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Uniqueness of certain differential polynomial of L-functions
and meromorphic functions sharing a polynomial

Banerjee A.1, Bhattacharyya S.2

The purpose of this paper is to obtain some sufficient conditions to determine the relation be-

tween a meromorphic function and an L-function when certain differential polynomial generated

by them sharing a one degree polynomial. The main theorem of the paper extends and improves all

the results due to W.J. Hao, J.F. Chen [Discrete Dyn. Nat. Soc. 2018, 2018, article ID 4673165], F. Liu,

X.M. Li, H.X. Yi [Proc. Japan Acad. Ser. A Math. Sci. 2017, 93 (5), 41–46], P. Sahoo, S. Halder [Tbilisi

Math. J. 2018, 11 (4), 67–78].
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1 Introduction, definitions and results

In this paper, we use the term “L-function” to denote a Selberg class function that are

Dirichlet series with the Riemann zeta function ζ(s) =
∞

∑
n=1

n−s as the prototype. In the be-

ginning of the nineteenth century R. Nevanlinna inaugurated the value distribution theory

with his famous Five Value and Four Value theorems, which were the bases of uniqueness

theory. Value distribution of L-functions concerns distribution of zeros of L-functions and

more generally, the c-points of L, that is, the zeros of the function L(s) − c, or the values in

the set of pre-images L−1 = {s ∈ C : L(s) = c}, where s denotes complex variables and

c ∈ C ∪ {∞}. Selberg class functions are important objects in number theory. The Selberg

class S of L-functions is the set of all Dirichlet series L(s) =
∞

∑
n=1

a(n)n−s of a complex variable

s = σ + it with a(1) = 1, satisfying the following axioms (cf. [14, 15]):

(i) Ramanujan hypothesis: a(n) ≪ nε for every ε > 0;

(ii) analytic continuation: there is a nonnegative integer k such that (s − 1)kL(s) is an entire

function of finite order;

(iii) functional equation: L satisfies a functional equation of type ΛL(s) = ωΛL(1− s), where

ΛL(s) = L(s)Qs
K

∏
j=1

Γ(λjs + vj) with positive real numbers Q, λj and complex numbers vj, ω

with Revj ≥ 0 and |ω| = 1;
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(iv) Euler product hypothesis: L(s) = ∏p exp

(

∞

∑
k=1

b(pk)
pks

)

with suitable coefficients b(pk)

satisfying b(pk) ≪ pkθ for some θ <
1
2 , where the product is taken over all prime numbers p.

The degree d of an L-function L is defined to be

d = 2
K

∑
j=1

λj,

where K and λj are respectively the positive integer and the positive real number defined in

axiom (iii) of the definition of L-function.

It should be noted, that an L-function can be analytically continued as meromorphic func-

tion in C.

Throughout the paper, the term “meromorphic” will be used to mean meromorphic in the

whole complex plane. For such two meromorphic functions f , g and for some a ∈ C, we

denote by E(a; f ) the collection of the zeros of f − a, where a zero is counted according to

its multiplicity. In addition to this, when a = ∞, the above definition implies that we are

considering the poles. In the same manner, by E(a; f ) we denote the collection of the distinct

zeros or poles of f − a according as a ∈ C or a = ∞ respectively. If E(a; f ) = E(a; g) we say

that f and g share the value a CM (counting multiplicities) and if E(a; f ) = E(a; g), then we

say that f and g share the value a IM (ignoring multiplicities). Usually, S(r, f ) denotes any

quantity satisfying S(r, f ) = o(T(r, f )) for all r outside of a possible exceptional set of finite

linear measure.

For a meromorphic function f , we define the order ρ( f ) as

ρ( f ) = lim sup
r→∞

log T(r, f )

log r
.

In 1997, I. Lahiri [5] asked the following question.

Question ([5]). What can be said about the relationship between two meromorphic functions

f and g when two differential polynomials generated by them share some non-zero complex

values?

In response to the above question plethora of investigations have been carried out on dif-

ferential polynomials sharing non-zero complex values and even sets.

Recently, F. Liu, X.M. Li, H.X. Yi [11] carry forwarded the above investigations and explored

over the uniqueness property of L-function and any meromorphic function when two differ-

ential polynomials generated by both of them share any finite complex value.

Theorem A ([11]). Let f be a non-constant meromorphic function, L be an L-function and n, k

be two positive integers such that n > 3k + 6. If ( f n)(k) − α(z) and (Ln)(k) − α(z) share (0, ∞),

then f = tL for a constant t satisfying tn = 1, where α(z) is either 1 or z.

In 2001, the introduction of the notion of weighted sharing [6, 7], of values and sets, which

is actually a scaling between CM and IM sharing, further add essence to the uniqueness liter-

ature. Below we invoke the definition.

Definition 1 ([6, 7]). Let k be a non-negative integer or infinity. For a ∈ C ∪ {∞} we denote

by Ek(a; f ) the set of all a-points of f , where an a-point of multiplicity m is counted m times
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if m ≤ k and k + 1 times if m > k. If Ek(a; f ) = Ek(a; g), we say that f , g share the value a

with weight k and denote it by (a, k). The IM and CM sharing corresponds to (a, 0) and (a, ∞)

respectively.

We also say that f (z) and g(z) share a polynomial p(z) with weight l if f (z) − p(z) and

g(z)− p(z) share (0, l).

In 2018, P. Sahoo, S. Halder [13] employed the notion of weighted sharing of values to relax

the nature of sharing of value in the above theorem as follows.

Theorem B ( [13]). Under the same situation as in Theorem A, if functions ( f n)(k) − α(z) and

(Ln)(k) − α(z) share (0, l) and one of the following conditions is satisfied:

(i) l ≥ 2 and n > 3k + 6,

(ii) l = 1 and n >
7k
2 + 13

2 ,

(iii) l = 0 and n > 7k + 11, then f = tL for some constant t satisfying tn = 1, where α(z) is

either 1 or z.

In the same year, W.J. Hao, J.F. Chen [4] generalized the differential polynomials generated

by meromorphic function f and L-function L to obtain a series of following four theorems.

