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On Hadamard composition of Gelfond-Leont’ev derivatives of
entire and analytic functions in the unit disk
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For an entire function and an analytic in the unit disk function the growth of the Hadamard

composition of their Gelfond-Leont’ev derivatives is investigated in terms of generalized orders. A

relationship between the behaviors of the maximal terms of Hadamard composition of Gelfond-

Leont’ev derivatives and of the Gelfond-Leont’ev derivative of Hadamard composition is estab-

lished.
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Introduction

For power series

f (z) =
∞

∑
k=0

fkzk, g(z) =
∞

∑
k=0

gkzk (1)

with the convergence radii R[ f ] and R[g], the series ( f ∗ g)(z) =
∞

∑
k=0

fkgkzk is called the

Hadamard composition. It is well known [1, 2], that R[ f ∗ g] ≥ R[ f ]R[g].

Obtained by J. Hadamard properties of this composition have the applications [2, 3] in the

theory of the analytic continuation of the functions represented by power series. We remark

also, that singular points of the Hadamard composition are investigated in the article [4].

For 0 ≤ r < R[ f ], let M(r, f ) = max{| f (z)| : |z| = r}, µ(r, f ) = max{| fk |r
k : k ≥ 0} be

the maximal term and ν(r, f ) = max{k : | fk |r
k = µ(r, f )} be the central index of the power

expansion of f .

For a power series of the form (1) with the convergence radius R[ f ] ∈ [0, +∞] and a power

series l(z) =
∞

∑
k=0

lkzk with the convergence radius R[l] ∈ [0, +∞] and coefficients lk > 0 for all

k ≥ 0 the power series

D
(n)
l f (z) =

∞

∑
k=0

lk
lk+n

fk+nzk

is called [5] Gelfond-Leont’ev derivative of n-th order. If l(z) = ez then D
(n)
l f (z) = f (n)(z)

is the usual derivative of n-th order. The properties of Hadamard compositions of Gelfond-

Leont’ev derivatives of analytic functions f and g in cases when either R[ f ] = R[g] = +∞
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or R[ f ] = R[g] = 1 are investigated in [6]. For example, for entire functions f and g it is

proved [6], that if

0 < lim
k→∞

lk
(k + 1)lk+1

≤ lim
k→∞

lk
(k + 1)lk+1

< +∞, (2)

then

lim
r→+∞

1

ln r
ln

µ(r, D
(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

= n̺[ f ∗ g]

and

lim
r→+∞

1

ln r
ln

µ(r, D
(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

= nλ[ f ∗ g],

where ̺[ f ] is the order and λ[ f ] is the lower order of the function f .

If R[ f ] = R[g] = R[ f ∗ g] = 1 and (2) holds, then [6]

n̺(1)[ f ∗ g] ≤ lim
r↑1

1

− ln (1 − r)
ln+ µ(r, D

(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

≤ n(̺(1)[ f ∗ g] + 1)

and

nλ(1)[ f ∗ g] ≤ lim
r↑1

1

− ln (1 − r)
ln+ µ(r, D

(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

≤ n(λ(1)[ f ∗ g] + 1),

where ̺(1)[ f ] is the order and λ(1)[ f ] is the lower order of the analytic function f in the unit

disk.

The question about the similar properties of the Hadamard composition naturally arises

for the case R[ f ] 6= R[g]. Here, we restrict ourselves to the case R[ f ] = +∞ and R[g] = 1. We

will conduct researches in terms of generalized orders.

1 Analyticity and growth

Since R[ f ] = +∞, R[g] = 1 and R[ f ∗ g] ≥ R[ f ]R[g], we have R[ f ∗ g] = +∞. In [6], it is

proved that for an arbitrary series of the form (1) the equalities R[ f ] = +∞ and R[D
(n)
l f ] = +∞

are equivalent if and only if

0 < q = lim
k→∞

k
√

lk/lk+1 ≤ lim
k→∞

k
√

lk/lk+1 = Q < +∞. (3)

Hence, it follows that R[D
(n)
l ( f ∗ g)] = +∞ for each n ≥ 0. Finally, if (3) holds, then

R[D
(n)
l f ∗ D

(m)
l g] = +∞ for each n ≥ 0 and m ≥ 0. Indeed,

1

R[D
(n)
l f ∗ D

(m)
l g]

= lim
k→∞

k

√

lk
lk+n

| fk+n|
lk

lk+m
|gk+m| ≤ Qn+m lim

k→∞

k

√

| fk+n| lim
k→∞

k

√

|gk+m| = 0.

