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m-submultisets and m-permutations of multisets elements

Makhnei O.V. , Pylypiv V.M., Zatorskii R.A.

The article is devoted to two classical combinatorial problems on multisets, which in the existing

literature are given unjustifiably little space. Namely, the calculation of the number of all submulti-

sets of power m for an arbitrary multiset and the number of m-permutations of such multisets. The

first problem is closely related to the width of a partially ordered set of all submultisets of a multi-

set with the inclusion ⊆. The article contains some important classes of multisets. Combinatorial

proofs of problems on the number of m-submultisets and m-permutations of multiset elements are

considered. In the article, on the basis of the generatrix method, thrifty algorithms for calculating

m-submultisets and m-permutations of multiset elements are constructed. The paper also provides

a brief overview of the results that are related to this area of research.
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Introduction

In discrete mathematics, problems of investigating sets of objects with identical objects

often arise. Therefore, from the middle of the last century the concept of multiset (see [1,14,15])

begins to gain more and more value. Since the multiset is a natural generalization of the set, the

problems of generalization of the classical results of combinatorics of finite sets naturally arise.

Thus, in the paper [7], C. Green, D.J. Kleitman, in fact, consider the problem of calculating the

number of m-submultisets of a multiset. However, in the general case, just a few problems

were solved. Usually, authors are limited to considering only some partial but very important

classes of multisets.

In the papers [3, 5], P. Cartier, D. Foata introduced the concept of “intercalation product”

α⊤β, which extended a number of known results concerning ordinary permutations of sets

to the case of multisets. In the book [10], D. Knuth develops combinatorial techniques for

multisets. Using the theorem that each permutation of a multiset can be written as

σ1⊤σ2⊤ . . .⊤σt, t > 0,

where σj are cycles such that their elements are not repeated, D. Knuth gives examples of

enumeration of permutations of multisets with some restrictions. The case t = 0 corresponds

to the division of the empty multiset into cycles which is carried out using the intercalation

product of Foata. This can be found in more detail in [10].

The paper [13] is very useful for applications.
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The so-called nondecreasing series in the permutations of multisets (see [2,4]) have impor-

tant applications in the study of “order statistics”. In the case of a constant multiset

{1p, 2p, . . . , mp} in the paper [11, pp. 212–213], P.A. MacMahon showed that the number of

permutations with k + 1 series is equal to the number of permutations with mp − p − k + 1 se-

ries. Also, by the generatrix method, P.A. MacMahon proved that the number of permutations

of the multiset {1n1 , 2n2 , . . . , mnm} with k series is equal to

k

∑
j=0

(−1)j

(
n + 1

j

)(
n1 − 1 + k − j

n1

)(
n2 − 1 + k − j

n2

)

. . .

(
nm − 1 + k − j

nm

)

,

where n = n1 + n2 + . . . + nm.

An interesting approach for enumerating submultisets of multisets is proposed in [9].

Sometimes a continual apparatus is used to solve discrete mathematics problems. For in-

stance, in [6], using the generatrix method, V.V. Gotsulenko proved an integral formula for

calculating the number of m-submultisets of the given multiset

|Cm(A)| = 1

2π

∫ π

−π
exp(−imϕ)

n

∏
j=1

exp{i(kj + 1)ϕ} − 1

exp{iϕ} − 1
dϕ,

where i =
√
−1. In [6], the problem for m-submultisets of a multiset is also somewhat gener-

alized.

Note also that the principle of inclusion-exclusion can be used to find the number of sub-

multisets of a multiset. In the case of constant multisets, it gives the following result

of O.G. Ganyushkin:

Cm(A) = ∑
i>0

(−1)i

(
n

i

)(
n + m − 1 − i(q + 1)

n − 1

)

.

However, in the general case, this approach leads to an exponential algorithm.

This paper contains some important classes of multisets. Combinatorial proofs of problems

on the number of m-submultisets and m-permutations of multiset elements are considered

(see Theorems 1 and 9). Note that these theorems give exponential algorithms for finding the

corresponding numbers.

The most economical algorithms for calculating m-submultisets and m-permutations of

multiset elements are algorithms that are constructed using the generatrix method. They are

given at the end of this work (see Algorithms 1 and 2).

This paper is a survey and contains part earlier published results in Ukrainian and Russian

in the works [16–19]. Due to their inaccessibility to the English-speaking reader, these results

are included in this publication.

1 Auxiliary concepts

The multiset A means an arbitrary disordered set of elements of some set [A], which we

call the base of this multiset. Therefore, an arbitrary multiset can be written in the canonical

form

A = {ak1
1 , ak2

2 , . . . , akn
n }, (1)

where [A] = {a1, a2, . . . , an} and indices ki of elements ai indicate the multiplicity of occurrence

of the element ai to the multiset A. We can assume without loss of generality that

k1 > k2 > . . . > kn.
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The multiset A′ = {k1, k2, . . . , kn} of indices of the multiset (1) is called its primary specifi-

cation. Suppose the primary specification A′ of the multiset (1) is represented in the canonical

form

A′ = {1λ1 , 2λ2 , . . . , rλr},

where

r = max(k1, k2, . . . , kn), (2)

then the multiset of its indices A′′ = {λ1, λ2, . . . , λr} is called the secondary specification of

the multiset A.

If i does not belong to the multiset A′, then we assume that λi = 0. Note that for the

secondary specification of the multiset (1) we have the equality

|A| = λ1 + 2λ2 + . . . + rλr. (3)

Multisets A = {ak1
1 , ak2

2 , . . . , akn
n } and A = {ak1

1 , ak2
2 , . . . , akr

r } are called the adjoint multisets

if

ki =
∣
∣{kj : kj > i}

∣
∣ =

∣
∣{j : kj > i}

∣
∣ , i = 1, 2, . . . , r, j = 1, 2, . . . , n. (4)

Here r is given by the formula (2).

Let us remark that ki has a certain combinatorial meaning. Namely, ki is the maximum

number of groups of i identical elements that can be chosen from the multiset (1).

