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Rainbow degree-jump coloring of graphs

Mphako-Banda E.G.1, Kok J.2, Naduvath S.2

In this paper, we introduce a new notion called the rainbow degree-jump coloring of a graph.
For a vertex v ∈ V(G), let the degree-jump closed neighbourhood of this vertex be defined as
Ndeg[v] = {u : d(v, u) ≤ d(v)}. A proper coloring of a graph G is said to be a rainbow degree-jump
coloring of G if for all v in V(G), c(Ndeg[v]) contains at least one of each color class. We determine
a necessary and sufficient condition for a graph G to permit a rainbow degree-jump coloring. We
also determine the rainbow degree-jump chromatic number, denoted by χrdj(G), for certain classes
of cycle related graphs.
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Introduction

For general notations and concepts in graphs and digraphs see [1, 3, 9]. Unless mentioned
otherwise all graphs G are simple, connected and finite.

For a set of distinct colors C = {c1, c2, c3, . . . , cℓ}, a vertex coloring of a graph G is an assign-
ment ϕ : V(G) 7→ C . A vertex coloring is said to be a proper vertex coloring of a graph G if no
two distinct adjacent vertices have the same color. The cardinality of a minimum set of solid
colors in a proper vertex coloring of G is called the chromatic number of G and is denoted χ(G).
A coloring with exactly χ(G) colors may be called a χ-coloring or a chromatic coloring of G. By
the term c(G), we mean the set c(V(G)) and hence we have c(G) = C and |c(G)| = |C|. For a
set of vertices X ⊆ V(G), the coloring of the induced subgraph 〈X〉 is denoted by c(〈X〉) and
this coloring will be permitted by ϕ : V(G) 7→ C .

Index labeling the elements of a graph such as the vertices say, v1, v2, v3, . . . , vn or written
as vi; 1 ≤ i ≤ n or as vi; i = 1, 2, 3, . . . , n, is called a minimum parameter indexing of G. Similarly,
a minimum parameter coloring of a graph G is a proper coloring of G which consists of the colors
ci, 1 ≤ i ≤ ℓ, where ℓ = χ(G). The set of vertices of G having the color ci is said to be the color

class of ci in G and is denoted by Ci. Unless stated otherwise, we consider minimum parameter
coloring throughout this paper.

Recall that the neighbourhood (or open neighbourhood) of a vertex v ∈ V(G), denoted by
N(v), is the set N(v) = {u : vu ∈ E(G), u 6= v}. Similarly, the closed neighbourhood of v,
denoted by N[v], is the set N[v] = N(v) ∪ {v}. A rainbow neighbourhood in a graph G is a closed
neighbourhood of a vertex v in G for which c(N[v]) contains at least one color from each color
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class with respect to the chromatic coloring under consideration. For some initial works on the
rainbow neighbourhoods of graphs, we refer to [4–7].

1 Rainbow degree-jump coloring

The concept of a rainbow neighbourhoods in a graph is specialised to what is called the
rainbow degree-jump coloring of a graph. Let the degree-jump closed neighbourhood of v, denoted
by Ndeg[v], be defined as Ndeg[v] = {u : d(v, u) ≤ d(v)}. Then the notion of degree-jump
coloring of a graph G is defined as follows.

Definition 1. A rainbow degree-jump coloring of a graph G is a proper coloring of G such that
the degree-jump closed neighbourhood c(Ndeg[v]) of every vertex v in V(G) contains at least
one of each color in the coloring set.

Definition 2. The maximum number of colors in a proper coloring of a graph G which re-
sults in every vertex to yield a rainbow degree-jump coloring is called the rainbow degree-jump

chromatic number of G. This new invariant is denoted by χrdj(G).

Clearly, the following are immediate observations on the rainbow degree-jump chromatic
number of a graph G.

(i) χrdj(G) ≥ χ(G);

(ii) χrdj(G) = χ(G) for bipartite graphs with some pendant vertices and complete graphs;

(ii) if G has a pendant vertex v then Ndeg[v] = N[v].