As in [7], let L be a class of continuous nonnegative on (−∞, +∞) functions α such that

α(x) = α(x0) ≥ 0 for x ≤ x0 and α(x) ↑ +∞ as x0 ≤ x → +∞. We say that α ∈ L0,

if α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞. Finally, α ∈ Lsi, if α ∈ L and

α(cx) = (1 + o(1))α(x) as x → +∞ for each fixed c ∈ (0, +∞), i.e. α is a slowly increasing

function. Clearly, Lsi ⊂ L0.
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For α ∈ L, β ∈ L and an entire transcendental function (1) the quantities

̺α,β[ f ] := ̺α,β[ln M, f ] = lim
r→+∞

α(ln M(r, f ))

β(ln r)

and

λα,β[ f ] := λα,β[ln M, f ] = lim
r→+∞

α(ln M(r, f ))

β(ln r)

are called the generalized order and the lower generalized order, respectively. If here we sub-

stitute ln µ(r, f ) or ν(r, f ) instead of ln M(r, f ), then we obtain the definitions of the quantities

̺α,β[ln µ, f ], λα,β[ln µ, f ] and ̺α,β[ν, f ], λα,β[ν, f ], respectively.

Lemma 1. Let α ∈ Lsi, β ∈ L0 and
dβ−1(cα(x))

d ln x
= O(1) as x → +∞ for each c ∈ (0, +∞).

Then

̺α,β[ f ] = lim
k→∞

α(k)

β

(

1

k
ln

1

| fk|

) . (4)

If, moreover, | fk/ fk+1| ր +∞ as k0 ≤ k → ∞, then

λα,β[ f ] = lim
k→∞

α(k)

β

(

1

k
ln

1

| fk|

) . (5)

Formula (4) was proved in [7], and formula (5) follows from the corresponding formula for

entire Dirichlet series proved in [8].

Proposition 1. Let the functions α and β satisfy the conditions of Lemma 1 and (3) holds. Then

̺α,β[ f ∗ g] ≤ ̺α,β[ f ] and under condition

lim
k→∞

k

√

|gk| = h > 0 (6)

the equality ̺α,β[ f ∗ g] = ̺α,β[ f ] holds.

If, moreover, | fk|/| fk+1| ր +∞ and |gk/gk+1| ր 1 as k0 ≤ k → ∞, then λα,β[ f ∗ g] ≤ λα,β[ f ]

and under condition (6) the equality λα,β[ f ∗ g] = λα,β[ f ] holds.

Proof. Since lim
k→∞

k
√

|gk| = 1/R[g] = 1, for every h > 1 and all k ≥ k0(h) we have k
√

|gk| ≤ h,

that is (1/k) ln (1/|gk |) ≥ − ln h. Therefore, since β(x + O(1)) = (1 + o(1))β(x) as x → +∞,

by Lemma 1 we get

1

̺α,β[ f ∗ g]
= lim

k→∞

1

α(k)
β

(

1

k
ln

1

| fkgk|

)

= lim
k→∞

1

α(k)
β

(

1

k
ln

1

| fk|
+

1

k
ln

1

|gk|

)

≥ lim
k→∞

1

α(k)
β

(

1

k
ln

1

| fk |
− ln h

)

=
1

̺α,β[ f ]
,

i.e. ̺α,β[ f ∗ g] ≤ ̺α,β[ f ]. If (6) holds, then as above we have

1

̺α,β[ f ∗ g]
= lim

k→∞

1

α(k)
β

(

1

k
ln

1

| fk |
+

1

k
ln

1

|gk |

)

≤ lim
k→∞

1

α(k)
β

(

1

k
ln

1

| fk |
− ln (h/2)

)

=
1

̺α,β[ f ]
,

i.e. ̺α,β[ f ∗ g] ≥ ̺α,β[ f ] and, thus, ̺α,β[ f ∗ g] = ̺α,β[ f ].

The inequality λα,β[ f ∗ g] ≤ λα,β[ f ] and the equality λα,β[ f ∗ g] = λα,β[ f ] can be proved

similarly.
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Remark 1. In general, the equality ̺α,β[ f ∗ g] = ̺α,β[ f ] may not hold. Indeed, let for example

f (z) =
∞

∑
n=0

exp{−2nβ−1(α(2n))}z2n and g(z) =
∞

∑
n=0

z2n+1.

Then by Lemma 1 we have ̺α,β[ f ∗ g] = 0 < 1 = ̺α,β[ f ].

Lemma 2. If α ∈ Lsi and β ∈ L0, then ̺α,β[ f ] = ̺α,β[ln µ, f ] and λα,β[ f ] = λα,β[ln µ, f ]. If,

moreover, α(ex) ∈ Lsi and α(x) = o(β(x)) as x → +∞, then ̺α,β[ln µ, f ] = ̺α,β[ν, f ] and

λα,β[ln µ, f ] = λα,β[ν, f ].

Proof. In view of the conditions α ∈ Lsi and β ∈ L0 the equalities ̺α,β[ f ] = ̺α,β[ln µ, f ] and

λα,β[ f ] = λα,β[ln µ, f ] follow from the estimates

µ(r, f ) ≤ M(r, f ) ≤
∞

∑
k=0

| fk|r
k =

∞

∑
k=0

| fk|(2r)k2−k ≤ 2µ(2r, f ).