If the equality A = A holds true, then the multiset A is called the multiset with a self-

adjoint primary specification or the self-adjoint multiset.

If A and A are the adjoint multisets and

A′ = {k1, . . . , kn}, A′′ = {λ1, . . . , λr}, A
′
= {k1, . . . , kr},

A
′′
= {λ1, . . . , λn}, r = max(k1, k2, . . . , kn),

then between the elements of their specifications, in addition to relationship (4), the following

11 relationships hold

ki = |{λj + . . . + λr : λj + . . . + λr > i}|, i = 1, . . . , n, j = 1, . . . , r, (5)

λi = |{j : kj = i}|, i = 1, . . . , n, j = 1, . . . , r, (6)

ki = |{λj + . . . + λr : λj + . . . + λr > i}|, i = 1, . . . , r, j = 1, . . . , n, (7)

λi = |{j : kj = i}|, i = 1, . . . , r, j = 1, . . . , n, (8)

ki = |{kj : kj > i}|, i = 1, . . . , n, j = 1, . . . , r, (9)

λi = |{j : λj + . . . + λr = i}|, i = 1, . . . , n, j = 1, . . . , r, (10)

λi = |{j : λj + . . . + λr = i}|, i = 1, . . . , r, j = 1, . . . , n, (11)

Mλ = k, (12)

M−1k = λ, (13)

Mλ = k, (14)

M−1k = λ. (15)

In equalities (12) and (13), k and λ are n-dimensional column vectors such that their coordi-

nates coincide with the elements of the specifications k(A) and k2(A) accordingly. In equalities
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(12) and (13), M and M−1 are square matrices of order n of the next form

M =










1 1 · · · 1 1

0 1 · · · 1 1

. . . . . . . . . . . . . . . .

0 0 · · · 1 1

0 0 · · · 0 1










, M−1 =










1 −1 · · · 0 0

0 1 · · · 0 0

. . . . . . . . . . . . . . . . . . . .

0 0 · · · 1 −1

0 0 · · · 0 1










.

In equalities (14) and (15), λ and k are similar r-dimensional column vectors, M and M−1

are similar matrices of order r.

Remark 1. Since k(A) = k(A), it follows that formulas (4), (5), (6), (10), (12), (13) are analogous

to formulas (7), (8), (9), (11), (14), (15) correspondingly. In fact, formulas (12), (13) establish

the one-to-one correspondence between the sets of solutions of equation (3) and the equation

|A| = λ1 + 2λ2 + . . . + nλn, which is analogous to equation (3). A similar conclusion can be

made for formulas (14), (15).

Finally, we give a well-known statement about a cardinality of multiboolean of the

multiset (1).

Proposition 1. If A = {ak1
1 , ak2

2 , . . . , akn
n } and C(A) is a set of all submultisets of the multiset A,

then

|C(A)| =
n

∏
i=1

(ki + 1).

2 Some classes of multisets and their specifications

1. The multiset with a positive integer function of a natural argument is the multiset of the form

A = {a
g(1)
1 , a

g(2)
2 , . . . , a

g(n)
n }, (16)

where g : N → N is some nondecreasing function that satisfies the inequality g(i) > i

for all i ∈ N.

2. The multiset with a continuous function f is the multiset of the form

A = {[ f (1)], [ f (2)], . . . , [ f (n)]}, (17)

where f is some continuous increasing function

f : D → E, D = [1, n], E ⊇ [1, [ f (n)]],

that satisfies the inequality f (x) > x, [ · ] is the integer part of a number. Specification (17) is a

partial case of the multiset (16).

For example, for the function f (x) = exp(x) and n = 5 the first derivative of the multiset

has the form

A′ = {2, 7, 20, 54, 148}.

3. The linear multiset is the multiset that has the form

A = {a
p+q
1 , a

p+2q
2 , . . . , a

p+nq
n },

where p ∈ N0, q ∈ Z and 1 6 p + q.
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4. The constant multiset is the multiset that has the form

A = {a
q
1, a

q
2, . . . , a

q
n},

where q > 1.

5. The multiset with repetitions without restrictions is the specification that has the form

A = {a∞
1 , a∞

2 , . . . , a∞
n }. (18)

Finally, we give an example of another class of multisets such that a number of m-submulti-

sets is calculated relatively simply

A = {a2k1−1
1 , a2k2−1

2 , . . . , a2kn−1
n }, k1 6 k2 6 . . . 6 kn. (19)

3 Number of m-submultisets of a multiset

Definition 1. The set

Cm(A) = {B ⊆ A : |B| = m} (20)

of all m-submultisets of the multiset A = {ak1
1 , . . . , akn

n } is called the set of m-combinations of

elements of this multiset.

To denote the cardinality of set (20) we use the notation

|Cm(A)| =
(

k1 k2 . . . kn

m

)

, (21)

which was proposed in [7].

For some specifications of the multiset A the cardinality of the set has been considered

formerly. In particular, for n-element sets the classical formula
(

1 1 . . . 1
︸ ︷︷ ︸

n
m

)

=
n!

m!(n − m)!

is known.

For a multiset with repetitions without restrictions it is known that the formula
(∞ ∞ . . . ∞
︸ ︷︷ ︸

n
m

)

=
(n + m − 1)!

m!(n − 1)!
(22)

is valid.

The following theorem is proved in [16], but due to its inaccessibility to an English-speaking

reader, we present its proof below.

Theorem 1. The number of m-submultisets of the multiset A = {ak1
1 , . . . , akn

n } is equal to

(
k1 k2 . . . kn

m

)

= |Cm(A)| = ∑
λ∈Λm(A)

s

∏
j=1

(
kj − ∑

s
i=j+1 λi

λj

)

,

where Λm(A) is the set of those solutions of the equation

s

∑
i=1

iλi = m (23)
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that satisfy the inequalities
s

∑
i=j

λi 6 kj, j = 1, . . . , s, (24)

where s = min(m, r), r = max{ki}, i = 1, . . . , n, and kj is the jth element of specification (4),

which is adjoint to the primary specification of the multiset A.