For these graphs, the restriction on any rainbow degree-jump coloring of G is d(v, u) ≤ 1.
Hence, χrdj(G) = χ(G).

Not all graphs permit a rainbow degree-jump coloring. For example, any proper coloring
of a complete graph Kn, n ≥ 3, is an n-coloring. If pendant vertices are attached to obtain a
thorny complete graph G⋆

n, then each pendant vertex v has Ndeg[v] = N[v]. Hence,

|c(Ndeg[v])| = 2 < 3 ≤ n.

Theorem 1. For two graphs G and H of order n and m respectively, we have

χrdj(G + H) = n + m ,

where G + H is the join of G and H.

Proof. For all vertices v in V(G) we have dG+H(v) = dG(v) + m, for all vertices u in V(H)

we have dG+H(u) = dH(u) + n, and all pairs of vertices in G + H are at a distance at most 2.
Also, the degree of all vertices in G + H are greater than or equal to 2 and hence we have
|Ndeg[v]| = n + m for all v ∈ V(G + H). Hence, the result.

Recall that a clique of a graph G is an induced complete subgraph in G. The clique number

ω(G) is the order of the largest clique of G. Then, we have the following result.
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Theorem 2. If a graph G permits a rainbow degree-jump coloring, then we have

min{|c(Ndeg[v])| : d(v) = δ(G)} ≥ ω(G).

Proof. Let ℓ = min{|c(Ndeg[v])| : d(v) = δ(G)}. Note that any proper coloring of a largest
induced complete graph of G requires ω colors and χ(G) ≥ ω(G). Since a rainbow degree-
jump coloring is defined in terms of well-defined conditions set on all vertices and the vertex
degrees, we have ℓ = χrdj(G) ≥ χ(G) ≥ ω(G). It implies that if a graph permits a rainbow
degree-jump coloring, then a corresponding proper ℓ-coloring exists such that ℓ ≥ ω(G). This
completes the proof.

Recall that a weakly perfect graph is a graph for which ω(G) = χ(G). Then the following
result is an immediate consequence of the above theorem.

Corollary 1. For a graph G, if min{|c(Ndeg[v])| : d(v) = δ(G)} = ω(G), then χ(G) = ω(G)

and G is weakly perfect.

Theorem 3. For a cycle graph Cn, n ≥ 3, we have 3 ≤ χrdj(Cn) ≤ 5.

Proof. It is easy to verify that χrdj(C3) = 3, χrdj(C4) = 4 and χrdj(C5) = 5. For n ∈ Z3, any
cycle Cn permits a proper 3-coloring such that for every vertex v in V(Cn), c(Ndeg[v]) contains
colors c1, c2, c3. Hence, χrdj(Cn) ≥ 3. Since max |c(Ndeg[v])| = 5 for every vertex v in V(Cn), it
follows that 3 ≤ χrdj(Cn) ≤ 5.

For the next corollary, let us partition the subset of positive integers as follows

N6 = {n : n ≥ 6} = X1 ∪ X2, where X1 = {a : 5 | a}, X2 = {a : 5 ∤ a}.

Corollary 2. (i) For n ∈ X1, χrdj(Cn) = 5;

(ii) If n ∈ X2, then 3 ≤ χrdj(Cn) ≤ 4.

Proof. (i) Let the vertices of a cycle graph Cn be labeled by v1, v2, v3, . . . , vn consecutively in the
clockwise direction. Also, let n = 5k, k ≥ 1. As |Ndeg[v]| = 5, for every vertex v in V(Cn),
we have χrdj(Cn) ≤ 5. However, the coloring defined by c(vj) = ci, where j ≡ i (mod 5), with
respect to which the color string c1, c2, c3, c4, c5 consecutively repeated k times, is a permissible
rainbow degree-jump coloring. Hence, we have χrdj(Cn) = 5.

(ii) This result follows as a direct consequence of Theorem 3 and Part (i) written above.