Theorem C ([4]). Let f be a non-constant meromorphic function, L be an L-function, n, m,

k be three positive integers and α, β be two constants satisfying |α| + |β| 6= 0. Suppose that

[ f n(α f m + β)](k) and [Ln(αLm + β)](k) share (1, ∞). If n > 3k + m̃ + 6, then f = tL, where

(i) t is a constant such that tn+m̃ = 1, if αβ = 0,

(ii) t is a constant such that td = 1, if αβ 6= 0, k ≥ 2.

Here d = GCD(n, m) and m̃ := m̃(α), where

m̃(α) =

{

0, α = 0,

m, α 6= 0.

Theorem D ([4]). Let f be a non-constant meromorphic function, L be an L-function and n,

m, k be three positive integers. Suppose [ f n( f − 1)m](k) and [Ln(L − 1)m](k) share (1, ∞). If

n > 3k + m + 6 and k ≥ 2, then f ≡ L or f n( f − 1)m ≡ Ln(L− 1)m.

Theorem E ([4]). Under the same situation as in Theorem C, functions [ f n(α f m + β)](k) and

[Ln(αLm + β)](k) share (1, 0) and n > 7k + 4m̃ + 11, then f = tL, where

(i) t is a constant such that tn+m̃ = 1, if αβ = 0,

(ii) t is a constant such that td = 1, if αβ 6= 0, k ≥ 2.

Theorem F ([4]). Under the same situation as in Theorem D, if functions [ f n( f − 1)m](k) and

[Ln(L − 1)m](k) share (1, 0) and n > 7k + 4m + 11, k ≥ 2, then f ≡ L or f n( f − 1)m ≡

Ln(L− 1)m.

Remark 1. The differential polynomial in Theorems D and F becomes identical with that in

Theorems C and E for m = 1, so the condition m ≥ 2 is required in Theorems D and F.

Remark 2. Here we would like to mention that very recently X.M. Li, F. Liu, H.X. Yi [10]

obtained Theorem D and Theorem F for m = 1 when n > 3k + 9 and n > 7k + 17 respec-

tively. Hence, the results are insignificant in context to the lower-bound of n in Theorem D and

Theorem E.
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The purpose of the paper is to bring all the above results under a single umbrella. To

this end, we consider a more generalized differential polynomial generated by a meromorphic

function and an L-function and significantly improve all the above results.

Throughout the paper, let us denote by P(z) the following n degree polynomial

P(z) =
n

∑
j=1

ajz
j = an

s

∏
j=1

(z − dlj
)lj ,

where a1, . . . , an( 6= 0) ∈ C and dlj
, j = 1, 2, . . . , s, are distinct and l1, l2, . . . , ls, s, n ∈ N such

that
s

∑
j=l

lj = n. Clearly, P(0) = 0.

We denote by n1 and n2 respectively be the number of simple and multiple zeros of P(z),

where the zeros of P(z) contributing to n2 have been counted ignoring multiplicities.

The main result of the paper is given below. We shall show that the corollaries deduced

from the main result will improve Theorems B-F by reducing the lower bound of n.

Throughout the paper, we will use η(z) = az + b, where | a | + | b |6= 0.

Theorem 1. Let f be a non-constant meromorphic function, L be an L-function, s be a non-

negative integer, n, m, k be three positive integers and α, β be two constants with |α|+ |β| 6= 0.

Suppose that [P( f )(α f m + β)s](k) − η(z) and [P(L)(αLm + β)s](k) − η(z) share (0, l). If

l ≥ 2 and n >
k

2
+ 2 + 2n2(k + 2) + 2n1 + ms,

or

l = 1 and n >
3k

4
+

9

4
+

(

5k

2
+

9

2

)

n2 +
5n1

2
+

3ms

2
,

or

l = 0 and n > 2k +
7

2
+ (5k + 7)n2 + 5n1 + 4ms,

then one of the following two cases holds:

(i) [P( f )(α f m + β)s](k)[P(L)(αLm + β)s](k) = η2(z);

(ii) P( f )(α f m + β)s = P(L)(αLm + β)s or f = tL for a constant t satisfying tχn = 1, where

χn =















1,
n−1

∑
j=1

| an−j |6= 0,

d1, aj = 0, ∀j = 1, 2, . . . , n − 1,

d1 = gcd(ms + n, . . . , m(s − i) + n, . . . n), i = 0, 1, . . . , s.

Putting s = 0 and P(z) = zn in Theorem 1, we obtain the following corollary which im-

proves Theorem B by reducing the lower bound n.

Corollary 1. Let f be a non-constant meromorphic function, L be an L-function and n, k be

two positive integers. Suppose that ( f n)(k) − η(z) and (Ln)(k) − η(z) share (0, l). If

l ≥ 2 and n >
5k

2
+ 6,

or

l = 1 and n >
13k

4
+

27

4
,
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or

l = 0 and n > 7k +
21

2
,

then f = tL for a constant t satisfying tn = 1.

Putting s = 1 and P(z) = zn in Theorem 1 we obtain the following corollary which im-

proves Theorem C and E by reducing the lower bound n.

Corollary 2. Let f be a non-constant meromorphic function, L be an L-function, n, m, k

be three positive integers and α, β be two constants such that |α| + |β| 6= 0. Suppose that

[ f n(α f m + β)](k) − η(z) and [Ln(αLm + β)](k) − η(z) share (0, l). If

l ≥ 2 and n >
5k

2
+ m + 6, (1)

or

l = 1 and n >
13k

4
+

3m

2
+

27

4
, (2)

or

l = 0 and n > 7k + 4m +
21

2
, (3)

then one of the following two cases holds:

(i) when αβ = 0, then f = tL for a constant t satisfying tn+m̃ = 1;

(ii) when αβ 6= 0 and k ≥ 2, then f ≡ tL for a constant t satisfying td = 1.

Putting m = 1, α = 1, β = −1 and P(z) = zn in Theorem 1, we obtain the following

corollary which again improves Theorem D and F by reducing the lower bound of n.

Corollary 3. Let f be a non-constant meromorphic function, L be an L-function, s be a non-

negative integer and n, k (≥ 2) be two positive integers. Suppose that [ f n( f − 1)s](k) − η(z)

and [Ln(L− 1)s](k) − η(z) share (0, l). If

l ≥ 2 and n >
5k

2
+ s + 6,

or

l = 1 and n >
13k

4
+

3s

2
+

27

4
,

or

l = 0 and n > 7k + 4s +
21

2
,

then either f ≡ L or f n( f − 1)s ≡ Ln(L − 1)s.