It is well known [9, p. 13] that ln µ(r, f ) − ln µ(1, f ) =
∫ r

1

ν(t, f )

t
dt, whence

ν(r/2, f ) ln 2 ≤

r
∫

r/2

ν(t, f )

t
dt ≤ ln µ(r, f )− ln µ(1, f ) ≤ ν(r, f ) ln r, (7)

and, therefore, in view of conditions α(ex) ∈ Lsi, β ∈ L0 and α(x) = o(β(x)) as x → +∞ we

have

(1 + o(1))
α(ν(r, f ))

β(ln r)
≤ (1 + o(1))

α(ln µ(r, f ))

β(ln r)
≤

α(exp{ln ν(r, f ) + ln ln r})

β(ln r)

≤
α(exp{2 max{ln ν(r, f ), ln ln r}})

β(ln r)

= (1 + o(1))
α(exp{max{ln ν(r, f ), ln ln r}})

β(ln r)

= (1 + o(1))
max{α(ν(r, f )), α(ln r)}

β(ln r)
≤ (1 + o(1))

α(ν(r, f )) + α(ln r)

β(ln r)

= (1 + o(1))
α(ν(r, f ))

β(ln r)
+ o(1), r → +∞,

and, thus, ̺α,β[ln µ, f ] = ̺α,β[ν, f ] and λα,β[ln µ, f ] = λα,β[ν, f ]. The proof of Lemma 2 is

completed.

Remark 2. From the condition
dβ−1(cα(x))

d ln x
= O(1) as x → +∞ for each c ∈ (0, +∞) it follows

that β−1(cα(x)) ≤ qx for each c ∈ (0, +∞) and some q ∈ (0, +∞), that is α(x) ≤ β(qx)/c =

(1+ o(1))β(x)/c as x → +∞. Hence, in view of the arbitrariness of c we obtain α(x) = o(β(x))

as x → +∞.

The following proposition establishes a connection between the growth of entire function

and its Gelfond-Leont’ev derivative.
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Proposition 2. Let α ∈ L0 and β ∈ L0. If condition (3) holds and f is an entire function, then

̺α,β[D
(n)
l f ] = ̺α,β[ f ] and λα,β[D

(n)
l f ] = λα,β[ f ] for each n ≥ 1.

Proof. It is enough to consider the case n = 1. Condition (3) implies the existence of numbers

0 < q1 ≤ q2 < +∞ such that qk
1 ≤ lk/lk+1 ≤ qk

2 for all k ≥ 0. Therefore,

rµ(r, D
(1)
l f ) = max

{

lk
lk+1

| fk+1|r
k+1 : k ≥ 0

}

≤
1

q2
max{| fk+1|(q2r)k+1 : k ≥ 0} ≤

µ(q2r, f )

q2

and by analogy rµ(r, D
(1)
l f ) ≥ µ(q1r, f )/q1 for all r enough large. Since ln r = o(ln µ(r, f )) as

r → +∞ for each entire transcendental function, hence we get the asymptotic inequalities

(1 + o(1)) ln µ(q1r, f ) ≤ ln µ(r, D
(1)
l f ) ≤ (1 + o(1)) ln µ(q2r, f ), r → +∞,

whence by Proposition 1 the validity of Proposition 2 follows easy.

Corollary 1. Let α ∈ Lsi and β ∈ L0. If R[ f ] = +∞, R[g] = 1 and (3) holds, then

λα,β[D
(n)
l f ∗ D

(n)
l g] = λα,β[D

(n)
l ( f ∗ g)] = λα,β[ f ∗ g]

and

̺α,β[D
(n)
l f ∗ D

(n)
l g] = ̺α,β[D

(n)
l ( f ∗ g)] = ̺α,β[ f ∗ g]

for all n ≥ 1.

Indeed, the equalities λα,β[D
(n)
l ( f ∗ g)] = λα,β[ f ∗ g] and ̺α,β[D

(n)
l ( f ∗ g)] = ̺α,β[ f ∗ g]

follow directly from Proposition 2. To prove the equalities λ[D
(n)
l f ∗ D

(n)
l g] = λ[D

(n)
l ( f ∗ g)]

and ̺[D
(n)
l f ∗ D

(n)
l g] = ̺[D

(n)
l ( f ∗ g)] it is enough to notice that, as at proof of Proposition 2, it

is possible to get inequality

qn
1 µ(r, D

(n)
l ( f ∗ g)) ≤ µ(r, D

(n)
l f ∗ D

(n)
l g) ≤ qn

2 µ(r, D
(n)
l ( f ∗ g)),

and use Lemma 2.