Lemma 1. A graph G having at least one pendant vertex with χ(G) ≥ 3 does not permit a
rainbow degree-jump coloring.

Proof. A pendant vertex v ∈ V(G) has Nd[v] = N[v]. Hence, |c(Nd[v])| = 2 < 3. Therefore, G

does not permit a rainbow degree-jump coloring.

1.1 Rainbow neighbourhood jump-coloring of some cycle related graphs

Recall the definitions of certain cycle related graph classes (see [2, 8]) as given below.

(i) A wheel graph denoted by W1,n, is the graph defined by W1,n = K1 + Cn. The cycle Cn of
the wheel W1,n is called its rim.
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(ii) A double wheel graph, denoted by DW1,n, is the graph obtained from two equal order
wheel graphs by merging the central vertices to have a common central vertex.

(iii) A helm graph, denoted Hn, is the graph obtained from a wheel graph W1,n by attaching a
pendant vertex to each vertex of its rim.

(iv) A closed helm graph, denoted by CHn, is the graph obtained from a helm graph Hn by
adding an edge between the pendant vertices such that these edges joining pendant ver-
tices induces a cycle (external cycle).

(v) A prism graph Πn is the Cartesian product of a path of length 2 and a cycle. That is,
Πn = Cn�P2.

(vi) A web graph, denoted by Wn, is the graph obtained from a prism graph Πn by attaching a
pendant vertex to every vertex of one of the two cycles in it.

(vii) A flower graph, denoted by Fn, is the graph obtained from a helm graph Hn by joining the
pendant vertices with its central vertex.

(viii) A djembe graph, denoted by Djn, is the graph obtained from a prism Πn by joining all its
vertices to a new external vertex (this vertex may be called the central vertex of Djn). That
is, Djn = Πn + K1.

The following result discusses the rainbow degree-jump chromatic number of the above-
mentioned cycle related graph classes.

Proposition 1. (i) For a wheel graph W1,n we have χrdj(W1,n) = n + 1.

(ii) For a double wheel graph DW1,n we have χrdj(DW1,n) = 2n + 1.

(iii) A helm graph Hn does not permit a rainbow degree-jump coloring.

(iv) For a closed helm graph CHn we have χrdj(CHn) = 2n + 1.

(v) For a prism graph Πn we have χrdj(Πn) = 2 · χrdj(Cn).

(vi) A web graph Wn does not permit a rainbow degree-jump coloring.

(vii) For a flower graph Fn we have χrdj(Fn) = 2n + 1.

(viii) For a djembe graph Djn we have χrdj(Djn) = 2n + 1.

Proof. (i) Let u be the central vertex of the wheel graph and let the cycle vertices be vi, 1 ≤ i ≤ n.
Since d(u, vi) = 1, 1 ≤ i ≤ n, and d(vi, vj) ≤ 2, 1 ≤ i, j ≤ n, and d(vi) = 3, ∀ i it follows that
Ndeg[vi] = Ndeg[u] = V(W1,n). Hence, rrdj(W1,n) = n + 1.

(ii) This result follows by similar reasoning to that in (i).
(iii) Because χ(W1,n) ≥ 3 the helm graph which is a thorny wheel has pendant vertices.

Hence, the result from Lemma 1.
(iv) Since d(vi) = 4, 1 ≤ i ≤ n, and the inner cycle vertices, and d(vi , u) ≤ 3, u ∈ V(CHn),

the result follows by similar reasoning to that in (i).
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(v) For a prism graph Πn, n ≥ 3, call the vertices vi from the one cycle, and ui from the
other cycle, which are adjacent to vi, a pair of prism images. Color any cycle in accordance
with a permissible rainbow degree-jump coloring. If c(vi) = cj color the corresponding prism
image to be cj+χrdj(Cn). It is easy to verify that

{c1, c2, . . . , cχrdj(Cn), c1+χrdj(Cn), c2+χrdj(Cn), . . . , c2·χrdj(Cn)}

is a permissible rainbow degree-jump coloring.

