ISSN 2075-9827 e-ISSN 2313-0210 Carpathian Math. Publ. 2021, **13** (1), 119–126 doi:10.15330/cmp.13.1.119-126

Generalizations of *ss***-supplemented modules**

Soydan İ.[⊠], Türkmen E.

We introduce the concept of (strongly) *ss*-radical supplemented modules. We prove that if a submodule *N* of *M* is strongly *ss*-radical supplemented and Rad(M/N) = M/N, then *M* is strongly *ss*-radical supplemented. For a left good ring *R*, we show that $Rad(R) \subseteq Soc(_RR)$ if and only if every left *R*-module is *ss*-radical supplemented. We characterize the rings over which all modules are strongly *ss*-radical supplemented. We also prove that over a left *WV*-ring every supplemented module is *ss*-supplemented.

Key words and phrases: semisimple module, (strongly) *ss*-radical supplemented module, *WV*-ring.

Department of Mathematics, Faculty of Art and Science, Amasya University, 05100, Ipekkoy, Amasya, Turkey

 $E\text{-mail: irfansoydan05@hotmail.com} (Soydan \ \dot{I}.), \ \texttt{ergulturkmen@hotmail.com} (T \ \ddot{u} \ \textbf{rkmen E}.)$

1 Introduction

Throughout the paper, all rings are associative with identity and all modules are unitary left modules. Let R be a ring and M be an R-module. By Rad(M) and Soc(M), we will denote the *radical* of *M* and the *socle* of *M*, respectively. A submodule $K \subseteq M$ is called *small* in *M*, written $K \ll M$, if for every submodule $N \subseteq M$ the equality M = N + K implies N = M. In [9], D.X. Zhou and X.R. Zhang introduced the concept of socle of a module M to that of $Soc_s(M)$ by considering the class of all simple submodules M that are small in M in place of the class of all simple submodules of M, that is $Soc_s(M) = \sum \{N \ll M \mid N \text{ is simple}\}$. It is clear that $Soc_s(M) \subseteq Rad(M)$ and $Soc_s(M) \subseteq Soc(M)$. A module M is called *supplemented* if every submodule N of M has a supplement, i.e. a submodule K minimal with respect to M = N + K. K is a supplement of N in M if and only if M = N + K and $N \cap K \ll K$. For more properties of supplemented modules we refer to [3]. In [10], H. Zöschinger introduced a notion of modules whose radical has supplements and called them radical supplemented. In the same paper and in [11], he determined the structure of radical supplemented modules. In [2], E. Büyükaşık and E. Türkmen call a module *M* strongly radical supplemented if every submodule containing the radical has a supplement in M. In [6], E. Kaynar, E. Türkmen and H. Çalışıcı call a submodule *V* an *ss*-supplement of *U* in *M* if and only if M = U + V and $U \cap V \subseteq Soc_s(V)$. A module *M* is *ss-supplemented* if every submodule *U* of *M* has an *ss*-supplement *V* in *M*. It is shown in [6, Theorem 3.30] that a ring R is semiperfect and $Rad(R) \subseteq Soc(R)$ if and only if every left R-module is ss-supplemented. Motivated by these results, we call a module ss-radical supplemented if Rad(M) has an ss-supplement in M and we call a module strongly ss-radical supplemented if every submodule containing the radical has an ss-supplement in M.

УДК 512.552

2020 Mathematics Subject Classification: 16D10, 16D60, 16D99.

Also we obtain the various properties of (strongly) *ss*-radical supplemented modules. We show that homomorphic images of strongly *ss*-radical supplemented modules are strongly *ss*-radical supplemented (Proposition 3) and for a left good ring *R*, we prove that $Rad(R) \subseteq$ Soc($_RR$) if and only if every left *R*-module is *ss*-radical supplemented. If *R* is a left *WV*-ring, then *R* is a left good ring and every left *R*-module is *ss*-radical supplemented. We have characterized the rings over which all modules are strongly *ss*-radical supplemented, by Theorem 3. We study on (strongly) *ss*-radical supplemented modules over Dedekind domains.