For the standard definitions and notations of the value distribution theory we refer to [3].

But in the paper we have used some more notations and definitions which are explained below.

Definition 2 ([20]). Let f and g be two non-constant meromorphic functions such that f and

g share (a, 0). Let z0 be an a-point of f with multiplicity p, an a-point of g with multiplicity q.

We denote by NL(r, a; f ) the reduced counting of those a-points of f and g, where p > q, by

N
1)
E (r, a; f ) the counting function of those a-points of f and g, where p = q = 1, by N

(2
E (r, a; f )

the reduced counting function of those a-points of f and g, where p = q ≥ 2. In the same way

we can define NL(r, a; g), N
1)
E (r, a; g), N

(2
E (r, a; g). In a similar manner we can define NL(r, a; f )

and NL(r, a; g) for a ∈ C ∪ {∞}.
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When f and g share (a, m), m ≥ 1, then N
1)
E (r, a; f ) = N(r, a; f |= 1).

Definition 3 ([6, 7]). Let f , g share a value (a, 0). We denote by N∗(r, a; f , g) the reduced

counting function of those a-points of f whose multiplicities differ from the multiplicities of

the corresponding a-points of g.

Clearly, N∗(r, a; f , g) = N∗(r, a; g, f ) = NL(r, a; f ) + NL(r, a; g).

Definition 4 ([8]). For a ∈ C ∪ {∞} and a positive integer p we denote by N(r, a; f ≤ p)

(N(r, a; f ≥ p)) the counting function of those a-points of f whose multiplicities are not

greater (less) than p, where each a-point is counted according to its multiplicity.

N(r, a; f ≤ p) and N(r, a; f ≥ p) are defined similarly, where in counting the a-points of f

we ignore the multiplicities.

Also N(r, a; f < p), N(r, a; f > p), N(r, a; f < p) and N(r, a; f > p) are defined analo-

gously.

Definition 5 ([7]). Let p be a positive integer or infinity. We denote by Np(r, a; f ) the counting

function of a-points of f , where an a-point of multiplicity m is counted m times if m ≤ p and p

times if m > p. Then

Np(r, a; f ) = N(r, a; f ) + N(r, a; f ≥ 2) + . . . + N(r, a; f ≥ p).

Clearly, N1(r, a; f ) = N(r, a; f ).

Definition 6. Let a be any value in the extended complex plane and let k be an arbitrary non-

negative integer. We define

Θ(a, f ) = 1 − lim sup
r→∞

N(r, a; f )

T(r, f )
and δk(a, f ) = 1 = lim sup

r→∞

Nk(r, a; f )

T(r, f )
.

Remark 3. From the definitions of Θ(a, f ) and δ(a, f ) we clearly see that

0 ≤ δk(a, f ) ≤ δk−1(a, f ) ≤ δ1(a, f ) ≤ Θ(a, f ) ≤ 1.

2 Lemmas

Let for two non-constant meromorphic functions F and G we denote by H the following

function

H =

(

F
′′

F′ −
2F

′

F − 1

)

−

(

G
′′

G′ −
2G

′

G − 1

)

. (4)

Lemma 1 ([17]). Suppose that f is a non-constant meromorphic function and let a0, a1, . . . , an

be finite complex numbers such that an 6= 0. Then

T(r, an f n + an−1 f n−1 + . . . + a1 f + a0) = nT(r, f ) + S(r, f ).

Lemma 2 ([20]). Let F, G be two non-constant meromorphic functions such that they share

(1, 0) and H 6≡ 0 then

N
1)
E (r, 1; F) ≤ N(r, ∞; H) + S(r, F) + S(r, G).
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Lemma 3 ([2]). Let F, G be two non-constant meromorphic functions sharing (1, l), where

0 ≤ l < ∞. Then

N(r, 1; F) + N(r, 1; G)− N
1)
E (r, 1; F) +

(

l −
1

2

)

N∗(r, 1; F, G) ≤
1

2

[

N(r, 1; F) + N(r, 1; G)
]

.

Lemma 4 ([21]). Let f be a non-constant meromorphic function and k, p be positive integers.

Then

Np(r, 0; f (k)) ≤ T(r, f (k))− T(r, f ) + Np+k(r, 0; f ) + S(r, f ),

Np(r, 0; f (k)) ≤ kN(r, ∞; f ) + Np+k(r, 0; f ) + S(r, f ).

Lemma 5. Let F, G be two non-constant meromorphic functions such that they share (1, l).

Then

N∗(r, 1; F, G) ≤
1

l + 1

{

N(r, 0; F) + N(r, 0; G) + N(r, ∞; F) + N(r, ∞; G)
}

+ S(r, F) + S(r, G).

Proof. The proof can be carried out in the line of the proof of [1, Lemma 2.6].

Lemma 6 ([3]). Let f be a non-constant meromorphic function, k be a positive integer and let c

be a non-zero finite complex number. Then

T(r, f ) ≤ N(r, ∞; f ) + N(r, 0; f ) + N(r, c; f (k))− N(r, 0; f (k+1)) + S(r, f )

≤ N(r, ∞; f ) + Nk+1(r, 0; f ) + N(r, c; f (k))− N0(r, 0; f (k+1)) + S(r, f ),

where N0(r, 0; f (k+1)) is the counting function of those zeros of f (k+1) in |z| < r, which are not

zeros of f ( f (k) − c) in |z| < r.

Lemma 7 ([19]). Let f be a non-constant meromorphic function, α( 6≡ 0, ∞) be a small function

of f . Then

T(r, f ) ≤ N(r, ∞; f ) + N(r, 0; f ) + N(r, 0; f (k) − α)− N

(

r, 0;

(

f (k)

α

)′)

+ S(r, f ).

Lemma 8 ([9]). Suppose that f is meromorphic of finite order in the complex plane and that

f (k) has finitely many zeros for some k ≥ 2. Then f has finitely many poles in the complex

plane.

Lemma 9 ([20]). If H ≡ 0, then F, G share (1, ∞). If further F, G share (∞, 0), then F, G

share (∞, ∞).