(vi) As a web graph Wn is not 2-colorable and has pendant vertices it does not permit a
rainbow degree-jump coloring.

(vii) As the pendant vertices of a helm graph are all joined to the central vertices, we have
min{d(u, v)} = 2 for all pairs (u, v). Therefore, the result is immediate.

(viii) The result follows by the same reasoning as in (vii).

It is obvious that if each graph Gi, 1 ≤ i ≤ t, permits a rainbow degree-jump coloring, then

the disjoint union
t⋃

i=1
Gi permits such a coloring as well. Now, join the graphs in a connected

string graph G by adding any edge between Gi, Gi+1, 1 ≤ i ≤ t − 1. Since all colorings are
minimum parameter colorings, it is obvious that χrdj(G) ≥ χrdj(Gi), where 1 ≤ i ≤ t. Note
that if different combinations are stringed to obtain, say G′, G′′, then it is possible to find the
inequality χrdj(G

′) 6= χrdj(G
′′).

The following theorem characterises a graph which permits a rainbow degree-jump
coloring.

Theorem 4. A graph G permits a rainbow degree-jump coloring if and only if for v, u ∈ V(G)

c(〈Ndeg[v]〉) = c(〈Ndeg[u]〉) or |c(Ndeg[v])| = |c(Ndeg[u])|

with respect to some proper coloring of G.

Proof. If G permits a rainbow degree-jump coloring c(G) = C , then from Definition 1, it fol-
lows that c(〈Ndeg[v]〉) = c(〈Ndeg[u]〉) = C , v, u ∈ V(G), because sets are compared. Also,
c(〈Ndeg[v]〉) = c(〈Ndeg[u]〉) ⇔ v, u ∈ V(G) |c(Ndeg[v])| = |c(Ndeg[u])|, v, u ∈ V(G).

Since c(〈Ndeg[v]〉) = c(〈Ndeg[u]〉) implies |c(Ndeg[v])| = |c(Ndeg[u])|, v, u ∈ V(G), the
desired proper coloring is obtained by initialising the proper coloring c : V(G) 7→ C =

c(〈Ndeg[v]〉) and maximising on the coloring in accordance with the definition if C itself is
not a maximum. The aforesaid is always possible.

If |c(Ndeg[v])| = |c(Ndeg[u])| and c(〈Ndeg[v]〉) = c(〈Ndeg[u]〉), then the result follows as
above.

If |c(Ndeg[v])| = |c(Ndeg[u])| and c(〈Ndeg[v]〉) 6= c(〈Ndeg[u]〉), then without loss of general-
ity, the coloring of Ndeg(u) can be relabeled to obtain c(〈Ndeg[v]〉) and if need be the coloring
of Ndeg[v] can be rotated until we obtain c(〈Ndeg[v]〉) = c(〈Ndeg[u]〉). This is possible unless
the subgraph induced by Ndeg(v) ∪ Ndeg(u) is complete. But then we have a contradiction.
Then, by mathematical induction, it follows that the procedure is possible for all vertices in G.
Finally, by considering the proper coloring obtained as the initializing coloring and maximiz-
ing it if possible, the result follows.
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2 Blind vertices in respect of degree-jump

Theorem 2 suggests the notion of blind vertices in respect of degree-jump which is defined
as follows.

Definition 3. For a vertex v in G, if there exists a vertex u in G such that u /∈ Ndeg[v], then we
say that the vertex v is blind to the vertex u with respect to degree-jump. Otherwise, we say
that the vertex v can see the vertex u.

Note that K1, P2, P3 do not have blind vertices but the end vertices of a path graph
Pn, n ≥ 4, are blind to all internal vertices except two. Also, a vertex v can always see it-
self because v ∈ Ndeg[v], which means that for a graph of order n ≥ 2 a vertex can see at least
two vertices. The property of a vertex seeing another vertex is not necessary commutative
because it is possible that u /∈ Ndeg[v] and v ∈ Ndeg[u]. Then we have the following notion.