2 Relationship between the growth of the maximal terms of Hadamard

composition of the derivatives and of the derivative of Hadamard com-

position

We start with two theorems close to the results cited in the introduction.

Theorem 1. Let n ∈ Z+, α(ex) ∈ Lsi, β ∈ L0 and
dβ−1(cα(x))

d ln x
= O(1) as x → +∞ for each

c ∈ (0, +∞). Suppose that R[ f ] = +∞, R[g] = 1 and conditions (3) with q > 1 and (6) hold.

Then

lim
r→+∞

1

β(ln r)
α

(

ln
µ(r, D

(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

)

= ̺α,β[ f ]. (8)

If, moreover, lklk+2/l2
k+1 ր 1, | fk/ fk+1| ր +∞ and |gk/gk+1| ր 1 as k0 ≤ k → ∞, then

lim
r→+∞

1

β(ln r)
α

(

ln
µ(r, D

(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

)

= λα,β[ f ]. (9)
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Proof. In [6], the following estimates are proved

l
ν(r,D

(n)
l ( f ∗g))

l
ν(r,D

(n)
l ( f ∗g))+n

≤
µ(r, D

(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

≤
l
ν(r,D

(n)
l f ∗D

(n)
l g)

l
ν(r,D

(n)
l f ∗D

(n)
l g)+n

. (10)

Condition (3) with q > 1 implies the existence of numbers 1 < q1 ≤ q2 < +∞ such that

qkn
1 ≤ lk/lk+n ≤ qkn

2 for all k ≥ k0. Therefore, from (10) we get

nν(r, D
(n)
l ( f ∗ g)) ln q1 ≤ ln

µ(r, D
(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

≤ nν(r, D
(n)
l f ∗ D

(n)
l g) ln q2, r ≥ r0, (11)

whence in view of the condition α ∈ Lsi we obtain

α(ν(r, D
(n)
l ( f ∗ g))) ≤ (1 + o(1))α

(

ln
µ(r, D

(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

)

≤ α(ν(r, D
(n)
l f ∗ D

(n)
l g))

as r → +∞. Thus,

̺α,β[ν, D
(n)
l ( f ∗ g)] ≤ lim

r→+∞

1

β(ln r)
α

(

ln
µ(r, D

(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

)

≤ ̺α,β[ν, D
(n)
l f ∗ D

(n)
l g] (12)

and

λα,β[ν, D
(n)
l ( f ∗ g)] ≤ lim

r→+∞

1

β(ln r)
α

(

ln
µ(r, D

(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

)

≤ λα,β[ν, D
(n)
l f ∗ D

(n)
l g]. (13)

By Lemma 2 we have ̺α,β[ν, D
(n)
l ( f ∗ g)] = ̺α,β[ln µ, D

(n)
l ( f ∗ g)] = ̺α,β[D

(n)
l ( f ∗ g)] and

̺α,β[ν, D
(n)
l f ∗ D

(n)
l g] = ̺α,β[ln µ, D

(n)
l f ∗ D

(n)
l g] = ̺α,β[D

(n)
l f ∗ D

(n)
l g]. On the other hand, by

Corollary 1 we have ̺α,β[D
(n)
l ( f ∗ g)] = ̺α,β[D

(n)
l f ∗ D

(n)
l g] = ̺α,β[ f ∗ g]. Finally, by Propo-

sition 1 we have ̺α,β[ f ∗ g] = ̺α,β[ f ]. Therefore, (12) implies (8). Also, by Lemma 2 we

have λα,β[ν, D
(n)
l ( f ∗ g)] = λα,β[D

(n)
l ( f ∗ g)] and λα,β[ν, D

(n)
l f ∗ D

(n)
l g] = λα,β[D

(n)
l f ∗ D

(n)
l g].

From Corollary 1 and Proposition 1 we obtain λα,β[D
(n)
l ( f ∗ g)] = λα,β[ f ] and, thus,

λα,β[ν, D
(n)
l ( f ∗ g)] = λα,β[ f ].

On the other hand, since lklk+2/l2
k+1 ր 1 as k0 ≤ k → ∞, we have

lklk+n+1

lk+1lk+n
=

n−1

∏
j=0

lk+jlk+j+2

l2
k+j+1

ր 1, k0 ≤ k → ∞,

and, thus,

(

lk| fk+n|

lk+n

)

/

(

lk+1| fk+n+1|

lk+n+1

)

ր +∞,

(

lk|gk+n|

lk+n

)

/

(

lk+1|gk+n+1|

lk+n+1

)