2 ss-Radical supplemented and strongly ss-radical supplemented modules

In this section, we give some properties of the (strongly) *ss*-radical supplemented modules. In particular, we provide characterizations of some classes of rings.

Recall that a module *M* is called *radical* if *M* has no maximal submodules, i.e. Rad(M) = M.

Proposition 1. Let *M* be radical module. Then *M* is a strongly ss-radical supplemented module.

Proof. It is clear that Rad(M) has the trivial *ss*-supplement 0 in *M*. Thus *M* is strongly *ss*-radical supplemented.

Let *M* be a module. By P(M) we denote the sum of all radical submodules of *M*. Then P(M) is the largest radical submodule of *M*.

Corollary 1. P(M) is strongly ss-radical supplemented for every module *M*.

- **Example 1.** (1) Consider the \mathbb{Z} -module $M = \mathbb{Z}$. Then \mathbb{Z} is an ss-radical supplemented module because $Rad(\mathbb{Z}) = 0$.
 - (2) Let R be a commutative domain and K(R) be the fractions field of R. It follows from Proposition 1 that K(R) is a strongly ss-radical supplemented R-module.

It is well known that every module with small radical is radical supplemented. The following example shows that a module with small radical need to be *ss*-radical supplemented. Firstly we need the following facts.

Lemma 1. Let *M* be a module and $Rad(M) \subseteq Soc(M)$. Then *M* is ss-radical supplemented.

Proof. Obviously, M = M + Rad(M) and $M \cap Rad(M) = Rad(M) \subseteq Soc(M)$. Therefore Rad(M) is semisimple and so M is an *ss*-supplement of Rad(M) in M. Hence M is *ss*-radical supplemented.

Using Lemma 1, we obtain the following Corollary 2 and Corollary 3.

Corollary 2. Let *M* be a module and $Rad(M) \ll M$. Then *M* is an *ss*-radical supplemented module if and only if $Rad(M) \subseteq Soc(M)$.

Proof. By Lemma 1 and by [6, Corollary 3.3].

Example 2. Consider the Z-module $M = \mathbb{Z}_{p^3}$, where *p* is any prime integer. Then $Rad(M) = \langle \overline{p} \rangle \ll M$. Since Rad(M) is not semisimple, by Corollary 2, *M* is not ss-radical supplemented.

Let *R* be a ring. *R* is said to be a *left max ring* if every non-zero left *R*-module has a maximal submodule.

Corollary 3. Let *R* be a left max ring and *M* be an *R*-module. Then *M* is ss-radical supplemented if and only if $Rad(M) \subseteq Soc(M)$.

Proof. Since *R* is a left max ring, *M* has a small radical. By Corollary 2, the proof follows.

Recall that a module *M* is *coatomic* if every proper submodule of *M* is contained in some maximal submodule of *M*.

Proposition 2. Let R be a semilocal ring and M be an ss-radical supplemented module. Then, every ss-supplement of Rad(M) in M is coatomic.

Proof. If M = Rad(M), the proof is clear. Assume that $M \neq Rad(M)$. Let *V* be an *ss*-supplement of Rad(M) in *M*. Then $Rad(M) \cap V = Rad(V)$ is semisimple and so Rad(V) is coatomic. Since *R* is semilocal, it follows from [7, Theorem 3.5] that

$$\frac{M}{Rad(M)} \cong \frac{V}{Rad(M) \cap V} = \frac{V}{Rad(V)}$$

is semisimple. By [10, Lemma 3], we get that *V* is coatomic.

Proposition 3. Every homomorphic image of a strongly ss-radical supplemented module is a strongly ss-radical supplemented module.