Definition 4. The peripheral number of a graph G, denoted by p(G), is the number of vertices
which can see all vertices of G.

Applications of the notion of blind vertices can be found in communication networks, social
networks, monitoring systems, cryptology design and physical observation systems. Searching
programs in space can be restricted by one-sided detection as well. Blindness may result from
defined restrictions on communication range, distance or other meaningful graph theoretical
properties. This new notion also relates to the concept of broadcasting in graphs.

Theorem 5. A connected graph G has a vertex v which can see all vertices of G if and only if
d(v) ≥ max{d(v, u) : u ∈ V(G)}.

Proof. It is obvious that if d(v) ≥ max{d(v, u) : u ∈ V(G)}, then the following two cases are to
be considered.

(i) If v is an end vertex of a diam-path in G, then for every vertex u in V(G), d(v, u) ≤ d(v)

implies Ndeg[v] = V(G).

(ii) If v is not an end vertex of any diam-path of G, then for every vertex u in V(G), d(v, u) <

d(v) implies Ndeg[v] = V(G).

From both cases, it follows that v can see all vertices of G. If there exists a vertex v that can
see the vertex u, then it implies d(v, u) ≤ d(v) or, equivalently, u ∈ Ndeg[v]. If v can see all
u ∈ V(G), then Ndeg[v] = V(G). It means that d(v) ≥ max{d(v, u) : u ∈ V(G)}.

The next proposition provides the peripheral number of certain cycle related graphs. Proofs
are omitted because it can easily be verified by comparing d(v) and max{d(v, u) : u ∈ V(G)}.

Proposition 2. (i) For a wheel graph W1,n we have p(W1,n) = n + 1.

(ii) For a double wheel graph DW1,n we have p(DW1,n) = 2n + 1.

(iii) For a helm graph Hn we have p(Hn) = n + 1.

(iv) For a closed helm graph CHn we have χrdj(CHn) = 2n + 1.
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(v) For a prism graph Πn we have p(Πn) =

{

2n, 3 ≤ n ≤ 5,

0, otherwise.

(vi) For a web graph Wn we have p(Πn) =

{

2n, 3 ≤ n ≤ 5,

0, otherwise.

(vii) For a flower graph Fn we have p(Fn) = 2n + 1.

(viii) For a djembe graph Djn we have p(Djn) = 2n + 1.

Theorem 6. For a graph G we have p(G) ≤ χrdj(G).

Proof. The result follows as a direct consequence of Theorem 5 because it is possible to have
fewer vertices, each seeing all vertices of G. However, if all vertices can mutually see each
other, then min{χrdj(G)} = n = p(G).

2.1 Sight matrix properties

Let the vertices of a graph G of order n be labeled v1, v2, v3, . . . , vn. Define the binary vari-
able

s(vi)vj
=

{

0, if vi is blind to vj,

1, if vi can see vj.

For each vertex vi a sight vector defined by
−−−−−−→
s(vi)V(G) = (s(vi)vj

: 1 ≤ j ≤ n) and a
corresponding sight matrix defined by

s(G) = [
−−−−−−→
s(vi)V(G) : 1 ≤ j ≤ n] = [s(vi)vj

: 1 ≤ i, j ≤ n]

exist.

Example 1. For a path graph P5 and a cycle graph C5 the respective sight matrices are

s(P5) =










1 1 0 0 0
1 1 1 1 0
1 1 1 1 1
0 1 1 1 1
0 0 0 1 1










, s(C5) =










1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1










.

Let the n × n identity matrix In be as conventionally understood. Denote a matrix with
complete 1-entries to be In. It follows easily that s(C5) = s(H) for any super graph H of
order 5. It is easy to see that s(Kn) = In. Hence, it can be seen that a graph for which
s(G) = In is not unique. Furthermore, the diagonal entries of s(G) are equal to 1. But for
the null graph Nn of order n we haves(Nn) is equivalent to the identity matrix In.