Proof. From the definition of the set Λm(A) it follows that this set satisfies the conditions:

(1) ∀ B ∈ Cm(A) ⇒ B′′ ∈ Λm(A);

(2) ∀ λ ∈ Λm(A) ⇒ ∃ B ∈ Cm(A) : B′′ = λ.

Let us prove that the set Λm(A) consists of all integer non-negative solutions of equation

(23) that satisfy inequalities (24). Indeed, let B be some multiset that belongs to the set (20)

and λ = {λ1, λ2, . . . , λp} = B′. Since |B| = m, it is obvious that the elements of this secondary

specification satisfy equation (23). The truth of inequalities (24) for solutions of this equation

follows from the inequalities kx(B) 6 kx(A), x ∈ [B], where the symbol kx(B) denotes the

multiplicity of occurrence of the element x to the multiset B.

Let λ = {λ1, . . . , λs} be some solution of equation (23) that satisfies inequalities (24). We

construct a multiset B ∈ Cm(A) such that B′′ = λ. Let us start by selecting λs different groups

of s identical elements from the multiset A. This can always be done because λs 6 ks due to

(4). Suppose we have already selected ∑
s
i=j+1 λi different groups of elements such that each

group consists of at least j + 1 identical elements. Let kj be the maximum number of groups of

j identical elements that can be selected from the multiset A. Then there are

kj −
s

∑
i=j+1

λi

groups of j identical elements in each group, in addition to other groups, in the multiset A

after selecting from this multiset of the above groups of elements. Thus, the selection of the

following λj groups of identical elements from the multiset A ensures the fulfillment of in-

equalities (24).

If every secondary specification from the set Λm(A) is assigned a non-empty set

Cλ
m(A) = {B ∈ Cm(A) : B′′ = {λ1, . . . , λs}} (25)

of the multisets from the set Cm(A), then set (25) for λ ∈ Λm(A) forms a partition of the set

Cm(A). Under this condition the equality

|Cm(A)| = ∑
λ∈Λm(A)

|Cλ
m(A)| (26)

is valid. Let us find the cardinality of set (25). It has already been determined such that the

multiset A contains

kj −
s

∑
i=j+1

λi

groups of j identical elements after selecting from the multiset A of all groups of identical

elements that consist of at least j + 1 identical elements. Therefore, there are exactly
(

kj − ∑
s
i=j+1 λi

λj

)
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different choices for these groups from the multiset A. The number of all elements belonging

to the set (25) is equal to

|Cλ
m(A)| =

s

∏
j=1

(
kj − ∑

s
i=j+1 λi

λj

)

(27)

by the combinatorial rule of the product. Here and then we have ∑
s
i>s λi = 0. Note that if

the inequalities k1 > k2 > . . . > kn are fulfilled, then the elements of specification k(A), in

addition to the relation (4), can be calculated accordingly to one of the following formulas:

kj = n − k−1(j) + 1, j = 1, . . . , kn, (28)

kj =
kn

∑
i=j

λi, j = 1, . . . , kn, (29)

where λi ∈ A′′,
k−1(j) = min{i : ki > j} (30)

is the minimum preimage of those elements of the primary specification A′ that are not less

than j. Formula (29) follows from relation (14). Now from (26) and (27) it follows that formula

(21) is valid.

Example 1. Calculate the number of all 6-submultisets of the multiset

A = {a5
1, a5

2, a5
3, a3

4, a3
5, a3

6, a3
7, a2

8, a2
9, a1

10, a1
11, a1

12, a1
13}.

Here n = 13, m = 6, r = 5, s = min(5, 6) = 5. We get the elements of the specification k(A)

from relations (4):

k1 = 13, k2 = 9, k3 = 7, k4 = 3, k5 = 3.

To find the elements of the set Λm(A) we seek all solutions of the equation

λ1 + 2λ2 + 3λ3 + 4λ4 + 5λ5 = 6. (31)

There are ten solutions of this equation:

(6, 0, 0, 0, 0), (4, 1, 0, 0, 0), (3, 0, 1, 0, 0), (2, 2, 0, 0, 0), (2, 0, 0, 1, 0),

(1, 1, 1, 0, 0), (1, 0, 0, 0, 1), (0, 3, 0, 0, 0), (0, 1, 0, 1, 0), (0, 0, 2, 0, 0).

Moreover, all these solutions satisfy the inequalities

λ1 + λ2 + λ3 + λ4 + λ5 6 13, λ2 + λ3 + λ4 + λ5 6 9,

λ3 + λ4 + λ5 6 7, λ4 + λ5 6 3, λ5 6 3.

For each solution of equation (31) we calculate the product (27) and seek the sum of these

products:

C6(A) =

(
13

6

)

+

(
12

4

)(
9

1

)

+

(
12

3

)(
7

1

)

+

(
11

2

)(
9

2

)

+

(
12

2

)(
3

1

)

+

(
11

1

)(
8

1

)(
7

1

)

+

(
12

1

)(
3

1

)

+

(
9

3

)

+

(
8

1

)(
3

1

)

+

(
7

2

)

= 1716 + 4455 + 1540 + 1980 + 198 + 616 + 36 + 84 + 24 + 21 = 10670.

Now we calculate the number of all m-submultisets of the multiset whose primary specifi-

cation is a positive integer function of a natural argument (16).
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Theorem 2. Suppose the multiset A = {ak1
1 , . . . , akn

n } has the primary specification of the form

A′ = {g(1), g(2), . . . , g(n)} and g(i) > i, i = 1, 2, . . . , n, then the equality

|Cm(A)| = ∑
λ1+...+mλm=m

m

∏
j=1

(
n − g−1(j)− ∑

m
i=j+1 λi + 1

λj

)

(32)

is fulfilled for m 6 n, where g−1(j) = min{i : g(i) > j}, j = 1, . . . , m.

Proof. First note that since the inequalities g(n) > n > m hold, we have s = min(m, g(n)) = m.