Proof. Let *M* be a strongly *ss*-radical supplemented module and $L \subseteq N \subseteq M$ with $Rad(\frac{M}{L}) \subseteq \frac{N}{L}$. Consider the canonical projection $\pi : M \longrightarrow \frac{M}{L}$. Then $\pi(Rad(M)) = \frac{Rad(M)+L}{L} \subseteq Rad(\frac{M}{L}) \subseteq \frac{N}{L}$ and so $Rad(M) \subseteq N$. By the hypothesis, *N* has an *ss*-supplement, say *K*, in *M*. Clearly, we can write $\frac{M}{L} = \frac{N}{L} + \frac{(K+L)}{L}$. By [8, 19.3 (4)], we obtain that $\pi(N \cap K) = \frac{N \cap K+L}{L} = \frac{N}{L} \cap \frac{K+L}{L} \ll \pi(K) = \frac{K+L}{L}$ and $\pi(N \cap K) = \frac{N}{L} \cap \frac{K+L}{L}$ is semisimple. Hence *M* is strongly *ss*-radical supplemented.

Corollary 4. Let *M* be a strongly ss-radical supplemented module. Then $\frac{M}{Rad(M)}$ is semisimple.

Proof. By Proposition 3, $\frac{M}{Rad(M)}$ is strongly *ss*-radical supplemented. Since $Rad(\frac{M}{Rad(M)}) = 0$, we get that $\frac{M}{Rad(M)}$ semisimple.

Proposition 4. Let *M* be a strongly *ss*-radical supplemented module and $Rad(M) \subseteq U$. Then every *ss*-supplement of *U* in *M* is coatomic.

Proof. Let *V* be an *ss*-supplement of *U* in *M*. Then, we can write M = U + V, $U \cap V \ll V$ and $U \cap V$ is semisimple. Therefore, $U \cap V$ is coatomic. Note that $\frac{\frac{M}{Rad(M)}}{\frac{U}{Rad(M)}} \cong \frac{M}{U}$ thus, $\frac{M}{U}$ is semisimple by Corollary 4. It follows that $\frac{M}{U} \cong \frac{V}{U \cap V}$ is semisimple. By [10, Lemma 3], we obtain that *V* is coatomic.

In the following example, we show that a factor module of an *ss*-radical supplemented module need not be *ss*-radical supplemented, in general.

Example 3. Put $M = \mathbb{Z}\mathbb{Z}$. Clearly, M is ss-radical supplemented. Consider the factor module $\frac{\mathbb{Z}}{8\mathbb{Z}}$ of M. Then $Rad\left(\frac{\mathbb{Z}}{8\mathbb{Z}}\right) = \frac{2\mathbb{Z}}{8\mathbb{Z}} \ll \frac{\mathbb{Z}}{8\mathbb{Z}}$. Hence, $\frac{\mathbb{Z}}{8\mathbb{Z}}$ is not ss-radical supplemented by Corollary 2.

Proposition 5. Let *M* be an ss-radical supplemented module and $N \subseteq Rad(M)$. Then, $\frac{M}{N}$ is ss-radical supplemented.

Proof. Consider the canonical $\pi : M \longrightarrow \frac{M}{L}$. Since $N \subseteq Rad(M)$, $\pi(Rad(M)) = \frac{Rad(M)+N}{N} = Rad(\pi(M)) = Rad(\frac{M}{N})$ by [8, 19.3 (4)]. By the assumption, we can write M = Rad(M) + V, $Rad(M) \cap V \ll V$ and $Rad(M) \cap V$ semisimple for some submodule V of M. By a similar discussion in the proof of Proposition 3, we deduce that $\frac{V+N}{N}$ is an *ss*-supplement of $Rad(\frac{M}{N})$ in $\frac{M}{N}$.

Let *M* be a module. *M* is called a *good module* if

$$f(Rad(M)) = Rad(f(M))$$
 for any homomorphism $f : M \longrightarrow N$.