Leading to the next result, we call K1 a collapsed cycle and we call K2 (or P2) a flat cycle.
We note that K1 corresponds to a largest 0-regular connected graph with minimum edges for
which χrdj(G) = 1. Similarly, K2 corresponds to a largest 1-regular connected graph with
minimum edges for which χrdj(G) = 2. A similar statement is true for K5 as it corresponds to
the largest 2-regular connected graph with minimum edges for which χrdj(G) = 5.
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An interesting question that arises in this context is: for k ∈ N0, to find a k-regular con-
nected graph G of largest order n with minimum edges such that χrdj(G) = n. Hence,
s(G) = In or in otherwords, p(G) = n. This family of k-regular graphs is called the Mphako

graphs1 and is denoted by C+
n (k).

2.1.1 Mphako graphs

The construction of a Mphako graph for a given k ∈ N, k ≥ 2, follows directly from the
constructive proof of the next result.

Theorem 7. For k ∈ N, k ≥ 2, the corresponding Mphako graph C+
n (k) has order

n = 2k2 − 3k + 3.

Proof. Let k ∈ N, k ≥ 2. We begin with a vertex v1 and extend consecutively along a
path v1v2v3 · · · v2k+1. Add the edge v1v2k+1. From vertex v2k+1 extend along a further path
v2k+1v2k+2 . . . v4k. Add the edge v1v4k. Repeat this path extensions iteratively (k − 1) times. It
is easy to verify that n = 2k + (k − 2)(2k − 1) + 1 = 2k2 − 3k + 3 is the maximum number
of vertices that can be seen by v1 with d(v1) = 4. With symmetry consideration add similar
edges for vertices vi, 2 ≤ i ≤ n. The graph resulting from this construction is the corres-
ponding Mphako graph C+

n (k), since d(vj) = 4, 1 ≤ j ≤ n, and Ndeg[vj ] = V(C+
n )(k) for all i

and a maximum.

It follows that ε(C+
n (k)) = 1

2 k(2k2 − 3k + 3). This number of edges is sharp.

Corollary 3. For k 6= 3t, t ∈ N0, a Mphako graph C+
n (k) has odd number of vertices.

Proof. Let t = 3t, t ∈ N0. In the decimal number system, powers of 3 have the digits 1, 3, 9, 7
repeating cyclically in the 100 column (unit’s place) as t increases through the non-negative
integers. Hence, in

2 · 32t − 3t+1 + 3 = 2 · 32t − 3(3t − 1) = 2 · 32t − (2 + 1)(3t − 1)

= 2 · 32t − 2(3t − 1)− (3t − 1) = 2 · 32t
︸ ︷︷ ︸

even

−2 · (3t − 1)
︸ ︷︷ ︸

even

− (3t − 1)
︸ ︷︷ ︸

even

,

the expression equals an even number. By similar reasoning, 2k2 − 3k + 3 is odd for k 6= 3t,
t ∈ N0.

It can be said that for any finite n and k ∈ {i : 1 ≤ i ≤ n}, the Mphako graphs with even
number of vertices are scarce. The reason for this scarcity is that for t ∈ N0, there are t + 1
such Mphako graphs amongst the finite collection of Mphako graphs {C+

n (k) : 0 ≤ k ≤ t}.
Hence, for n ∈ N0 let largest t be such that 3t ≤ n. Therefore, t ≤ log3n. Randomly selecting
a Mphako graph of even order from amongst the family {C+

n (k) : 0 ≤ k ≤ n} has probability
1+log3n

n . Since lim
n 7→∞

(1+log3n
n ) = 0, the Mphako graphs of even order are said to be scarce.

Theorem 8. For a Mphako graph C+
n (k) k ≥ 1 we have

χdeg(C
+
n (k)− e) ≤ n − 1 = 2k2 − 3k + 2,

where e ∈ E(C+
n (k).