Lemma 10. Let f and g be two transcendental meromorphic functions and H 6≡ 0. Let for two

integers k (≥ 1) and l (≥ 0), f (k) − Q, g(k) − Q share (0, l), where Q 6≡ 0 is a polynomial. Then

1

2
[T(r, f ) + T(r, g)] ≤

(

k

2
+ 2

)[

N(r, ∞; f ) + N(r, ∞; g)

]

+ Nk+2(r, 0; f ) + Nk+2(r, 0; g)

−

(

l −
3

2

)

N∗(r, 1; F, G) + S(r, f ) + S(r, g),

where F = f (k)

Q and G = g(k)

Q .
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Proof. Since f and g are two transcendental meromorphic functions, F and G are also two

transcendental meromorphic functions. Let z0 is a common simple zero of f (k) − Q and

g(k) − Q. Then z0 is a common simple zero of F − 1 and G − 1. We can easily verify that

possible pole of H occur at (i) multiple zeros of F and G, (ii) poles of f and g, (iii) 1-points of F

and G of different multiplicities, (iv) zeros of F′ which are not the zeros of F(F − 1), (v) zeros

of G′ which are not the zeros of G(G − 1). Since H has only simple poles, clearly we have

N(r, ∞; H) ≤ N(r, ∞; f ) + N(r, ∞; g) + N(r, 0; F |≥ 2) + N(r, 0; G |≥ 2) + N∗(r, 1; F, G)

+ N⊗(r, 0; F′) + N⊗(r, 0; G′) + O(log r),
(5)

where N⊗(r, 0; F′) denotes the reduced counting function of those zeros of F′, which are not

the zeros of F(F − 1), and N⊗(r, 0; G′) is similarly defined.

Since f is a transcendental meromorphic function, we have T(r, Q) = o{T(r, f )}.

By using Lemma 7, we get

T(r, f ) + T(r, g) ≤ N(r, ∞; f ) + N(r, 0; f ) + N(r, 1; F) + N(r, ∞; g) + N(r, 0; g)

+ N(r, 1; G)− N(r, 0; F′)− N(r, 0; G′) + S(r, f ) + S(r, g)

≤ N(r, ∞; f ) + Nk+1(r, 0; f ) + N(r, 1; F) + N(r, ∞; g) + Nk+1(r, 0; g)

+ N(r, 1; G)− N0(r, 0; F′)− N0(r, 0; G′) + S(r, f ) + S(r, g),

(6)

where N0(r, 0; F
′
) is the counting function of those zeros of F

′
in |z| < r, which are not the

zeros of f (F − 1) in |z| < r.

Now using Lemma 1, 2, 3 and (5), we get

N(r, 1; F) + N(r, 1; G) ≤
1

2
[N(r, 1; F) + N(r, 1; G)] + N

1)
E (r, 1; F)−

(

l −
1

2

)

N∗(r, 1; F, G)

≤
1

2
{T(r, f ) + T(r, g)}+

(

k

2
+ 1

)

N(r, ∞; f ) +

(

k

2
+ 1

)

N(r, ∞; g)

+ N(r, 0; F |≥ 2) + N(r, 0; G |≥ 2)−

(

l −
3

2

)

N∗(r, 1; F, G)

+ N⊗(r, 0; F′) + N⊗(r, 0; G′) + O(log r).

(7)

So from (6) and (7), we obtain

1

2
[T(r, f ) + T(r, g)] ≤

(

k

2
+ 2

)[

N(r, ∞; f ) + N(r, ∞; g)

]

+ Nk+1(r, 0; f ) + N(r, 0; F |≥ 2)

+ Nk+1(r, 0; g)+ N(r, 0; G |≥ 2)−

(

l −
3

2

)

N∗(r, 1; F, G) + N⊗(r, 0; F′)

+ N⊗(r, 0; G′)− N0(r, 0; F′)− N0(r, 0; G′) + S(r, f ) + S(r, g)

≤

(

k

2
+ 2

)[

N(r, ∞; f ) + N(r, ∞; g)

]

+ Nk+1(r, 0; f ) + N(r, 0; f |≥ k + 2)

+ N(r, 0; F |≥ 2 | f 6= 0) + Nk+1(r, 0; g) + N(r, 0; g |≥ k + 2)

+ N(r, 0; G |≥ 2 | g 6= 0)−

(

l −
3

2

)

N∗(r, 1; F, G) + N⊗(r, 0; F′)

+ N⊗(r, 0; G′)− N0(r, 0; F′)− N0(r, 0; G′) + S(r, f ) + S(r, g)

≤

(

k

2
+ 2

)[

N(r, ∞; f ) + N(r, ∞; g)

]

+ Nk+2(r, 0; f ) + Nk+2(r, 0; g)

−

(

l −
3

2

)

N∗(r, 1; F, G) + S(r, f ) + S(r, g).
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Lemma 11. Let f , g be two transcendental meromorphic functions and F, G be defined as in

Lemma 10. Then either f (k)g(k) ≡ Q2 or f ≡ g, whenever f and g satisfies one of the following

conditions:

(i) l ≥ 2 and
( k

2
+ 2
)

{

Θ(∞, f ) + Θ(∞, g)
}

+ δk+2(0, f ) + δk+2(0, g) > k + 5; (8)

(ii) l = 1 and
(3k

4
+

9

4

)

{

Θ(∞, f ) + Θ(∞, g)
}

+ δk+2(0, f ) + δk+2(0, g)

+
1

4

{

δk+1(0, f ) + δk+1(0, g)
}

>
3k

2
+ 6;

(9)

(iii) l = 0 and
(

2k +
7

2

)

{

Θ(∞, f ) + Θ(∞, g)
}

+ δk+2(0, f ) + δk+2(0, g)

+
3

2

{

δk+1(0, f )+δk+1(0, g)
}

>4k + 11.
(10)

Proof. Case 1. Let H 6≡ 0. We consider the following cases.

Subcase 1.1. Let l ≥ 2. Then from Lemma 10, we get

1

2
[T(r, f ) + T(r, g)] ≤

( k

2
+ 2
)[

N(r, ∞; f ) + N(r, ∞; g)
]

+ Nk+2(r, 0; f ) + Nk+2(r, 0; g) + S(r, f ) + S(r, g)

≤
[( k

2
+ 3
)

−
( k

2
+ 2
)

Θ(∞, f ) − δk+2(0, f )
]

T(r, f )

+
[(k

2
+ 3
)

−
(k

2
+ 2
)

Θ(∞, g)− δk+2(0, g)
]

T(r, g) + S(r, f ) + S(r, g),

i.e.,
[(k

2
+ 2
)

Θ(∞, f ) + δk+2(0, f )−
( k

2
+

5

2

)]

T(r, f )

+
[(k

2
+ 2
)

Θ(∞, g) + δk+2(0, g)−
( k

2
+

5

2

)]

T(r, g) ≤ S(r, f ) + S(r, g).