For a good module *M*, we have the following fact.

Proposition 6. Let *M* be a good module. If *M* is ss-radical supplemented, $\frac{M}{N}$ is ss-radical supplemented for every submodule *N* of *M*.

Proof. Since *M* is a good module, we can write $Rad\left(\frac{M}{N}\right) = \frac{Rad(M)+N}{N}$. By similar discussion in the proof of Proposition 3, we get that $\frac{M}{N}$ is *ss*-radical supplemented.

Proposition 7. Let *M* be a module and *N* be a submodule of *M*. Then, if *N* is stronglyss-radical supplemented and $Rad\left(\frac{M}{N}\right) = \frac{M}{N}$, *M* is stronglyss-radical supplemented.

Proof. Let *U* be submodule of *M* with $Rad(M) \subseteq U \leq M$. Since $Rad\left(\frac{M}{N}\right) = \frac{M}{N}$, Rad(M) + N = M and so U + N = M. Since $Rad(N) \subseteq Rad(M) \subseteq U$ and $Rad(N) \subseteq N$, we can write $Rad(N) \subseteq (U \cap N)$. Since *N* is strongly *ss*-radical supplemented, there exists submodule *V* of *M* such that $(U \cap N) + V = N$, $U \cap V \ll V$ and $U \cap V$ semisimple. Hence, we have $M = U + N = U + (U \cap N) + V = U + V$. That is, *M* is strongly *ss*-radical supplemented. \Box

Lemma 2. Let *M* be a module, M_1 , $N \le M$ and $Rad(M) \subseteq N$. If M_1 is a strongly ss-radical supplemented module and $M_1 + N$ has an ss-supplement in *M*, then *N* has an ss-supplement in *M*.

Proof. Suppose that *L* is an *ss*-supplement of $M_1 + N$ in *M* and *K* is an *ss*-supplement of $(L + N) \cap M_1$ in M_1 . Then M = L + K + N and $(L + K) \cap N \ll L + K$. Thus $L \cap (K + N)$ is semisimple. $K \cap [(L + N) \cap M_1] = K \cap (L + N)$ is semisimple and, by [5, 8.1(5)], $(L + K) \cap N$ is semisimple. Then K + L is an *ss*-supplement of *N* in *M*.

Proposition 8. Let M_1 , M_2 be any submodules of a module M such that $M = M_1 + M_2$. Then if M_1 and M_2 are strongly ss-radical supplemented, M is strongly ss-radical supplemented.

Proof. Suppose that $N \subseteq M$ with $Rad(M) \subseteq N$. Clearly $M_1 + M_2 + N$ has the trivial *ss*-supplement 0 in M, so by Lemma 2, $M_1 + N$ has an *ss*-supplement in M. Applying the lemma once more, we obtain an *ss*-supplement for N in M.

Corollary 5. Every finite sum of strongly ss-radical supplemented modules is a strongly ss-radical supplemented module.

Proposition 9. Let *M* be a module with small radical. Then *M* is strongly ss-radical supplemented if and only if it is ss-supplemented.

Proof. (\Longrightarrow) Let *U* be a submodule of *M*. Then $Rad(M) \subseteq Rad(M) + U$ and Rad(M) + U has an *ss*-supplement, say *V*, in *M*. So M = Rad(M) + U + V, $[Rad(M) + U] \cap V \ll V$ and $[Rad(M) + U] \cap V$ is semisimple. Since $Rad(M) \ll M$, we have M = U + V and also $U \cap V \subseteq [Rad(M) + U] \cap V$. Hence, *U* has an *ss*-supplement *V* in *M*. Thus, *M* is an *ss*-supplemented module.

 (\Leftarrow) Clear.

Corollary 6. Let *M* be a coatomic module. Then *M* is *ss*-supplemented if and only if *M* is a strongly *ss*-radical supplemented module.

