we use Lemma 3 on inequality (23). A

computer search with Mathematica revealed that the maximum value of

⌊

1

δ
log(q2c/ |ϑ2| X0)

⌋

over all k ∈ [2, 230] is 91.40 . . ., which according to Lemma 3, is an upper bound on m. Hence,

we deduce that the possible solutions (m, n, k) of the equation (1) for which k ∈ [2, 230] have

m ≤ 91, therefore we use inequalities (17) to obtain n ≤ 457.

Finally, we used Mathematica to compare F
(k)
n and Cm for the range 4 ≤ n ≤ 222 and

2 ≤ m ≤ 44, with m < n/2.4 and checked that the only solution of the equation (1) is

3 = C1 = F
(2)
4 .

4.3 The case k > 230

In this subsection, we analyze the case k > 230.

Lemma 9. The Diophantine equation (1) has no solution when k > 230 and n ≥ k + 2.

Proof. For k > 230 we have 2.4m < n < 2.4 · 1016k4 log3 k < 2k/2. By (2), (9) and (16) we obtain

∣

∣

∣

∣

2n−2 − δm

2

∣

∣

∣

∣

<
2n−2

2k/2
+

1

2
,

which leads to
∣

∣

∣
1 − 2−(n−1)δm

∣

∣

∣
<

1.3

2k/2
, (32)

where we have used the fact 1/2n−1 < 0.3/2k/2, because n ≥ k + 2. We will give a lower

bound to the left-hand side of inequality (32) by using Theorem 3. We choose t := 2, (η1, b1) :=

(2,−n + 1), (η2, b2) := (δ, m). We have η1, η2 ∈ K := Q(
√

2), so dK = 2. If the left-hand side

of (32) is zero, then we get that δ2m ∈ Q, which is a contradiction. Thus, the left-hand side of

(32) is not zero.

The fact that m ≤ n imply that we can choose B := n. On the other hand, since

h(η1) = log 2, h(η2) = (log δ)/2, it follows that

max{2h(η1), |log η1| , 0.16} = 2 log 2 := A1 and max{2h(η2), |log η2| , 0.16} = log δ := A2.
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So, Theorem 3 tell us that
∣

∣

∣
1 − 2−(n−1)δm

∣

∣

∣
> exp

(

−2.3 · 1010 log n
)

, (33)

where we have used the fact that 1 + log n < 1.8 log n for all n ≥ 4. Comparing (32) and (33),

we obtain k < 6.7 · 1010 log n.

By Lemma 7 and using the fact 37.8 + 4 log k + 3 log log k < 12 log k for all k > 220, we get

k < 6.7 · 1010 log(2.4 · 1016k4 log3 k)

< 6.7 · 1010 log(37.8 + 4 log k + 3 log log k) < 8.1 · 1011 log k

Hence, we obtain k < 2.5 · 1013. Lemma 7 imply

n < 2.8 · 1074 and m < 1.2 · 1074. (34)

Put Λ4 = m log δ − (n − 1) log 2. Using a similar method to prove the inequality (23), we show

that 0 < |Λ4| <
2.6

2k/2
< 2.6 exp(−0.34 k) holds for all k > 210.

We apply Lemma 1 with c = 2.6, ρ = 0.34 and X0 := 2.8 · 1074, which is an upper bound

on m by (34). Thus, from Lemma 1 we get Y0 := 356.899840124 . . . . Let

[a0, a1, a2, . . .] := [0, 2, 1, 1, 5, 3, 2, 1, 22, 1, 5, 38, 1, 1, 1, 8, 1, 3, 7, 1, 5, 2, 5, 2, 2, 200, . . .]

be the continued fraction expansion of log 2/ log δ. Since A = max0≤356 ak = 4008, then ac-

cording to Lemma 2 we have

k <
1

0.34
·
(

2.6 · 4010 · 2.8 · 1074

log δ

)

< 530.

With this new upper bound on k we get by Lemma 7 that n < 4.7 · 1029 and m < 2 · 1029.

We apply again Lemma 2 with X0 := 4.7 · 1029. Hence by Lemma 1, we obtain

Y0 = 142.65243 . . . and A = 1014 in this time. According to Lemma 2 it comes

k <
1

0.34
·
(

2.6 · 1016 · 4.7 · 1029

log δ

)

< 223,

which contradicts our assumption that k > 230. Thus, we have shown that there are no solu-

tions (n, k, m) to equation (1) with k > 230.

Thus, the Theorem 2 is proved.
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Райяне С.Е. Про збалансованi та Люка-збалансованi числа, що є елементами k-узагальненої послi-

довностi Фiбоначчi // Карпатськi матем. публ. — 2021. — Т.13, №1. — C. 259–271.

Збалансове число n i балансир r є розв’язками дiофантового рiвняння

1 + 2 + · · ·+ (n − 1) = (n + 1) + (n + 2) + · · ·+ (n + r).

Вiдомо, що якщо число n є збалансованим, то 8n2 + 1 є повним квадратом, квадратний корiнь

з якого називають Люка-збалансованим числом. Для цiлого k ≥ 2 символом (F
(k)
n )n позначимо

k-узагальнену послiдовнiсть Фiбоначчi, яка починається з 0, . . . , 0, 1, 1 (k чисел), а кожне насту-

пне число є сумою k попереднiх. Ми довели, що серед елементiв k-узагальненої послiдовностi

Фiбоначчi єдиними збалансованими числами є 1 i 6930, а Люка-збалансованими – числа 1 i 3.

Отриманi нами результати узагальнюють результати з [Fibonacci Quart. 2004, 42 (4), 330–340].

Ключовi слова i фрази: k-узагальненi числа Фiбоначчi, збалансованi числа, Люка-збалансо-

ванi числа, лiнiйна форма в логарифмах, метод редукцiї.