Therefore equation (23) and inequalities (24) have the form

λ1 + . . . + mλm = m, (33)
m

∑
i=j

λi 6 kj, j = 1, . . . , m. (34)

We prove that each solution of equation (33) satisfies inequalities (34). By Λ denote the set

of solutions of equation (33). From the obvious inequalities

m

∑
i=j

λi 6 max
Λ

{
m

∑
i=j

λi

}

6

⌊
m

j

⌋

, min{i : g(i) > j} 6 j, j = 1, . . . , m,

it follows that to prove the statement it is enough to prove the validity of inequalities
⌊

m

j

⌋

6 n − j + 1, j = 1, . . . , m. (35)

Inequalities (35) can be proved by induction on n.

Thus from (28) and (30) it follows that equality (32) holds true due to Theorem 1.

Example 2. Suppose A = {a1
1, a3

2, a5
3, a7

4, a9
5}, then g(i) = 2i − 1 > i. We shall find C4(A). Here

n = 5, m = 4 and the equation λ1 + 2λ2 + 3λ3 + 4λ4 = 4 has 5 solutions:

(4, 0, 0, 0), (2, 1, 0, 0), (1, 0, 1, 0), (0, 2, 0, 0), (0, 0, 0, 1).

We have

g−1(1) = min{i : 2i − 1 > 1} = 1, g−1(2) = min{i : 2i − 1 > 2} = 2,

g−1(3) = min{i : 2i − 1 > 3} = 2, g−1(4) = min{i : 2i − 1 > 4} = 3.

Therefore,

|C4(A)| = ∑
λ1+2λ2+3λ3+4λ4=4

4

∏
j=1

(
n − g−1(j)− ∑

4
i=j+1 λi + 1

λj

)

=

(
5

4

)

+

(
4

2

)(
4

1

)

+

(
4

1

)(
4

1

)

+

(
4

2

)

+

(
3

1

)

= 5 + 24 + 16 + 6 + 3 = 54.

If the primary specification of a multiset is given by some continuous function f (x), then

the following theorem is useful for calculation of the number of all its m-submultisets.
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Theorem 3. Suppose the primary specification of the multiset A = {ak1
1 , . . . , akn

n } has the form

A′ = {⌊ f (1)⌋, ⌊ f (2)⌋, . . . , ⌊ f (n⌋}, where f : D → E, D = [1, n], E ⊇ [1, ⌊ f (n)⌋], is some

continuous increasing function. Then the formula

|Cm(A)| = ∑
λ1+...+mλm=m

m

∏
j=1

(⌊n − max( f−1(j), 1)⌋ − ∑
m
i=j+1 λi

λj

)

is fulfilled for m 6 n.

Proof. Since the function f is continuous and increases in its domain, we see that the equality

min{i : f (i) > j} = f−1(j) holds true for all j > 1. Hence, we obtain the equality

min{i : ⌊ f (i)⌋ > j} =

{
max(1, f−1(j)), f−1(j) ∈ ZD,

max(1, ⌊ f−1(j)⌋ + 1), f−1(j) 6= ZD,

where ZD = D ∩ N. Therefore the equality n − min{i : ⌊ f (i)⌋ > j} = ⌊n − max(1, f−1(j))⌋ is

valid and we have the equality kj = n − min{i : ki > j}+ 1 = ⌊n − max(1, f−1(j))⌋ + 1.

Since the inequalities

max
λ1+...+mλm=m

(λj + . . . + λm) 6

⌊
m

j

⌋

and f−1(j) 6 j are fulfilled for all j = 1, . . . , m, we see that inequality (34) is equivalent to

inequality (35). The proof of this theorem is finished with similar reasoning to the reasoning

over the proof of Theorem 2.

Example 3. Suppose in the multiset A = {ak1
1 , ak2

2 , ak3
3 , ak4

4 , ak5
5 , ak6

6 } the primary specification is

given by the continuous function f (x) =
√

x on the interval [1, 6], i.e. ki = ⌊
√

i⌋,

i = 1, 2, 3, 4, 5, 6. Then

k1 = 1, k2 = 1, k3 = 1, k4 = 2, k5 = 2, k6 = 2.

Find, for example, the number of all 5-submultisets of the given multiset. We have 7 solu-

tions of the equation λ1 + 2λ2 + 3λ3 + 4λ4 + 5λ5 = 5:

(5, 0, 0, 0, 0), (3, 1, 0, 0, 0), (2, 0, 1, 0, 0), (1, 2, 0, 0, 0), (1, 0, 0, 1, 0), (0, 1, 1, 0, 0), (0, 0, 0, 0, 1).

Since f−1(x) = min{i : f (i) > j} = j2, we have ⌊n − max( f−1(j), 1)⌋ = n − j2. Therefore,

|C5(A)| = ∑
λ1+...+5λ5=5

m

∏
j=1

(
7 − j2 − ∑

5
i=j+1 λi

λj

)

.

In the last sum each summand is corresponded to each of the seven solutions of the above

equation. Moreover, only those summands are non-zero that are corresponded to the first,

second and fourth solutions of the above equation. Thus,

|C5(A)| =
(

6

5

)

+

(
5

3

)(
3

1

)

+

(
4

1

)(
3

3

)

= 6 + 30 + 12 = 48.

Consider the case of a linear multiset.



m-submultisets and m-permutations of multisets elements 249

Theorem 4. Suppose A is a linear multiset with the primary specification k(A) = {pi + q :

i = 1, . . . , n}, where 1 6 p + q, q ∈ Z, p ∈ N0, then we have

|Cm(A)| = ∑
λ∈Λm(A)

s

∏
j=1

(⌊n − max(1, (j − q)/p)⌋ + 1 − ∑
s
i=j+1 λi

λj

)

, p 6= 0, (36)

where s = min(m, pn + q).

If m 6 n, then equality (36) have the form

|Cm(A)| = ∑
λ1+...+sλs=m

s

∏
j=1

(⌊n − max(1, (j − q)/p)⌋ + 1 − ∑
s
i=j+1 λi

λj

)

, p 6= 0. (37)

Proof. Consider first the case p 6= 0. Since the linear function f (i) = pi + q satisfies the condi-

tions of Theorem 3, we have

kj =

⌊

n − max

(

1,
j − q

p

)⌋

+ 1. (38)

Hence equality (36) is valid.