Theorem 1. Let *M* be a module with $Rad(M) \ll M$. The following statements are equivalent.

- (1) M is ss-supplemented.
- (2) M is supplemented and M is ss-radical supplemented.
- (3) *M* is strongly radical supplemented and $Rad(M) \subseteq Soc(M)$.
- (4) *M* is strongly ss-radical supplemented.

Proof. $(1) \Longrightarrow (2)$ Clear.

 $(2) \Longrightarrow (3)$ It follows from Corollary 2.

(3) \implies (4) Suppose that $U \subseteq M$ with $Rad(M) \subseteq U$. Since M is strongly radical supplemented, we have V supplement with M = U + V and $U \cap V \ll V$. Since $U \cap V \subseteq Rad(V) \subseteq Rad(M) \subseteq Soc(M)$, M is strongly *ss*-radical supplemented.

(4) \implies (1) By Proposition 9.

The following result is a direct consequence of Theorem 1.

Corollary 7. Let *R* be a left max ring. Then every strongly ss-radical supplemented *R*-module *is ss-supplemented*.

Let *M* be a module. *M* is called *strongly local* if it is local and $Rad(M) \subseteq Soc(M)$ [6].

Corollary 8. Let *M* be a local module. Then the following statements are equivalent.

- (1) M is strongly local.
- (2) *M* is ss-supplemented.
- (3) M is ss-radical supplemented.

Proof. Since local modules have small radical, the proof follows from Theorem 1 and [6, Proposition 3 (4)].

Now, we shall characterize the rings over which all modules are strongly *ss*-radical supplemented.

Proposition 10. The following statements are equivalent for a ring R.

- (1) Every projective left R-module is ss-radical supplemented.
- (2) Every free left R-module is ss-radical supplemented.

(3) Every finitely generated free left R-module is ss-radical supplemented.

(4) $Rad(R) \subseteq Soc(_RR).$

Proof. $(1) \Longrightarrow (2)$ and $(2) \Longrightarrow (3)$ are clear.

(3) \implies (4) By (3), $_RR$ is *ss*-radical supplemented. It follows from [6, Theorem 3(30)] that $Rad(R) \subseteq Soc(_RR)$.

(4) \implies (1) Let *P* be any projective left *R*-module. Then, by [8, 21.17 (2)], $Rad(P) = Rad(R)P \subseteq Soc(_RR)P = Soc(P)$ and so Rad(P) is small in *P*. Applying [8, 21.17 (2)], we obtain that *P* is *ss*-radical supplemented.

Example 4. Given the ring \mathbb{Z} . It is well known that $Rad(\mathbb{Z}) = Soc(_{\mathbb{Z}}\mathbb{Z}) = 0$. Consider the \mathbb{Z} -module $M =_{\mathbb{Z}} \mathbb{Z}_{16}$. Note that M is not projective. Then, $Rad(M) \ll M$ and M is not ss-radical supplemented by Corollary 2.

A ring *R* is called *a left good ring* if $_RR$ is a good module.

Theorem 2. Let *R* be a left good ring. Then $Rad(R) \subseteq Soc(_RR)$ if and only if every left *R*-module is ss-radical supplemented.

Proof. Let *M* be a left *R*-module and $Rad(R) \subseteq Soc(_RR)$. Since *R* is a left good ring, we can write Rad(M) = Rad(R), $M \subseteq Soc(_RR)$, $M \subseteq Soc(M)$ by [7]. Hence, *M* is *ss*-radical supplemented by Lemma 1. The converse follows from Corollary 2.

Let *R* be a ring. *R* is called a *left WV-ring* if every simple *R*-module is $\frac{R}{I}$ -injective, where $\frac{R}{T} \ncong R$ and *I* is any ideal of *R*. Clearly, left *WV*-rings are a generalization of *V*-rings [4].

Lemma 3. Let R be a left WV-ring. Then R is a left good ring and a left max ring.