Without loss of generality, we may suppose that there exists a set I with infinite linear measure

such that T(r, g) ≤ T(r, f ), r ∈ I. Then for r ∈ I, we have
[(k

2
+ 2
)

{Θ(∞, f ) + Θ(∞, g)}+ δk+2(0, f ) + δk+2(0, g)− (k + 5)
]

T(r, f ) ≤ S(r, f ),

which contradicts (8).

Subcase 1.2. Let l = 1. So from Lemma, 4, 5 and 10, we have
1

2
[T(r, f ) + T(r, g)] ≤

(k

2
+ 2
)[

N(r, ∞; f ) + N(r, ∞; g)
]

+ Nk+2(r, 0; f ) + Nk+2(r, 0; g) +
1

2
N∗(r, 1; F, G) + S(r, f ) + S(r, g)

≤
(k

2
+

9

4

)[

N(r, ∞; f ) + N(r, ∞; g)
]

+ Nk+2(r, 0; f )

+ Nk+2(r, 0; g) +
1

4
{N(r, 0; F) + N(r, 0; G)}+ S(r, f ) + S(r, g)

≤
(3k

4
+

9

4

)[

N(r, ∞; f ) + N(r, ∞; g)
]

+ Nk+2(r, 0; f ) + Nk+2(r, 0; g)

+
1

4
{Nk+1(r, 0; f ) + Nk+1(r, 0; g)}+ S(r, f ) + S(r, g)

≤
[(3k

4
+

7

2

)

−
(3k

4
+

9

4

)

Θ(∞, f )− δk+2(0, f ) −
1

4
δk+1(0, f )

]

T(r, f )

+
[(3k

4
+

7

2

)

−
(3k

4
+

9

4

)

Θ(∞, g)− δk+2(0, g)−
1

4
δk+1(0, g)

]

T(r, g)

+ S(r, f ) + S(r, g),
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i.e.

[(3k

4
+

9

4

)

Θ(∞, f ) + δk+2(0, f ) +
1

4
δk+1(0, f ) −

(3k

4
+ 3
)]

T(r, f )

+
[(3k

4
+

9

4

)

Θ(∞, g) + δk+2(0, g) +
1

4
δk+1(0, g)−

(3k

4
+ 3
)]

T(r, g) ≤ S(r, f ) + S(r, g).

Without loss of generality, we may suppose that there exists a set I with infinite linear measure

such that T(r, g) ≤ T(r, f ), r ∈ I. Then for r ∈ I, we have

[(3k

4
+

9

4

)

{

Θ(∞, f ) + Θ(∞, g)
}

+ δk+2(0, f ) + δk+2(0, g)

+
1

4

{

δk+1(0, f ) + δk+1(0, g)
}

−
(3k

2
+ 6
)]

T(r, f ) ≤ S(r, f ),

which contradicts (9).

Subcase 1.3. Let l = 0. So from Lemmas 4, 5 and 10, we have

1

2
[T(r, f ) + T(r, g)] ≤

( k

2
+ 2
)[

N(r, ∞; f ) + N(r, ∞; g)
]

+ Nk+2(r, 0; f ) + Nk+2(r, 0; g) +
3

2
N∗(r, 1; F, G) + S(r, f ) + S(r, g)

≤
( k

2
+

7

2

)[

N(r, ∞; f ) + N(r, ∞; g)
]

+ Nk+2(r, 0; f ) + Nk+2(r, 0; g)

+
3

2

{

N(r, 0; F) + N(r, 0; G)
}

+ S(r, f ) + S(r, g)

≤
(

2k +
7

2

)[

N(r, ∞; f ) + N(r, ∞; g)
]

+ Nk+2(r, 0; f ) + Nk+2(r, 0; g)

+
3

2
{Nk+1(r, 0; f ) + Nk+1(r, 0; g)}+ S(r, f ) + S(r, g)

≤
[

(2k + 6)−
(

2k +
7

2

)

Θ(∞, f ) − δk+2(0, f )−
3

2
δk+1(0, f )

]

T(r, f )

+
[

(2k + 6)−
(

2k +
7

2

)

Θ(∞, g)− δk+2(0, g)−
3

2
δk+1(0, g)

]

T(r, g)

≤ S(r, f ) + S(r, g),

i.e.,

[(

2k +
7

2

)

Θ(∞, f ) + δk+2(0, f ) +
3

2
δk+1(0, f )−

(

2k +
11

2

)]

T(r, f )

+
[(

2k +
7

2

)

Θ(∞, g) + δk+2(0, g) +
3

2
δk+1(0, g)−

(

2k +
11

2

)]

T(r, g) ≤ S(r, f ) + S(r, g).

Without loss of generality, we may suppose that there exists a set I with infinite linear measure

such that T(r, g) ≤ T(r, f ), r ∈ I. Then for r ∈ I, we have

[(

2k +
7

2

)

{

Θ(∞, f ) + Θ(∞, g)
}

+ δk+2(0, f ) + δk+2(0, g)

+
3

2

{

δk+1(0, f ) + δk+1(0, g)
}

−
(

4k + 11
)]

T(r, f ) ≤ S(r, f ),

which contradicts (10).
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Case 2. Let H ≡ 0. On integration we get from (4)

F ≡
AG + B

CG + D
, (11)

where A, B, C, D are complex constants satisfying AD− BC 6= 0. Also by Mokhon’ko’s Lemma

(see [12])

T(r, f ) = T(r, g) + S(r, f ). (12)

From Lemma 9 we see that F, G share (1, ∞), which again implies F, G share (1, 2). So we

consider only the inequality (8) and so from (12) the condition becomes

( k

2
+ 2
)

{

Θ(∞, f ) + Θ(∞, g)
}

+ δk+2(0, f ) + δk+2(0, g) > k + 5. (13)

As AD − BC 6= 0, so both A and C cannot be simultaneously zero. Thus we consider the

following cases.