In addition, suppose that m 6 n. Then, using equality (38) and inequality px + q > x,

x ∈ [1, n], from Theorem 1 it follows equality (37).

Theorem 5. The number of m-submultisets of the constant multiset A = {a
q
1, a

q
2, . . . , a

q
n} can

be obtained by the following formulas:

(1)

|Cm(A)| = ∑
λ∈Λm(A)

n!

λ1! · . . . · λr!(n − λ1 − . . . − λr)!
, where r = min(m, q); (39)

(2) if m 6 q, then

|Cm(A)| = ∑
λ1+2λ2+...+mλm=m

n!

λ1! · . . . · λm!(n − λ1 − . . . − λm)!
; (40)

(3) if m 6 n, then

|Cm(A)| = ∑
λ1+...+sλs=m

n!

λ1! · . . . · λs!(n − λ1 − . . . − λs)!
, where s = min(m, q). (41)

Proof. (1) In the case of a constant multiset we have s = min(m, q) and kj = n, j = 1, 2, . . . , s.

Therefore,

|Cm(A)| = ∑
λ∈Λm(A)

s

∏
j=1

(
n − ∑

s
i=j+1 λi

λj

)

= ∑
λ∈Λm(A)

n!

λ1! · . . . · λs!(n − λ1 − . . . − λs)!
.

(2) If m 6 q, then the set Λm(A) coincides with the set of all solutions of the equation

λ1 + 2λ2 + . . . + mλm = m.

Therefore formula (39) has the form (40).

(3) If m 6 n, then inequalities (24) hold for all j = 1, . . . , s and equality (41) is valid.

Remark 2. From Theorem 5 (see item (2)) and equality (22) it follows that

∑
λ1+2λ2+...+mλm=m

n!

λ1! · . . . · λm!(n − λ1 − . . . − λm)!
=

(
n + m − 1

m

)

.

Notice that the left-hand side of this identity consists only of those summands such that

n − (λ1 + . . . + λm) > 0.
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4 Generatix method

A generatix is the function

f (t) =
n

∏
i=1

ki

∑
j=0

tj =
k1+...+kn

∑
i=0

|Ci(A)|ti

for the calculation of the number of m-submultisets of the multiset A = {ak1
1 , . . . , akn

n }. There-

fore, after m-fold differentiation of this function we obtain the equality

|Cm(A)| = 1

m!

dm f

dtm
(0).

We have
dm f (t)

dtm
= ∑

r1+...+rn=m

m!

r1! . . . rn!

dr1 g1(t)

dtr1
. . .

drn gn(t)

dtrn
,

where gi(t) = 1 + t + t2 + . . . + tki . Since

dri gi(t)

dtri
= r

ri

i + (ri + 1)ri t + . . . + k
ri

i tki−ri and
dri gi

dtri
(0) = ri!,

we obtain

|Cm(A)| = 1

m!

dm f

dtm
(0) =

1

m! ∑
r1+...+rn=m

m!

r1! . . . rn!
r1! . . . rn! = ∑

r1+...+rn=m

1,

where 0 6 ri 6 ki.

Thus, we have the next theorem.

Theorem 6. The number of m-submultisets of the multiset A = {ak1
1 , . . . , akn

n } is equal to

|Cm(A)| = ∑
r1+r2+...+rn=m
06ri6ki, i=1,...,n

1.

Let us use Theorem 6 to determine the formula for the calculation of the number of

m-submultisets of the constant multiset A = {a
q
1, a

q
2, . . . , a

q
n}. First note that if the solution

(s1, s2, . . . , sn) of the equation

r1 + r2 + . . . + rn = m (42)

satisfies the inequalities 0 6 si 6 q, then an arbitrary permutation of the components of

this solution leads to a new solution of this equation. Therefore we need to find all disor-

dered solutions of equation (42), i.e. such solutions (r1, r2, . . . , rn) that satisfy the inequalities

r1 > r2 > . . . > rn > 0 and we need to count the number of permutations of the compo-

nents of each solution. Suppose among the components of solution (r1, r2, . . . , rn) are λ0 zeros,

λ1 ones, and so on; then all disordered solutions of equation (42) can be counted using the

system of equations
{

0λ0 + 1λ1 + . . . + qλq = m,

λ0 + λ1 + . . . + λq = n.

Therefore,

Cm(A) = ∑
0λ0+1λ1+...+qλq=m

λ0+λ1+...+λq=n

n!

λ0!λ1! . . . λq!
.

Thus the next theorem is valid.
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Theorem 7. The number of m-submultisets of the constant multiset A = {a
q
1, a

q
2, . . . , a

q
n} is

equal to

Cm(A) = ∑
0λ0+1λ1+...+qλq=m

λ0+λ1+...+λq=n

n!

λ0!λ1! . . . λq!
.

Remark 3. If in Theorem 7 m 6 q, then, using equality (22), we obtain the following identity

∑
0λ0+1λ1+...+mλm=m

λ0+λ1+...+λm=n

n!

λ0!λ1! . . . λm!
=

(
m + n − 1

m

)

.

Example 4. Let us find the number of m-submultisets of the multiset with specification

A = {x∞
1 , x∞

2 , . . . , x∞
n } which contain each element of basis [A] (see [12]) of the multiset A.

To find them we use the generatrix

W(t) =

( ∞

∑
i=1

ti

)n

= tn(1 − t)−n = tn
∞

∑
i=0

ni

i!
ti =

∞

∑
i=0

ni

i!
tn+i.

Put n + i = m, then

W(t) =
∞

∑
m=n

nm−n

(m − n)!
tm =

∞

∑
m=n

(
m − 1

n − 1

)

tm.

We shall consider one more class of multisets with primary specification (19), i.e.