1 The second and third authors dedicate this family of graphs to the first author.



Rainbow degree-jump coloring of graphs 237

Proof. We prove the result by mathematical induction. For k = 1, the Mphako graph C+
n (1) =

K2. Hence, n = 2 and clearly χdeg(C
+
2 (1)) = 2 > 1 = χdeg(K2 − e). For k = 2, C+

n (2) = C5 and
hence n = 5 and clearly χdeg(C

+
5 (2)) = 5 > 2 = χdeg(C5 − e), e ∈ E(C5).

Assume that the result holds for any 2 ≤ k < ℓ and let k = ℓ. Without loss of generality,
note that if any edge on the path v1v2v3 · · · vℓ+1 is deleted then vertex v1 cannot see vertex vℓ+1.
Similarly, if any edge is deleted on the path v1v2ℓ+1v2ℓ · · · vℓ+2 then vertex v1 cannot see vertex
vℓ+2. Hence, the result follows by induction.

Note that for k ≥ 3, the equality holds and thus χdeg(C
+
n (k) − e) = n − 1 = 2k2 − 3k + 2,

e ∈ E(C+
n (k). It implies that for k ∈ N0, the Mphako graph C+

n (k) has maximum order and
minimum size to ensure χdeg(C

+
n (k)) = n and s(C+

n (k)) = In.

Lemma 2. For k ≥ 2, the Mphako graph C+
n (k) is Kn-free for n ≥ 3.

Proof. It is easy to verify that a Mphako graph k ≥ 2 is K3-free. Therefore, it is Kn-free
for n ≥ 3.

Corollary 4. For k ≥ 2, the Mphako graph C+
n (k) is 3-colorable.

Proof. From the constructive proof of Theorem 7, it follows that C+
n (k), k ≥ 2, has induced odd

cycles only. Therefore, χ(C+
n (k)) = 3.

Corollary 5. For k ≥ 2, diameter of the Mphako graph C+
n (k) is k.

Proof. For k = 2, we know that C+
n (2) = C5 and diam(C5) = 2. For k = 3, the Mphako graph

is a chorded cycle, namely, C12 with chords vivi+6, 1 ≤ i ≤ 6. Without loss of generality,
diam(C+

n (3)) = d(v1, v5) = 3 and is given by paths v1v7v6v5 or v1v12v6v5 or v1v12v11v5. By
symmetry considerations similar diam-paths exist from all vi, 1 ≤ i ≤ 12, to some vertex vj.
Hence, the result holds for k = 2, 3.

Assume that the result holds for k = ℓ. For k = ℓ+ 1, the path v1v2(ℓ+1)+1v2(ℓ+1) . . . vℓ+1

is a diameter path (a path whose length is equal to the diameter of the graph under consid-
eration). It follows easily that ℓ + 1 similar diameter paths exist from v1 to vℓ+1. By sym-
metry considerations, similar diameter paths of length ℓ + 1 exist from all vi, 1 ≤ i ≤ n =

2(ℓ + 1)2 − 3(ℓ + 1) + 3, to some vertex vj. Therefore, by mathematical induction, the result
holds in general.

The Mphako graph is the solution to a degree diameter type problem. This particular
problem has the specific condition that degree of all vertices equals k. Hence, the vertex degree
is not bound to a maximum for some vertices as is the case in the classical degree diameter
problem. Specifically k-regularity must hold. Recall the Moore bound for the classical degree
diameter problem is given by nd,k ≤ Md,k, where

Md,k =

{

2k + 1, if d = 2,

1 + d( (d−1)k−1
d−2 ), if d > 2,

and nd,k is the maximum number of vertices with degree at most d and diameter k. With
regards to the Mphako graphs the bound specialises to

Mk,k =

{

2k + 1, if k = 2,

1 + k( (k−1)k−1
k−2 ), if k > 2.