Subcase 2.1. Suppose AC 6= 0. Then F − A
C = BC−AD

C(CG+D)
6= 0. So F omits the value A

C . Now

by using Lemma 6, we get

T(r, f ) ≤ Nk+1(r, 0; f ) + N(r, ∞; f ) + N

(

r,
A

C
; F

)

− N0(r, 0; F′) + S(r, f )

≤ Nk+2(r, 0; f ) + N(r, ∞; f ) + S(r, f ),

which yields δk+2(0, f ) + Θ(∞; f ) ≤ 1.

Thus from (13), we get

( k

2
+ 1
)

Θ(∞, f ) +
(k

2
+ 2
)

Θ(∞, g) + δk+2(0, g) > k + 4,

which is a contradiction from the Definition 6.

Subcase 2.2. Suppose AC = 0.

Subcase 2.2.1. Let A = 0 and C 6= 0. Then (11) becomes F = 1
γG+δ , where γ = C

D

and δ = D
C .

If F has no 1-point, i.e. 1 is a Picard Exceptional value, then by using Lemma 6, we get

T(r, f ) ≤ Nk+1(r, 0; f ) + N(r, ∞; f ) + N(r, 1; F)− N0(r, 0; F′) + S(r, f )

≤ Nk+2(r, 0; f ) + N(r, ∞; f ) + S(r, f ),

which again yields δk+2(0, f ) + Θ(∞; f ) ≤ 1, and similarly as above we arrive at a contradic-

tion.

So let F has some 1-point. Then γ + δ = 1. Since C 6= 0, so γ 6= 0 and thus

F =
1

γG + 1 − γ
.

By using Lemma 6, we get

T(r, f ) ≤ Nk+1(r, 0; f ) + N(r, ∞; f ) + N
(

r,
1

1 − γ
; F
)

− N0(r, 0; F′) + S(r, f )

≤ Nk+1(r, 0; f ) + N(r, ∞; f ) + N(r, 0; G) + S(r, f ) + S(r, g)

≤ Nk+1(r, 0; f ) + Nk+1(r, 0; g) + N(r, ∞; f ) + kN(r, ∞; g) + S(r, f ) + S(r, g)

≤ Nk+2(r, 0; f ) + Nk+2(r, 0; g) + N(r, ∞; f ) + kN(r, ∞; g) + S(r, f ) + S(r, g),
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which yields by using (12), δk+2(0, f ) + δk+2(0, g) + Θ(∞, f ) + kΘ(∞, g) ≤ k + 2. Thus from

(13) we get

(k

2
+ 1
)

Θ(∞, f ) +
(

2 −
k

2

)

Θ(∞, g) > 3,

which is a contradiction from the Definition 6.

Thus γ = 1 and FG ≡ 1, i.e. f (k)g(k) ≡ Q2.

Subcase 2.2.2. Let A 6= 0 and C = 0. Then D 6= 0 and (11) becomes F = λG + µ, where

λ = A
D and µ = B

D .

If F has no 1-point then the case can be treated similarly as done above.

So let F has some 1-point. Then λ+ µ = 1 such that µ 6= 0. If λ 6= 1 then by using Lemma 6,

we get

T(r, f ) ≤ Nk+1(r, 0; f ) + N(r, 1 − λ; F) + N(r, ∞; f )− N0(r, 0; F′) + S(r, f )

≤ Nk+1(r, 0; f ) + N(r, 0; G) + N(r, ∞; f ) + S(r, f )

≤ Nk+1(r, 0; f ) + Nk+1(r, 0; g) + kN(r, ∞; g) + N(r, ∞; f ) + S(r, f )

≤ Nk+2(r, 0; f ) + Nk+2(r, 0; g) + kN(r, ∞; g) + N(r, ∞; f ) + S(r, f ),

which by using (12) again yields δk+2(0, f ) + δk+2(0, g) + Θ(∞, f ) + kΘ(∞, g) ≤ k + 2, and

similarly as above we arrive at a contradiction.

Thus λ = 1 and so F ≡ G, which can be rewritten as

f = g + Q1, (14)

where Q1 is a polynomial of degree γQ1
≤ k− 1. Combining (14) and Nevanlinna’s three small

functions theorem (see [18, Theorem 1.36]) we get

T(r, g) ≤ N(r, ∞; g) + N(r, 0; g) + N(r, 0; g + Q1) + S(r, g)

= N(r, ∞; g) + N(r, 0; g) + N(r, 0; f ) + S(r, g).
(15)

Again form (14) we get T(r, f ) = T(r, g) + O(log r). From this and (15) we get

Θ(0, f ) + Θ(0, g) + Θ(∞, g) ≤ 2. (16)

From (13), (16) and Remark 3, we get

(k

2
+ 2
)

Θ(∞, f ) +
(k

2
+ 1
)

Θ(∞, g) > k + 3. (17)

Hence from (17) and Remark 3 we get a contradiction. Thus Q1 = 0 and so we get from (14)

that f = g. This completes the proof.

3 Proof of the Theorems

Proof of Theorem 1. Let d be the degree of the L-function L. Therefore, by Steuding [15, p. 150]

we have

T(r,L) =
d

π
r log r + O(r). (18)
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We set the functions F1 and G1 as follows

F1 =
F(k)

η(z)
, G1 =

G(k)

η(z)
, (19)

where F = P( f )(α f m + β)s and G = P(L)(αLm + β)s.

Clearly, since F(k) − η(z), G(k) − η(z) share (0, l), hence F1, G1 share (1, l).

Noting that an L-function has at most one pole z = 1 in the complex plane, we deduce by

Lemmas 1 and 7 and Valiron-Mokhonko’s lemma (cf. [12]) that

(n + ms)T(r,L) + S(r, f ) = T(r, G)

≤ N(r, ∞; G) + N(r, 0; G) + N(r, 1; G1)− N(r, 0; G
′

1) + S(r, f )

≤ N(r, ∞; G) + Nk+1(r, 0; G) + N(r, 1; G1)− N0(r, 0; G
′

1) + S(r, f )

≤ N(r, ∞;L) + (k + 1)N(r, 0; G) + N(r, 1; G1) + S(r, f )

≤ (k + 1)(n + ms)T(r,L) + N(r, 1; F1) + S(r, f ),

where N0(r, 0; G
′

1) is the counting function of those zeros of G
′

1 in |z| < r, which are not the

zeros of G and G1 − 1 in |z| < r. This implies

−k(n + ms)T(r,L) ≤ T(r, F(k)) + S(r, f ). (20)

By (18) we see that L is a transcendental meromorphic function. Combining this with (20), [18,

Theorem 1.5] and the assumption of the lower bound of n, we deduce that F(k) and so f is a

transcendental meromorphic function.