A = {a2l1−1
1 , . . . , a2ln−1

n }, l1 6 l2 6 . . . 6 ln,

such that their number of m-submultisets is calculated relatively easily. As shown in [12], the

generatrix of the number of m-submultisets of such multisets has the form

W(t) =
n

∏
i=1

2li−1

∑
j=0

tj.

However 1 + t + . . . + t2l−1 = (1 + t)(1 + t2)(1 + t4) . . . (1 + t2l−1
) whence, using the desig-

nation t2i
= xi+1, i = 0, . . . , l − 1, we get

W(t) = (1 + x1)
m1 . . . (1 + xln

)mn .

Obviously, the number |Cm(A)| is equal to the sum of coefficients of the monomials

K(λ1, . . . , λln
)xλ1

1 . . . x
λln
ln

with ln variables such that their indices λ1, λ2, . . . , λln
are the components of solutions of the

equation

λ1 + 2λ2 + 22λ3 + . . . + 2ln−1λln
= m

and these indices satisfy the inequalities λi 6 k2i−1 , i = 1, . . . , ln, where (k1, . . . , k2ln−1) is the

specification of the multiset A that is adjoint to the multiset A. Therefore,

|Cm(A)| = ∑
λ1+2λ2+...+2ln−1λln=m

λi6k
2i−1 , i=1,...,ln

ln

∏
i=1

(
k2i−1

λi

)

.

Thus the next theorem is valid.
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Theorem 8. The number of m-submultisets of the multiset

A = {a2l1−1
1 , . . . , a2ln−1

n }, l1 6 l2 6 . . . 6 ln,

is equal to

|Cm(A)| = ∑
λ1+2λ2+...+2ln−1λln=m

λi6k
2i−1 , i=1,...,ln

ln

∏
i=1

(
k2i−1

λi

)

.

Example 5. Suppose we have the multiset A = {a3
1, a7

2, a15
3 , a31

4 }. We seek the primary specifi-

cation of the adjoint multiset A :

k = (4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

Therefore,

k1 = 4, k2 = 4, k4 = 3, k8 = 2, k16 = 1.

The equation

λ1 + 2λ2 + 4λ3 + 8λ4 + 16λ5 = 21

have 60 solutions. But only 12 solutions satisfy the inequalities

λ1 6 k1, λ2 6 k2, λ3 6 k4, λ4 6 k8, λ5 6 k16.

List of these solutions:

(3, 3, 3, 0, 0), (3, 3, 1, 1, 0), (3, 1, 2, 1, 0), (3, 1, 0, 2, 0), (3, 1, 0, 0, 1), (1, 4, 1, 1, 0),

(1, 2, 2, 1, 0), (1, 2, 0, 2, 1), (1, 2, 0, 0, 1), (1, 0, 3, 1, 0), (1, 0, 1, 2, 0), (1, 0, 1, 0, 1).

Thus, we have

|C21(A)| =
(

4

3

)(
4

3

)(
3

3

)

+

(
4

3

)(
4

3

)(
3

1

)(
2

1

)

+

(
4

3

)(
4

1

)(
3

2

)(
2

1

)

+

(
4

3

)(
4

1

)(
2

2

)

+

(
4

3

)(
4

1

)(
1

1

)

+

(
4

1

)(
4

4

)(
3

1

)(
2

1

)

+

(
4

1

)(
4

2

)(
3

2

)(
2

1

)

+

(
4

1

)(
4

2

)(
2

2

)(
1

1

)

+

(
4

1

)(
4

2

)(
1

1

)

+

(
4

1

)(
3

3

)(
2

1

)

+

(
4

1

)(
3

1

)(
2

2

)

+

(
4

1

)(
3

1

)(
1

1

)

= 488.

5 Algorithm for calculation of m-submultisets of an arbitrary multiset

Let us construct a recursive algorithm for calculation of the number of m-submultisets of

the multiset A = {ak1
1 , ak2

2 , . . . , akn
n }.

We use for the number Cm(A) the notation from [7]. Then we have

n

∏
i=1

(1 + t + t2 + . . . + tki) =
r

∑
i=0

(
k1, k2, . . . , kn

i

)

ti, r =
n

∑
i=1

ki.

If the coefficients

A(i) =

(
k1, k2, . . . , kl−1

i

)

, i = 0, . . . , s,

of the polynomial
s

∑
i=0

A(i)ti =
l−1

∏
i=1

(1 + t + . . . + tki), s =
l−1

∑
i=1

ki,
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are known, then the coefficients

B(j) =

(
k1, k2, . . . , kl

j

)

, j = 0, 1, . . . , s + kl ,

of the polynomial
s+kl

∑
j=0

B(j)tj = (1 + t + . . . + tkl)
s

∑
i=0

A(i)ti

are obtained by summing kl + 1 last elements of the row

0 . . . 0
︸ ︷︷ ︸

kl

A(0)A(1) . . . A(j) 0 . . . 0
︸ ︷︷ ︸

kl

.

More exactly, we have

(
k1, k2, . . . , kl

j

)

=
j

∑
q=j−kl

(
k1, k2, . . . , kl−1

q

)

, j = 0, . . . , s + kl , (43)

where (
k1, k2, . . . , kl−1

q

)

= 0,

if q < 0 or q > s.

The calculation process is convenient to design according to the next algorithm.

Algorithm 1 ([17]). We calculate Cm(A) if A = {ak1
1 , ak2

2 , . . . , akn
n }.

We construct the algorithm in the form of a table of elements A(i, j), where i is the row

number, and j is the column number of the table. The elements of non-negative columns are

called the significant elements.

Step 1. s := 0, i := 1, j := 0.

Step 2. We specify the significant element of the first line: A(i, j) := 1.

Step 3. While i < n + 1 go to step 4, otherwise issue result is Cm(A) = A(i, m) and stop

work.

Step 4. Add to the left and right of the significant elements of ith row in ki zeros: for j from

s − ki to s − 1 specify A(i, j) := 0, for j from s + 1 to s + ki specify A(i, j) := 0.

Step 5. Find the significant elements of the (i + 1)th row: for p from 0 to s + ki execute

A(i + 1, p) := ∑
p
j=p−ki

A(i, j).