ր 1 (14)

as k0 ≤ k → ∞. Therefore, by Propositions 1 and 2, λα,β[D
(n)
l f ∗ D

(n)
l g] = λα,β[D

(n)
l f ] = λα,β[ f ]

and, thus, (13) implies (9). The proof of Theorem 1 is completed.
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Theorem 2. Let R[ f ] = +∞, R[g] = 1 and (6) holds. Suppose that the functions α and β satisfy

the conditions of Theorem 1, n ∈ Z+, m ∈ Z+ and m ≥ n. If

lk/lk+1 ≍ k, k → ∞, (15)

then

lim
r→+∞

1

β(ln r)
α

(

rm−nµ(r, D
(m)
l f ∗ D

(m)
l g)

µ(r, D
(n)
l ( f ∗ g))

)

= ̺α,β[ f ]. (16)

If, moreover, lklk+2/l2
k+1 ր 1, | fk/ fk+1| ր +∞ and |gk/gk+1| ր 1 as k0 ≤ k → ∞, then

lim
r→+∞

1

β(ln r)
α

(

rm−nµ(r, D
(m)
l f ∗ D

(m)
l g)

µ(r, D
(n)
l ( f ∗ g))

)

= λα,β[ f ]. (17)

Proof. At first we show that

l
ν(r,D

(n)
l ( f ∗g))+n

l
ν(r,D

(n)
l ( f ∗g))





l
ν(r,D

(n)
l ( f ∗g))+n−m

l
ν(r,D

(n)
l ( f ∗g))+n





2

≤
rm−nµ(r, D

(m)
l f ∗ D

(m)
l g)

µ(r, D
(n)
l ( f ∗ g))

≤





l
ν(r,D

(m)
l f ∗D

(m)
l g)

l
ν(r,D

(m)
l f ∗D

(m)
l g)+m





2
l
ν(r,D

(m)
l f ∗D

(m)
l g)+m

l
ν(r,D

(m)
l f ∗D

(m)
l g)+m−n

.

(18)

Indeed, from one side,

µ
(

r, D
(n)
l ( f ∗ g)

)

=
l
ν(r,D

(n)
l ( f ∗g))

l
ν(r,D

(n)
l ( f ∗g))+n

| f
ν(r,D

(n)
l ( f ∗g))+n

| |g
ν(r,D

(n)
l ( f ∗g))+n

|rν(r,D
(n)
l ( f ∗g))

=
l
ν(r,D

(n)
l ( f ∗g))

l
ν(r,D

(n)
l ( f ∗g))+n





l
ν(r,D

(n)
l ( f ∗g))+n−m+m

l
ν(r,D

(n)
l ( f ∗g))+n−m





2



l
ν(r,D

(n)
l ( f ∗g))+n−m

l
ν(r,D

(n)
l ( f ∗g))+n−m+m





2

× | f
ν(r,D

(n)
l ( f ∗g))+n−m+m

| |g
ν(r,D

(n)
l ( f ∗g))+n−m+m

| rν(r,D
(n)
l ( f ∗g))+n−m rm−n

≤
l
ν(r,D

(n)
l ( f ∗g))

l
ν(r,D

(n)
l ( f ∗g))+n





l
ν(r,D

(n)
l ( f ∗g))+n

l
ν(r,D

(n)
l ( f ∗g))+n−m





2

µ(r, D
(m)
l f ∗ D

(m)
l g)rm−n

and, on the other hand,

µ
(

r, D
(m)
l f ∗ D

(m)
l g

)

=





l
ν(r,D

(m)
l f ∗D

(m)
l g)

l
ν(r,D

(m)
l f ∗D

(m)
l g)+m





2

| f
ν(r,D

(m)
l f ∗D

(m)
l g)+m

||g
ν(r,D

(m)
l f ∗D

(m)
l g)+m

|rν(r,D
(m)
l f ∗D

(m)
l g)

=





l
ν(r,D

(m)
l f ∗D

(m)
l g)

l
ν(r,D

(m)
l f ∗D

(m)
l g)+m





2
l
ν(r,D

(m)
l f ∗D

(m)
l g)+m

l
ν(r,D

(m)
l f ∗D

(m)
l g)+m−n

l
ν(r,D

(m)
l f ∗D

(m)
l g)+m−n

l
ν(r,D

(m)
l f ∗D

(m)
l g)+m−n+n

× | f
ν(r,D

(m)
l f ∗D

(m)
l g)+m−n+n

||g
ν(r,D

(m)
l f ∗D

(m)
l g)+m−n+n

| rν(r,D
(m)
l f ∗D

(m)
l g)+m−n rn−m

≤





l
ν(r,D

(m)
l f ∗D

(m)
l g)

l
ν(r,D

(m)
l f ∗D

(m)
l g)+m





2
l
ν(r,D

(m)
l f ∗D

(m)
l g)+m

l
ν(r,D

(m)
l f ∗D

(m)
l g)+m−n

µ(r, D
(n)
l ( f ∗ g))rn−m,
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whence (18) follows.