Now we set

∆1 =
( k

2
+ 2
)

{

Θ(∞, F) + Θ(∞, G)
}

+ δk+2(0, F) + δk+2(0, G), (21)

∆2 =
(3k

4
+

9

4

)

{

Θ(∞, F) + Θ(∞, G)
}

+ δk+2(0, F) + δk+2(0, G)

+
1

4

{

δk+1(0, F) + δk+1(0, G)
}

(22)

and

∆3 =
(

2k +
7

2

)

{

Θ(∞, F) + Θ(∞, G)
}

+ δk+2(0, F) + δk+2(0, G)

+
3

2

{

δk+1(0, F) + δk+1(0, G)
}

.
(23)

Using Lemma 1, we have

Θ(∞, F) = 1 − lim sup
r→∞

N(r, ∞; F)

T(r, F)

= 1 − lim sup
r→∞

N(r, ∞; f )

(n + ms)T(r, f ) + O(1)
≥ 1 −

1

n + ms
,

(24)

δk+2(0, F) = 1 − lim sup
r→∞

Nk+2(r, 0; F)

T(r, F)

≥ 1 − lim sup
r→∞

Nk+2(r, 0; P( f )) + Nk+2(r, 0; (α f m + β)s)

(n + ms)T(r, f ) + O(1)

≥ 1 −
n2(k + 2) + n1 + ms

n + ms
.

(25)
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Similarly,

δk+2(0, G) ≥ 1 −
n2(k + 2) + n1 + ms

n + ms
, (26)

δk+1(0, F) ≥ 1 −
n2(k + 1) + n1 + ms

n + ms
, δk+1(0, G) ≥ 1 −

n2(k + 1) + n1 + ms

n + ms
.

Since an L-function has at most one pole at z = 1 in the complex plane, we have

N(r,L) ≤ log r + O(1).

So using (18) we deduce that

Θ(∞, G) = 1. (27)

Case 1. Let l ≥ 2. By using (21), (24)–(26) and (27), we have

∆1 ≥ (k + 6)−
( k

2 + 2) + 2n2(k + 2) + 2n1 + 2ms

n + ms
. (28)

By (28) and the assumption n > ( k
2 + 2) + 2n2(k + 2) + 2n1 + ms, we have ∆1 > k + 5. Thus by

Lemma 11 we get either F(z)G(k) = η2(z) or F ≡ G.

Let F ≡ G, i.e.

P( f )(α f m + β)s = P(L)(αLm + β)s. (29)

Now we set

H =
f

L
. (30)

If H is a non-constant meromorphic function, then we get (29).

Suppose H is a constant. Then from (30), we get

[an f n + an−1 f n−1 + . . . + a1z]

[

(α f m)s +

(

s

1

)

(α f m)s−1β + . . . +

(

s

s

)

βs

]

=(anL
n + an−1L

n−1 + . . . + a1z)

[

(αLm)s +

(

s

1

)

(αLm)s−1β + . . . +

(

s

s

)

βs

]

,

i.e.

s

∑
i=0

(

s

i

)

βi
[

anL
m(s−i)+n(Hm(s−i)+n − 1) + an−1L

m(s−i)+n−1(Hm(s−i)+n−1 − 1) + . . .

+ a1L
m(s−i)+1(Hm(s−i)+1 − 1)

]

= 0,

which implies Hχn = 1, where

χn =















1,
n−1

∑
j=1

| an−j |6= 0,

d1, aj = 0, ∀j = 1, 2, . . . , n − 1,
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d1 = gcd(ms + n, . . . , m(s − i) + n, . . . n), i = 0, 1, . . . , s. Therefore, f = tL for a constant t

satisfying tχn = 1.

Case 2. Let l = 1. By using (22), (24)–(27), we have

∆2 ≥
3k

2
+ 7 −

3k
4 + 9

4 +
(

5k
2 + 9

2

)

n2 +
5n1

2 + 5ms
2

n + ms
. (31)

By (31) and the assumption n >
3k
4 + 9

4 +
(

5k
2 + 9

2

)

n2 +
5n1

2 + 3ms
2 , we have ∆2 >

3k
2 + 6. Thus

by Lemma 11 we get either F(z)G(k) = η2(z) or F ≡ G. Proceeding in the same manner as done

in Case 1, we get the conclusion.

Case 3. Let l = 0. By using (23), (24)–(27), we have

∆3 ≥ 4k + 12 −
2k + 7

2 + (5k + 7)n2 + 5n1 + 5ms

n + ms
. (32)

By (32) and the assumption n > 2k + 7
2 + (5k + 7)n2 + 5n1 + 4ms, we have ∆3 > 4k + 11. Thus

by Lemma 11 we get either F(z)G(k) = η2(z) or F ≡ G. Proceeding in the same manner as done

in Case 1, we get the conclusion.

Proof of Corollary 2. We set the functions F1 and G1 as follows.

F1 =
F(k)

η(z)
, G1 =

G(k)

η(z)
,

where F = f n(α f m + β) and G = Ln(αLm + β). Clearly, since F(k) − η(z), G(k) − η(z) share

(0, l), hence F1, G1 share (1, l).

Then using the same procedure as adopted in Theorem 1, we obtain either F(z)G(k) = η2(z)

or F ≡ G.

Subcase 1.1. Suppose F(k)G(k) = η2(z), i.e.

{ f n(α f m + β)}(k){Ln(αLm + β)}(k) = η2(z). (33)

Subcase 1.1.1. Let αβ 6= 0. Then using (18), (33), Lemma 1 and a result from Whittaker [16,

p.82] and the definition of the order of a meromorphic function we have

ρ( f ) = ρ(( f n(α f m + β))(k)) = ρ

(

( f n(α f m + β))(k)

η2(z)

)

= ρ((Ln(αLm + β))(k)) = ρ(Ln(αLm + β)) = ρ(L) = 1.