Step 6. s := s + ki, i := i + 1, and go to Step 3.

We illustrate this algorithm in the form of the table.

Example 6. Suppose we have the multiset A = {a3
1, a2

2, a2
3}, then, using the above algorithm,

we obtain the following table.

C0(A) C1(A) C2(A) C3(A) C4(A) C5(A) C6(A) C7(A)

0 0 0 1 0 0 0

0 0 1 1 1 1 0 0

0 0 1 2 3 3 2 1 0 0

1 3 6 8 8 6 3 1

The results are written in the last row of this table: C0(A) = 1, C1(A) = 3, C2(A) = 6,

C3(A) = 8, . . .
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Remark 4. If the multiplicities of the multiset elements are large, then it is convenient to use

the relations
(

k1, k2, . . . , kl

j

)

=

(
k1, k2, . . . , kl

j − 1

)

+

(
k1, k2, . . . , kl−1

j

)

−
(

k1, k2, . . . , kl−1

j − kl − 1

)

, j = 0, . . . ,
l

∑
i=1

ki,

which follow from relations (43). This can significantly reduce the number of operations.

Remark 5. Since any k-submultiset B of the multiset A uniquely corresponds to (|A| − k)-

submultiset A − B of this multiset, we have
(

k1, k2, . . . , kl

j

)

=

(
k1, k2, . . . , kl

s − j

)

, j = 0, . . . , s,

where s = ∑
l
i=1 ki, i.e. the numbers that are equidistant from the ends of each row of the table

are equal to each other. Thus, if m > ⌊s/2⌋, then instead of calculating |Cm(A)| it is more

convenient to calculate |Cs−m(A)|.

6 m-permutations of the multiset elements

Definition 2. The set of all ordered m-samples of elements of the multiset A = {ak1
1 , . . . , akn

n }
is called the set of m-permutations on this multiset. By Pm(A) we denote this set.

The following statement is well known.

Proposition 2. The number of all permutations of elements of the multiset A is equal to

|P|A|(A)| = (k1 + k2 + . . . + kn)!

k1!k2! . . . kn!
.

To determine the number of all m-permutations of the multiset A = {ak1
1 , . . . , akn

n } we use

Theorem 1. In this theorem it was found that the number of all m-combinations of the multiset

A is equal to

|Cm(A)| = ∑
λ∈Λm(A)

|Cλ
m(A)|,

where

Cλ
m(A) = {B ∈ Cm(A) : B′′ = {λ1, . . . , λn}}.

Obviously,

|Pm(A)| = ∑
λ∈Λm(A)

|P|B|(B)||Cλ
m(A)| (44)

but

|P|B|(B)| = m!

1!λ12!λ2 . . . s!λs

whence equality (44) leads to the following theorem.

Theorem 9 ([16]). The number of all m-permutations of the multiset A = {ak1
1 , . . . , akn

n } is equal

to

|Pm(A)| = ∑
λ∈Λm(A)

m!

1!λ12!λ2 . . . s!λs

s

∏
j=1

(
kj − ∑

s
i=j+1 λi

λj

)

, (45)

where Λm(A) is the set of those solutions of the equation

s

∑
i=1

iλi = m (46)
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that satisfy the inequalities

s

∑
i=j

λi 6 kj, j = 1, . . . , s, s = min(m, r), r = max{ki}, i = 1, . . . , n,

kj is the jth element of specification (4), which is adjoint to the primary specification of the

multiset A.

The number of solutions of the equation ∑
s
i=1 iλi = m increases with increasing m and s.

For example, already at m = s = 20 this equation has 627 solutions. Consequently formula (45)

is not always convenient for practical use because it requires large amounts of computation.

We construct an algorithm for calculating m-permutations of elements of the multiset

A = {ak1
1 , . . . , akn

n } such that in many cases this algorithm eliminates these shortcomings.

Let

|Pm(A)| =
[

k1 k2 . . . kn

m

]

.

In particular, if k1 = k2 = . . . = kn = 1, then the multiset coincides with its basis and this

multiset is an ordinary set, i.e.
[

1 1 . . . 1
︸ ︷︷ ︸

n
m

]

=
n!

(n − m)!
, 0 6 m 6 n.

If k1 = n, k2 = k3 = . . . = kn = 0, then
[

n

m

]

= 1, 0 6 m 6 n.

In the case, where the multiset A has specification (18), we have the obvious equality
[∞ ∞ · · · ∞
︸ ︷︷ ︸

n
m

]

= nm.

Theorem 10. For any r = 2, 3, . . . , n the equality

[
k1 k2 . . . kr

i

]

=







∑
min(i,k1+...+kr−1)
j=0

(
i
j

)[
k1 k2 ... kr−1

i

]

, i 6 kr,

∑
min(i,k1+...+kr−1)
j=i−kr

(
i
j

)[
k1 k2 ... kr−1

i

]

, kr < i 6 k1 + . . . + kr,
(47)

is fulfilled, where 0 6 i 6 |A|.

Proof. The generatrix for the number of permutations
[

k1 k2 . . . kr

i

]

of elements of the multiset A = {ak1
1 , . . . , akn

n } has the form

n

∏
i=1

ki

∑
j=0

tj

j!
=

k1+...+kn

∑
i=0

[
k1 k2 . . . kn

i

]
ti

i!
.

Hence,
(

k1+...+kr−1

∑
j=0

[
k1 k2 . . . kr−1

j

]
tj

j!

)
kr

∑
s=0

ts

s!
=

k1+...+kr

∑
i=0

[
k1 k2 . . . kr

i

]
ti

i!
.
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Since
(

k1+...+kr−1

∑
j=0

[
k1 k2 . . . kr−1

j

]
tj

j!

)
kr

∑
s=0

ts

s!
=

k1+...+kr

∑
i=0

(

∑
j+s=i

[
k1 k2 . . . kr−1

j

]
ti

j!s!

)

,

we have [
k1 k2 . . . kr

i

]

= ∑
j+s=i

i!

j!s!