Condition (15) implies the existence of numbers 0 < h1 ≤ h2 < +∞ such that

l
ν(r,D

(n)
l ( f ∗g))+n

l
ν(r,D

(n)
l ( f ∗g))





l
ν(r,D

(n)
l ( f ∗g))+n−m

l
ν(r,D

(n)
l ( f ∗g))+n





2

≥ h1ν(r, D
(n)
l ( f ∗ g))2m−n

and




l
ν(r,D

(m)
l f ∗D

(m)
l g)

l
ν(r,D

(m)
l f ∗D

(m)
l g)+m





2
l
ν(r,D

(m)
l f ∗D

(m)
l g)+m

l
ν(r,D

(m)
l f ∗D

(m)
l g)+m−n

≤ h2ν(r, D
(m)
l f ∗ D

(m)
l g)2m−n

and, therefore, (18) implies

h1ν(r, D
(n)
l ( f ∗ g))2m−n ≤

rm−nµ(r, D
(m)
l f ∗ D

(m)
l g)

µ(r, D
(n)
l ( f ∗ g))

≤ h2ν(r, D
(m)
l f ∗ D

(m)
l g)2m−n. (19)

Since α(ex) ∈ Lsi, we have

α(h1ν(r, D
(n)
l ( f ∗ g))2m−n) = α(exp{(2m − n) ln ν(r, D

(n)
l ( f ∗ g)) + ln h1})

= (1 + o(1))α(exp{ln ν(r, D
(n)
l ( f ∗ g))}) = (1 + o(1))α(ln ν(r, D

(n)
l ( f ∗ g)))

and similarly α(h2ν(r, D
(m)
l f ∗ D

(m)
l g)2m−n) = (1 + o(1))α(ν(r, D

(m)
l f ∗ D

(m)
l g)) as r → +∞.

Therefore, from (18) we obtain

̺α,β[ν, D
(n)
l ( f ∗ g)] ≤ lim

r→+∞

1

β(ln r)
α

(

rm−nµ(r, D
(m)
l f ∗ D

(m)
l g)

µ(r, D
(n)
l ( f ∗ g))

)

≤ ̺α,β[ν, D
(m)
l f ∗ D

(m)
l g]

(20)

and

λα,β[ν, D
(n)
l ( f ∗ g)] ≤ lim

r→+∞

1

β(ln r)
α

(

rm−nµ(r, D
(m)
l f ∗ D

(m)
l g)

µ(r, D
(n)
l ( f ∗ g))

)

≤ λα,β[ν, D
(m)
l f ∗ D

(m)
l g].

(21)

From (20) and (21) as in the proof of Theorem 1 we get (16) and (17). Theorem 2 is proved.

The following theorem indicates the relationship between

µ(r, D
(m)
l ( f ∗ g)) and µ(r, D

(n)
l ( f ∗ g)).

Theorem 3. Let R[ f ] = +∞, R[g] = 1 and (6) holds. Suppose that the functions α and β satisfy

the conditions of Theorem 1, n ∈ Z+, m ∈ N and m > n. If (3) holds with q > 1, then

lim
r→+∞

1

β(ln r)
α

(

ln
rm−nµ(r, D

(m)
l ( f ∗ g))

µ(r, D
(n)
l ( f ∗ g))

)

= ̺α,β[ f ] (22)

and if, moreover, | fk/ fk+1| ր +∞, |gk/gk+1| ր 1 as k0 ≤ k → ∞, then

lim
r→+∞

1

β(ln r)
α

(

ln
rm−nµ(r, D

(m)
l ( f ∗ g))

µ(r, D
(n)
l ( f ∗ g))

)

= λα,β[ f ]. (23)
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If (15) holds, then

lim
r→+∞

1

β(ln r)
α

(

rm−nµ(r, D
(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

)

= ̺α,β[ f ] (24)

and if, moreover, | fk/ fk+1| ր +∞, |gk/gk+1| ր 1 as k0 ≤ k → ∞, then

lim
r→+∞

1

β(ln r)
α

(

rm−nµ(r, D
(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

)

= λα,β[ f ]. (25)

Proof. Since [6]

l
ν(r,D

(n)
l ( f ∗g))+n−m

l
ν(r,D

(n)
l ( f ∗g))

≤
rm−nµ(r, D

(m)
l ( f ∗ g))

µ(r, D
(n)
l ( f ∗ g))

≤
l
ν(r,D

(m)
l ( f ∗g))

l
ν(r,D

(m)
l ( f ∗g))+m−n

, (26)

if (3) holds with q > 1, then as in the proof of Theorem 1 we have

(m − n)ν(r, D
(n)
l ( f ∗ g)) ln q1 ≤ ln

rm−nµ(r, D
(m)
l ( f ∗ g))

µ(r, D
(n)
l ( f ∗ g))

≤ (m − n)ν(r, D
(m)
l ( f ∗ g)) ln q2, 1 < q1 < q2 < +∞,

(27)

whence as above we get (22) and (23).