(34)

By (34) we can see that f is a transcendental meromorphic function. Since an L-function has

at most one pole at z = 1 in the complex plane, we deduce by (33) that
( f n(α f m+β))(k)

η2(z)
has at

most one zero at z = 1 in the complex plane. Now, as η(z) is a polynomial, so the zero comes

only from ( f n(α f m + β))(k). Combining this with (34), Lemma 8 and the assumption k ≥ 2,

we obtain that f n(α f m + β) has finitely many poles and so f has finitely many poles in the

complex plane. This together with (33) implies that
(Ln(αLm+β))(k)

η2(z)
and so (Ln(αLm + β))(k) has

at most finitely many zeros in the complex plane. Moreover, by the assumptions (1)–(3), we

deduce that L has at most finitely many zeros. Thus,

L = R1eA1z+B1 , (35)
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where R1 is a rational function, A1 6= 0 and B1 are constants. By (35) and Hayman [3, p.7] we

have

T(r,L) = T(r, R1eA1z+B1) ≤
|A1|r

π
(1 + o(1)) + O(log r),

which contradicts (18).

Subcase 1.1.2. Let αβ = 0. As |α|+ |β| 6= 0, we have to consider the following two cases.

Subcase 1.1.2.1 Let α 6= 0, β = 0. Then (33) becomes { f n+mαm}(k){Ln+mαm}(k) = η2(z).

Let z0 be a zero of L of order λ. Then we can get that z0 is a pole of f of order χ, satisfying

(n + m)λ − k = (n + m)χ + k, i.e. (n + m)(λ − χ) = 2k, which implies n + m ≤ 2k, contra-

dicting the assumptions (1)–(3). Hence, L has no zeros and so L = R2eA2z+B2 , where R2 is

a rational function and A2( 6= 0), B2 are constants. Thus, adopting the same procedure as in

Subcase 1.1.1 we arrive at a contradiction.

Subcase 1.1.2.2 Let α = 0, β 6= 0. Then (33) becomes { f nβm}(k){Lnβm}(k) = η2(z). By

using the argument as in Subcase 1.1.2.1, we obtain n(λ − χ) = 2k, which again contradicts the

assumptions (1)–(3). Thus, in the similar way we arrive at a contradiction as in Subcase 1.1.2.1.

Subcase 1.2. Let F ≡ G, i.e.

f n(α f m + β) = Ln(αLm + β). (36)

So f and L share (∞, ∞).

Subcase 1.2.1. Let αβ 6= 0. Taking H = f
L , we get

αLn+m(Hn+m − 1) = −βLn(Hn − 1). (37)

Suppose H is a non-constant meromorphic function. Then by (37) we have

αLm

β
= −

Hn − 1

Hn+m − 1
. (38)

Let d = gcd(n, m). Then clearly Hd = 1 is the common factor of Hn − 1 and Hn+m − 1.

Therefore, (38) can be rewritten as

αLm

β
= −

1 + H + . . . + Hn−d

1 + H + . . . + Hn+m−d
. (39)

By (39) and Lemma 1 we have

T(r,L) = T

(

r,
1 + H + . . . + Hn−d

1 + H + . . . + Hn+m−d

)

= (n + m − d)T(r, H) + O(1). (40)

Also

ρ( f ) = ρ( f n(α f m + β)) = ρ(( f n(α f m + β))(k)) = ρ((Ln(αLm + β))(k))

= ρ(Ln(αLm + β)) = ρ(L) = 1.
(41)

By (37), (40), (41) and by the second fundamental theorem we have

N(r, ∞;L) =
n

∑
j=1

N(r, γj; H) + o(T(r, H)) ≥ (n + m − d − 1)T(r, H), (42)
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as r → ∞. Here λ1, λ2, . . . , λn+m−d are n + m − d distinct finite complex numbers satisfying

λj 6= 1 and λn+m−d
j = 1 for 1 ≤ j ≤ n + m − d. Noting that L is a transcendental meromorphic

function such that L has at most one pole z = 1 in the complex plane, we deduce by (42) that

there exists some small positive number ε satisfying 0 < ε < 1, such that

(n + m − d − 1 − ε)T(r, H) ≤ N(r, ∞;L) = log r + O(1). (43)

By (43) and the assumptions (1)–(3) and k ≥ 2 we deduce that H is a non-constant rational

function.

Since f and L share (∞, ∞), it follows from the construction of H, that the poles of H only

comes from the zeros of L and so they are finite in number. As a result L has a representation

L = R3eA3z+B3 ,

where R3 is a rational function and A3( 6= 0), B3 are constants. Thus proceeding the similar

way as adopted in Subcase 1.1.1 we arrive at a contradiction.

When H is a constant meromorphic function then from (36) we get

αLn+m(Hn+m − 1) + βLn(Hn − 1) = 0,

which implies Hd = 1. Therefore, f = tL for a constant t satisfying td = 1.

Subcase 1.2.2. Let αβ = 0. As |α|+ |β| 6= 0, so we have to consider the following two cases.

Subcase 1.2.2.1. Let α = 0 and β 6= 0. Then clearly we get f = tL, where t is a constant

satisfying tn = 1.

Subcase 1.2.2.2. Let α 6= 0 and β = 0. Then clearly we see that f = tL, where t is a constant

satisfying tn+m = 1.
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Банiрджi А., Бхаттачарiя С. Єдинiсть деяких диференцiальних полiномiв L-функцiй та меромор-

фних функцiй, що роздiляють полiном // Карпатськi матем. публ. — 2021. — Т.13, №1. — C.

189–206.

Метою цiєї статтi є отримання деяких достатнiх умов для визначення зв’язку мiж меро-

морфною функцiєю i L-функцiєю, коли певний диференцiальний полiном, породжений ни-

ми, роздiляє полiном першого степеня. Основна теорема статтi розширює та вдосконалює всi

результати наступних авторiв: W.J. Hao, J.F. Chen [Discrete Dyn. Nat. Soc. 2018, 2018, article ID

4673165], F. Liu, X.M. Li, H.X. Yi [Proc. Japan Acad. Ser. A Math. Sci. 2017, 93 (5), 41–46], P. Sahoo,

S. Halder [Tbilisi Math. J. 2018, 11 (4), 67–78].

Ключовi слова i фрази: теорiя Неванлiнни, L-функцiя, спiльнi значення, зважена спiльнiсть,

диференцiальний полiном, єдинiсть.