[
k1 k2 . . . kr−1

j

]

= ∑
j+s=i

(
i

j

)[
k1 k2 . . . kr−1

j

]

.

In the last sum, for both expressions
(

i

j

)

and

[
k1 . . . kr−1

j

]

to have meaning it is necessary to have the inequalities j 6 i and j 6 k1 + . . . + kr−1, i.e. the

inequality j 6 min(i, k1 + . . . + kr−1) is valid. If i 6 kr, then from the inequality 0 6 s 6 kr it

follows that the smallest value of the index j under the restriction j + s = i is j = 0. If i > kr,

then the smallest value of the index j is j = i − kr. This completes the proof.

Recurrence equality (47) can be used to calculate the number of all m-permutations of the

multiset A = {ak1
1 , . . . , akn

n }, where m = 0, . . . , |A|.
For this purpose, we present the following algorithm.

Algorithm 2 ([18]). Step 1. Write the row of k1 + 1 ones, which are numbers of i-permutations
[

k1

i

]

on the multiset A = {ak1
1 }, i = 0, . . . , k1. This row is called the basic row.

Step 2. Under the basic row we construct a table with k1 + 1 columns and k1 + k2 + 1 rows.

We number rows of the table from top to bottom by numbers from 0 to k1 + k2.

Step 3. In the ith row of the table we write the first k1 + 1 elements of the ith row of the

Pascal triangle. If the ith row of the Pascal triangle contains the less than k1 + 1 elements, then

we add the required number of zeros.

Step 4. In the lower left corner of the table we replace the written numbers by zeros so that

the zeros form a right isosceles triangle with the leg k1.

Step 5. We calculate the sum of the products of elements for the ith (i = 0, . . . , k1 + k2)

row of the table and the corresponding elements of the basic row. The resulting number of

permutations
[

k1, k2

i

]

, i = 0, . . . , k1 + k2,

is added to the ith row on the right.

Step 6. If the number of rows of the last table is greater than the cardinality of the multiset,

then the calculation is completed and the result of the algorithm is the column of numbers

such that these numbers were added to the table on the right. Otherwise, we transpose the

column of numbers that were added to the table on the right, consider this as the base row of

the new table, the parameters of the table are increased by the value of the multiplicity of the

next element of the multiset, and then we go to Step 2.

Thus, if the multiset A has the cardinality basis n, then the execution of the algorithm

requires the construction of the (n − 1)th table.
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Example 7. Find the number of all m-permutations of the multiset A = {a2
1, a4

2, a5
3},

m = 0, 1, . . . , 11. For this purpose we build the following tables.

1 1 1

0 1 0 0 1

1 1 1 0 2

2 1 2 1 4

3 1 3 3 7

4 1 4 6 11

5 0 5 10 15

6 0 0 15 15

1 2 4 7 11 15 15

0 1 0 0 0 0 0 0 1

1 1 1 0 0 0 0 0 3

2 1 2 1 0 0 0 0 9

3 1 3 3 1 0 0 0 26

4 1 4 6 4 1 0 0 72

5 1 5 10 10 5 1 0 191

6 0 6 15 20 15 6 1 482

7 0 0 21 35 35 21 7 1134

8 0 0 0 56 70 56 28 2422

9 0 0 0 0 126 126 34 4536

10 0 0 0 0 0 252 210 6930

11 0 0 0 0 0 0 462 6930

Therefore,

P0(A) = 1, P1(A) = 3, P2(A) = 9, P3(A) = 26, P4(A) = 72, P5(A) = 191, P6(A) = 482,

P7(A) = 1134, P8(A) = 2422, P9(A) = 4536, P10(A) = 6930, P11(A) = 6930.

This algorithm is effective for multisets of relatively large cardinality but with a small base.

For example, to calculate the number of 20-permutations on the multiset A = {a3
1, a9

2, a13
3 } this

algorithm requires the construction of two tables of sizes 4 × 13 and 13 × 26 accordingly and

the calculation by the formula requires the analysis of the set of 627 solutions of equation (46)

and significant calculations.

Example 8. For the multiset A = {a1
1, a1

2, a1
3, a2

4, a2
5, a2

6, a2
7, a3

8, a3
9, a5

10} we have

P0(A) = 1, P1(A) = 10, P2(A) = 97, P3(A) = 912, P4(A) = 8299,

P5(A) = 72946, P6(A) = 617874, P7(A) = 5029948, P8(A) = 39237380,

P9(A) = 292327224, P10(A) = 2072330400, P11(A) = 13920355680,

P12(A) = 88179787080, P13(A) = 523856052720, P14(A) = 2899520704080,

P15(A) = 14831963546400, P16(A) = 6938695764000,

P17(A) = 292608485769600, P18(A) = 1088829613872000,

P19(A) = 3456466684070400, P20(A) = 8834757003072000,

P21(A) = 162615846032640000, P22(A) = 162615846032640000.
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Махней О.В., Пилипiв В.М., Заторський Р.А. m-пiдмультимножини та m-перестановки елемен-

тiв мультимножин // Карпатськi матем. публ. — 2021. — Т.13, №1. — C. 240–258.

Стаття присвячена двом класичним комбiнаторним задачам на мультимножинах, яким у

iснуючiй лiтературi вiдведено невиправдано мало мiсця. А саме: обчисленню числа всiх пiд-

мультимножин потужностi m довiльної мультимножини та числа m-перестановок таких муль-

тимножин. Перша задача тiсно пов’язана iз шириною частково впорядкованої множини всiх

пiдмультимножин мультимножини за включенням ⊆. У статтi видiлено деякi важливi класи

мультимножин. Розглянуто комбiнаторнi доведення задач про число m-пiдмультимножин та

m-перестановок елементiв мультимножини. У статтi, на основi методу генератрис, будуються

економнi алгоритми обчислення m-пiдмультимножин та m-перестановок елементiв мульти-

множини. У роботi також зроблено короткий огляд результатiв, що стосуються цього напрям-

ку дослiджень.

Ключовi слова i фрази: мультимножина, перестановка.