For k = 2, the graph C+
n (2) = C5, the order equals the upperbound. However, for k > 2 we

have the next result.
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Proposition 3. For k > 2, an upper bound for the order of the Mphako graph C+
n (k) is given

by ν(C+
n (k) < Mk,k.

Proof. Consider the real valued inequality 2x2 − 3x+ 3 ≥ 1+ x( (x−1)k−1
x−2 ), where x ∈ R, k ∈ N,

k > 2. Therefore,

(x − 2)(2x2 − 3x + 2) ≥ x(x − 1)k − x,

2x3 − 7x2 + 9x − 4 ≥ x(x − 1)k = xk+1 ± a1xk ± a2xk−1 ± . . . ± ak−1x. (1)

Inequaliy (1) presents a contradiction because the leftside is a polynomial of order 3 while
the rightside is a polynomial of order k + 1 and the unique mutual real root is at (1, 0). Hence,

2x2 − 3x + 3 < 1 + x( (x−1)k−1
x−2 ), k > 2. Therefore, for the discrete case x = k, it follows that

ν(C+
n (k) < Mk,k.

3 Conclusion

The paper served as an introduction to the new notion of the rainbow degree-jump coloring
of a graph. The rainbow degree-jump coloring of a prism graph suggest that researching the
Cartesian product of graphs with respect to rainbow degree-jump coloring could be worthy.
Similarly, the study of rainbow degree-jump coloring for the other known graph products
remains open. Other graph operations such as the corona of two graphs, the line graph, the
complement graph and others offer scope for further research.

The authors view the introduction of the new family of Mphako graphs as interesting cycle
related graphs which is open for further research in various graph theoretical domains.

Problem 1. For k ≥ 2 and for 2k2 − 3k + 3 < m < 2(k + 1)2 − 3(k + 1) + 3 find the minimum
number of edges in a graph G such that χdeg(G) = m.

Problem 2. For two graphs G, H with a diameter path vi to vj and ul to uk, in each respectively,
the string graph denoted by G H is obtained by adding the edge vjul or vjuk. To string from
G  H to graph M which has a diameter path ws to wt, to obtain (G  H)  M, add the
edge ukws or ukwt. If each graph graph Gi, 1 ≤ i ≤ t, permits a rainbow degree-jump coloring,
find the combination that results in a string graph G such that

χrdj(G) = max
{

χrdj((((· · · (Gi  Gi+1) · · · ) Gt−1) Gt)) :

over all combinations of the numbers 1 ≤ i ≤ t
}

.

Problem 3. The notion of blind vertices has been introduced. It suggests the notion of a degree-

jump domination set of G. That is a minimum subset X ⊆ V(G) such that
⋃

v∈X
Ndeg[v] = V(G).

The cardinality of X is called the degree-jump domination number of G and is denoted by γdj(G).
This notion offers a new direction of research.
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Мфако-Банда Е.Ґ., Кок Дж., Надуват С. Веселкове степенево-стрибкове розфарбування графiв //
Карпатськi матем. публ. — 2021. — Т.13, №1. — C. 229–239.

У цiй статтi ми вводимо нове поняття веселкового степенево-стрибкового розфарбування
графа. Для вершини v ∈ V(G) нехай степенево-стрибковий замкнений окiл v буде визначений
як Ndeg[v] = {u : d(v, u) ≤ d(v)}. Належне розфарбування графа G буде називатись весел-
ковим степенево-стрибковим розфарбуванням G, якщо для всiх v з V(G), c(Ndeg[v]) мiстить
принаймнi по одному з кожного класу кольорiв. Ми визначили необхiдну i достатню умову
того, що граф G допускає веселкове степенево-стрибкове розфарбування. Також, ми визна-
чили веселкове степенево-стрибкове хроматичне число, яке позначаємо χrdj(G), для деяких
класiв циклiчно вiдносних графiв.

Ключовi слова i фрази: веселкове степенево-стрибкове розфарбування, веселкове степенево-
стрибкове хроматичне число, невидима вершина, граф Мфако, межа Мура.