If (15) holds, then from (26) it follows that

h1ν(r, D
(n)
l ( f ∗ g))m−n ≤

rm−nµ(r, D
(m)
l ( f ∗ g))

µ(r, D
(n)
l ( f ∗ g))

≤ h2ν(r, D
(m)
l ( f ∗ g))m−n. (28)

The further proof of Theorem 3 is the same as the proof of Theorem 1. We only note that since

ν(r, D
(m)
l f ∗ D

(m)
l g) stands on the right-hand side of inequality (12) we need conditions (14),

that is, the condition lklk+2/l2
k+1 ր 1 (k → ∞). Now this condition is not necessary, because

on the right-hand side of (28) the term ν(r, D
(m)
l ( f ∗ g)) stands and, therefore, from (28) we

obtain (24) and (25). Theorem 3 is proved.

Finally, the following theorem indicates the relationship between µ(r, D
(m)
l f ∗ D

(m)
l g) and

µ(r, D
(n)
l f ∗ D

(n)
l g).

Theorem 4. Let R[ f ] = +∞, R[g] = 1 and (6) holds. Suppose that the functions α and β satisfy

the conditions of Theorem 1, n ∈ Z+, m ∈ N and m > n. If (3) holds with q > 1, then

lim
r→+∞

1

β(ln r)
α

(

ln
rm−nµ(r, D

(m)
l f ∗ D

(m)
l g)

µ(r, D
(n)
l f ∗ D

(n)
l g)

)

= ̺α,β[ f ]

and if, moreover, | fk/ fk+1| ր +∞, |gk/gk+1| ր 1 as k0 ≤ k → ∞, then

lim
r→+∞

1

β(ln r)
α

(

ln
rm−nµ(r, D

(m)
l f ∗ D

(m)
l g)

µ(r, D
(n)
l f ∗ D

(n)
l g)

)

= λα,β[ f ].



On Hadamard composition of Gelfond-Leont’ev derivatives 107

If (15) holds, then

lim
r→+∞

1

β(ln r)
α





√

√

√

√

rm−nµ(r, D
(m)
l f ∗ D

(m)
l g)

µ(r, D
(n)
l f ∗ D

(n)
l g)



 = ̺α,β[ f ]

and if, moreover, | fk/ fk+1| ր +∞, |gk/gk+1| ր 1 as k0 ≤ k → ∞, then

lim
r→+∞

1

β(ln r)
α





√

√

√

√

rm−nµ(r, D
(m)
l f ∗ D

(m)
l g)

µ(r, D
(n)
l f ∗ D

(n)
l g)



 = λα,β[ f ].

Indeed, since [6]

l
ν(r,D

(n)
l ( f ∗g))+n−m

l
ν(r,D

(n)
l ( f ∗g))

≤

√

√

√

√

rm−nµ(r, D
(m)
l f ∗ D

(m)
l g)

µ(r, D
(n)
l f ∗ D

(n)
l g)

≤
l
ν(r,D

(m)
l ( f ∗g))

l
ν(r,D

(m)
l ( f ∗g))+m−n

,

the proof of this theorem is the same as the proof of Theorem 3.

3 Addition

Choosing α(x) = ln+ x and β(x) = x+, from the definitions of ̺α,β[ f ] and λα,β[ f ] for entire

function (1) we get the definitions of the order ̺[ f ] = lim
r→+∞

ln ln M(r, f )

ln r
and the lower order

λ[ f ] = lim
r+∞

ln ln M(r, f )

ln r
. The selected functions α and β satisfy all the conditions of Theorems

1–4 except of the condition α(ex) ∈ Lsi that arose as a result of the applying Lemma 2. But from

(7) it follows, that ̺[ν, f ] = ̺[ln µ, f ], λ[ν, f ] = λ[ln µ, f ] and, thus, ̺[ν, f ] = ̺[ f ], λ[ν, f ] =

λ[ f ]. Therefore, from (11) we get

̺[D
(n)
l ( f ∗ g)] ≤ lim

r→+∞

1

ln r
ln ln

µ(r, D
(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

≤ ̺[D
(n)
l f ∗ D

(n)
l g],

λ[D
(n)
l ( f ∗ g)] ≤ lim

r→+∞

1

ln r
ln ln

µ(r, D
(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

≤ λ[D
(n)
l f ∗ D

(n)
l g]

and repeating the proof of Theorem 1 we arrive at the following statement.

Proposition 3. Let n ∈ Z+, R[ f ] = +∞, R[g] = 1 and conditions (6) and (3) with q > 1 hold.