Proof. If *R* is a left *V*-ring, then *R* is a left good ring and a left max ring. Assume that *R* is not a left *V*-ring. By [4, Corollary 6 (8)], $\frac{R}{Rad(R)}$ is a left *V*-ring. It follows from [8, 23 (2)] that *R* is a left good ring. Let $M \neq 0$. Since *R* is a left good ring, Rad(M) = Rad(R), $M \subseteq Soc(_RR)$, $M \subseteq Soc(_RR)$ and so Rad(M) is semisimple. It means that $Rad(M) \neq M$. Hence, *R* is a left max ring.

Note that, in general, a left max ring and a left good ring need not be a left *WV*-ring. For example, the $R = \mathbb{Z}_8$ is an Artinian ring which is not a left *WV*-ring.

Corollary 9. Let *R* be a left *WV*-ring. Then

- (1) every left R-module is ss-radical supplemented;
- (2) every supplemented left R-module is ss-supplemented.

Proof. (1) By Theorem 2 and Lemma 3.

(2) Let *M* be a supplemented module. Since *R* is a left *WV*-ring, by Lemma 3, $Rad(M) \subseteq Soc(M)$. It follows from Theorem 1 that *M* is *ss*-supplemented.

Theorem 3. For a ring *R*, following statements are equivalent.

- (1) Every left R-module is strongly ss-radical supplemented.
- (2) Every finitely generated left R-module is strongly ss-radical supplemented.
- (3) $_{R}R$ is strongly ss-radical supplemented.
- (4) $_{R}R$ is ss-supplemented.
- (5) *R* is semilocal and $Rad(R) \subseteq Soc(_RR)$.
- *Proof.* (1) \Longrightarrow (2), (2) \Longrightarrow (3) and (3) \Longrightarrow (4) are clear. (4) \Longrightarrow (5) and (5) \Longrightarrow (1) by [6, Theorem 3 (30)].

It is well known that, over an Artinian ring, every left *R*-module is supplemented and so every module is strongly radical supplemented. However, any module over an Artinian ring need not be strongly *ss*-radical supplemented. For example, consider the ring \mathbb{Z}_8 . Then $_RR$ is not strongly *ss*-radical supplemented.

Unless stated otherwise, here in after, we assume that every ring is a Dedekind domain which is not field.

For a module M, P(M) indicates the sum of all radical submodules of M. If P(M) = 0, then M is called *reduced*. Note that P(M) is the largest radical submodule of M. Let R be a Dedekind domain and let M be an R-module. Since R is a Dedekind domain, P(M) is the divisible part of M. By [1, Lemma 4 (4)], P(M) is (divisible) injective and so there exists a submodule N of M such that $M = P(M) \bigoplus N$. Here N is called the *reduced part* of M.

Proposition 11. Let *R* be a Dedekind domain and let *M* be an *R*-module. Then *M* is a strongly *ss*-radical supplemented module if and only if *N* is strongly *ss*-radical supplemented, where *N* is reduced part of *M*.

Proof. N is a strongly *ss*-radical supplemented module as a homomorphic image of *M* by Proposition 3. The converse is by Proposition 8. \Box

Lemma 4. Let *R* be a Dedekind domain and *M* be a torsion-free *R*-module. Then, the following statements are equivalent.

- (1) *M* is strongly ss-radical supplemented.
- (2) M is injective.

Proof. (1) \implies (2) Let *U* be a maximal submodule of *M*. Then, *U* has an *ss*-supplement, say *V*, in *M*. By [8, 41.1 (3)], *V* is local and so $V \subseteq T(M) = 0$. Therefore V = 0. Hence, *M* has no maximal submodules, i.e. M = Rad(M). By [1, Lemma 4 (4)], *M* is injective.

(2) \implies (1) By [1, Lemma 4 (4)] Rad(M) = M and so, by Proposition 1, M is strongly *ss*-radical supplemented.

Corollary 10. Let *R* be a Dedekind domain and *M* be a strongly *ss*-radical supplemented module. Then, $\frac{M}{T(M)}$ is injective.

Proposition 12. Let *R* be a Dedekind domain, *M* be an *R*-module and *T*(*M*) is strongly ss-radical supplemented. Then, *M* is strongly ss-radical supplemented if and only if $\frac{M}{T(M)}$ is injective.

Proof. (\implies) Since *M* is strongly *ss*-radical supplemented it follows from Proposition 3 that $\frac{M}{T(M)}$ is strongly *ss*-radical supplemented. Hence, $\frac{M}{T(M)}$ is injective.

(\Leftarrow) Since $\frac{M}{T(M)}$ is injective, we can write $Rad\left(\frac{M}{T(M)}\right) = \frac{M}{T(M)}$ by [1, Lemma 4 (4)]. Therefore, this can be proved by taking N = T(M) in the Proposition 7 and hypothesis.

References

- Alizade R., Bilhan G., Smith P.F. Modules whose maximal submodules have supplements. Comm. Algebra 2001, 29 (6), 2389–2405. doi:10.1081/AGB-100002396
- Büyükaşık E., Türkmen E. Strongly radical supplemented modules. Ukrainian Math. J. 2012, 63 (8), 1306–1313. doi:10.1007/s11253-012-0579-3
- [3] Clark J., Lomp C., Vanaja N., Wisbauer R. Lifting Modules: Supplements and Projectivity in Module Theory. Birkhäuser Verlag, Basel, 2006. doi:10.1007/3-7643-7573-6
- [4] Jain S.K., Srivastava A.K., Tuganbaev A.A. Cyclic Modules and the Structure of Rings. Oxford University Press, Oxford, 2012. doi:10.1093/acprof:oso/9780199664511.001.0001
- [5] Kasch F. Modules and Rings. Academic Press, London, 1982.
- [6] Kaynar E., Türkmen E., Çalışıcı H. ss-Supplemented modules. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 2020, 69 (1), 473–485. doi:10.31801/cfsuasmas.585727
- [7] Lomp C. On semilocal modules and rings. Comm. Algebra 1999, 27 (4), 1921–1935. doi: 10.1080/00927879908826539
- [8] Wisbauer R. Foundations of Module and Ring Theory. Gordon & Breach, New York, 1991.
- Zhou D.X., Zhang X.R. Small-essential submodules and Morita duality. Southeast Asian Bull. Math. 2011, 35 (6), 1051–1062.
- [10] Zöschinger H. Moduln, die in jeder Erweiterung ein Komplement haben. Math. Scand. 1974, 35 (2), 267–287. doi:10.7146/math.scand.a-11552
- [11] Zöschinger H. Basis-untermoduln und quasi-kotorsions-moduln über diskreten Bewertungsringen. In: Bayerische Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, Sitzungsberichte Jahrgang, München, 1976, 9–16. (in German)

Received 02.05.2020

Сойдан I., Туркмен Е. Узагальнення ss-доповнених модулів // Карпатські матем. публ. — 2021. — Т.13, №1. — С. 119–126.

Ми вводимо поняття (строго) ss-радикально доповненого модуля. Ми доводимо, що коли підмодуль N модуля M є строго ss-радикально доповненим і Rad(M/N) = M/N, то M є строго ss-радикально доповненим. Для доброго лівого кільця R ми показуємо, що $Rad(R) \subseteq Soc(_RR)$ тоді і тільки тоді, коли кожен лівий R-модуль є ss-радикально доповненим. Ми характеризуємо кільця, над якими всі модулі є строго ss-радикально доповненими. Також ми доводимо, що над лівим WV-кільцем кожен доповнений модуль є ss-доповненим.

Ключові слова і фрази: напівпростий модуль, (строго) *ss*-радикально доповнений модуль, *WV*-кільце.