Then

lim
r→+∞

1

ln r
ln ln

µ(r, D
(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

= ̺[ f ]

and if, moreover, lklk+2/l2
k+1 ր 1, | fk/ fk+1| ր +∞ and |gk/gk+1| ր 1 as k0 ≤ k → ∞, then

lim
r→+∞

1

ln r
ln ln

µ(r, D
(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

= λ[ f ].
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If (15) holds, then from (19) we get

(2m − n)̺[D
(n)
l ( f ∗ g)] ≤ lim

r→+∞

1

ln r
ln

rm−nµ(r, D
(m)
l f ∗ D

(m)
l g)

µ(r, D
(n)
l ( f ∗ g))

≤ (2m − n)̺[D
(m)
l ( f ∗ g)],

(2m − n)λ[D
(n)
l ( f ∗ g)] ≤ lim

r→+∞

1

ln r
ln

rm−nµ(r, D
(m)
l f ∗ D

(m)
l g)

µ(r, D
(n)
l ( f ∗ g))

≤ (2m − n)λ[D
(m)
l ( f ∗ g)]

and repeating the proof of Theorem 2 we arrive at the following statement.

Proposition 4. Let n ∈ Z+, m ∈ N, m > n, R[ f ] = +∞, R[g] = 1 and conditions (15) and (6)

hold. Then

lim
r→+∞

1

ln r
ln

rm−nµ(r, D
(m)
l f ∗ D

(m)
l g)

µ(r, D
(n)
l ( f ∗ g))

= (2m − n)̺[ f ].

If, moreover, lklk+2/l2
k+1 ր 1, | fk/ fk+1| ր +∞ and |gk/gk+1| ր 1 as k0 ≤ k → ∞, then

lim
r→+∞

1

ln r
ln

rm−nµ(r, D
(m)
l f ∗ D

(m)
l g)

µ(r, D
(n)
l ( f ∗ g))

= (2m − n)λ[ f ].

Using (27) and (28) similarly we prove the following statement.

Proposition 5. Let n ∈ Z+, m ∈ Z+, m > n, R[ f ] = +∞, R[g] = 1 and condition (6) holds. If

(3) with q > 1 holds, then

lim
r→+∞

1

ln r
ln ln

rm−nµ(r, D
(m)
l ( f ∗ g))

µ(r, D
(n)
l ( f ∗ g))

= ̺[ f ]

and if, moreover, | fk/ fk+1| ր +∞ and |gk/gk+1| ր 1 as k0 ≤ k → ∞, then

lim
r→+∞

1

ln r
ln ln

rm−nµ(r, D
(m)
l ( f ∗ g))

µ(r, D
(n)
l ( f ∗ g))

= λ[ f ].

If (15) holds, then

lim
r→+∞

1

ln r
ln

rm−nµ(r, D
(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

= (m − n)̺[ f ],

and if, moreover, | fk/ fk+1| ր +∞ and |gk/gk+1| ր 1 as k0 ≤ k → ∞, then

lim
r→+∞

1

ln r
ln

rm−nµ(r, D
(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

= (m − n)λ[ f ].

Finally, the following statement also is true.

Proposition 6. Let n ∈ Z+, m ∈ N, m > n, R[ f ] = +∞, R[g] = 1 and condition (6) holds. If

(3) with q > 1 holds, then

lim
r→+∞

1

ln r
ln ln

µ(r, D
(m)
l ( f ∗ g))

µ(r, D
(n)
l ( f ∗ g))

= ̺[ f ]
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and if, moreover, | fk/ fk+1| ր +∞ and |gk/gk+1| ր 1 as k0 ≤ k → ∞, then

lim
r→+∞

1

ln r
ln ln

µ(r, D
(m)
l ( f ∗ g))

µ(r, D
(n)
l ( f ∗ g))

= λ[ f ].

If (15) holds, then

lim
r→+∞

1

ln r
ln

rm−nµ(r, D
(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

= 2(m − n)̺[ f ]

and if, moreover, | fk/ fk+1| ր +∞ and |gk/gk+1| ր 1 as k0 ≤ k → ∞, then

lim
r→+∞

1

ln r
ln

rm−nµ(r, D
(n)
l f ∗ D

(n)
l g)

µ(r, D
(n)
l ( f ∗ g))

= 2(m − n)λ[ f ].
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Мулява О.М., Шеремета М.М. Про адамарову композицiю похiдних Гельфонда-Леонтьєва цiлих та

аналiтичних в одиничному крузi функцiй // Карпатськi матем. публ. — 2021. — Т.13, №1. — C.

98–109.

Для цiлої функцiї i аналiтичної в одиничному крузi функцiї у термiнах узагальнених по-

рядкiв дослiджено зростання адамарової композицiї їх похiдних Гельфонда-Леонтьєва. Вста-

новлено зв’язок мiж поводженнями максимальних членiв адамарової композицiї похiдних

Гельфонда-Леонтьєва та похiдної Гельфонда-Леонтьєва адамарової композицiї.

Ключовi слова i фрази: аналiтична функцiя, адамарова композицiя, похiдна Гельфонда-Ле-

онтьєва, максимальний член.


